覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应

周立峰, 杨宇翔, 杨荣

周立峰, 杨宇翔, 杨荣. 覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应[J]. 中国生态农业学报 (中英文), 2024, 32(1): 83−94. DOI: 10.12357/cjea.20230289
引用本文: 周立峰, 杨宇翔, 杨荣. 覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应[J]. 中国生态农业学报 (中英文), 2024, 32(1): 83−94. DOI: 10.12357/cjea.20230289
ZHOU L F, YANG Y X, YANG R. Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 83−94. DOI: 10.12357/cjea.20230289
Citation: ZHOU L F, YANG Y X, YANG R. Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 83−94. DOI: 10.12357/cjea.20230289
周立峰, 杨宇翔, 杨荣. 覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应[J]. 中国生态农业学报 (中英文), 2024, 32(1): 83−94. CSTR: 32371.14.cjea.20230289
引用本文: 周立峰, 杨宇翔, 杨荣. 覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应[J]. 中国生态农业学报 (中英文), 2024, 32(1): 83−94. CSTR: 32371.14.cjea.20230289
ZHOU L F, YANG Y X, YANG R. Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 83−94. CSTR: 32371.14.cjea.20230289
Citation: ZHOU L F, YANG Y X, YANG R. Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 83−94. CSTR: 32371.14.cjea.20230289

覆膜砂质农田土壤水分和CO2分布特征及玉米根叶衰老响应

基金项目: 中国科学院战略性先导科技专项项目(XDA23060302)、国家自然科学基金项目(52369006)和云南省基础研究计划项目(202201BE070001-023)资助
详细信息
    作者简介:

    周立峰, 主要研究方向为农田生态过程及模拟。E-mail: zhoulf@kust.edu.cn

    通讯作者:

    杨荣, 主要研究方向为绿洲农业生态学。E-mail: yangrong@lzb.ac.cn

  • 中图分类号: S275.6

Root and leaf senescence of maize subject to spatial differentiation of soil water and CO2 in sandy fields with plastic film mulching

Funds: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23060302), National Natural Science Foundation of China (52369006), and the Yunnan Fundamental Research Projects (202201BE070001-023).
More Information
  • 摘要:

    干旱区新垦绿洲沙地灌溉强度大, 农田覆膜后往往出现春玉米早衰现象。为探讨土壤水分和通气性是否是引发早衰的原因, 本研究在河西走廊绿洲春玉米农田设置不覆膜(NM)和覆膜(PFM)处理, 探求覆膜条件下土壤水分和CO2分压(pCO2)对玉米根系生长、绿叶面积衰减、光合生理以及籽粒产量与品质的影响。覆膜处理中, 覆膜区域的土壤pCO2较未覆膜区域高40%以上; 未覆膜处理中, 对应区域的土壤pCO2差异为13.9%~24.0%。相比不覆膜处理的对应区域, 覆膜处理覆膜区域过高的土壤pCO2使玉米花期根系活力下降19.7%, 但非覆膜区根长密度和根系活力分别增加22.7%和9.6%。覆膜提高了春玉米拔节期叶片光合速率(20.0%)和蒸腾速率(8.5%), 但抑制了花后叶片光合速率(−40.0%)和蒸腾速率(−18.0%); 覆膜处理相对绿叶面积衰减启动时间和衰减最大速率时间分别提前1.7 d和7.1 d, 而平均衰减速率和最大衰减速率分别增加6.7%和21.7%。覆膜的上述效应未显著影响玉米籽粒产量, 但使籽粒淀粉含量和蛋白质含量分别降低20.1%和22.1%。以上结果表明, 在干旱区新垦绿洲沙地, 覆膜根区土壤pCO2过高可能是导致玉米花后早衰和籽粒品质下降的重要原因, 后期建议开展适时揭膜、控制灌溉(如亏缺灌溉、分根交替灌溉)或加气灌溉对覆膜新垦绿洲农田土壤通气性的改善研究。

    Abstract:

    High intensive irrigation is commonly found in newly reclaimed oasis sandy land in arid area, which easily causes plant senescence of spring maize in farmland with plastic film mulching. The previous studies have found that land cover significantly affected soil moisture and soil aeration, but the data of spatial differentiation of soil moisture and soil aeration under mulching condition was lacking. In order to explore whether soil moisture and aeration causes plant senescence, an experiment was conducted to investigate the effects of plastic film mulching on spatial differentiation of soil water and partial pressure of soil CO2 (pCO2) in root zone, root growth, green leaf duration, leaf photosynthetic physiology, grain yield and grain quality of spring maize in a sandy farmland in the Hexi Corridor (100°12′E, 39°20′N, 1370 m above sea level). Two treatments [plastic film mulching (PFM) and no mulching (NM)] were set up in this experiment. In the current study, oven drying method was used to determine soil water content. Soil gas was collected by gas well method, which was composed of collecting pipe, transmission pipe and a sampler. The CO2 concentration of gas samples was analysed by a gas chromatograph (Agilent 7890A, Agilent, Palo Alto, USA). Plant roots were sampled using a steel drilling, washed into a nylon mesh bag, scanned with root a scanner (EPSON Perfection V700) and then obtained root length density (RLD) using WinRHIZOPro software. Soil moisture showed no significant difference in horizontal direction in NM treatment, whereas, the average soil moisture of mulched soil (narrow row and wide row at 5 cm distance from plants) was 28.1% (P<0.05), 15.2% (P<0.05) and 21.7% (P<0.05) higher than that under non-mulched soil (wide row at 25 cm distance from plants) before, 6-days after, and 9-days after irrigation. In PFM treatment, soil pCO2 in mulched zone was 40% higher than that in the in non-mulched zone. Compared with NM, the excessively high soil pCO2 under mulched zone under PFM treatment decreased the maize root activity by 19.7%, but the root distribution and activity in the non-mulch zone increased by 22.7% and 9.6%, respectively; the leaf photosynthetic rate and transpiration rate in PFM were increased by 20.0% and 8.5% at the jointing stage, respectively, but the corresponding value at grain filling stage were −40.0% and −18.0% respectively. In addition, compared with the NM, the senescence-start time and senescence-maximum time of green-leaves were 1.7 d and 7.1 d earlier in PFM, respectively, while the average and maximum green-leaves senescence rates were increased by 6.7% and 21.7% in PFM, respectively. The above effects of mulching did not significantly affect the yield of corn grain, but reduced the starch content and protein content of grain by 20.1% and 22.1%, respectively. The above results show that the excessively high soil pCO2 after maize flowering in the newly reclaimed oasis sandy land in the arid area may be an important reason of plant senescence and grain quality degradation, and it is recommended to take timely film-uncovering, controlled irrigation (e.g., deficit irrigation, root alternating irrigation) or aerated irrigation to improve soil aeration.

  • 全球人口已增加至80亿, 粮食生产面临持续增长压力并驱动全球耕地面积的不断扩大[1-2]。绿洲化是将自然生态系统 (如天然绿洲、绿洲-沙漠交错带) 转化为耕地的过程, 是中国、埃及、以色列、澳大利亚等国家新增耕地的重要方式[2]。中国西北干旱绿洲区占据了全国40% 以上的可开垦耕地, 绿洲面积在过去60年中扩大了4倍[3]。尽管绿洲可开垦耕地资源丰富, 但地带性风沙土结构松散且缺乏有机质, 导致土壤水肥保蓄能力不足[3]。因此, 绿洲化进程往往伴随着过量灌溉以保证作物耗水需求。以临泽绿洲边缘的新垦农田为例, 春玉米(Zea mays L.)生育期灌溉次数常达二十余次, 总灌溉量超过1000 mm。在这种过量灌溉模式下, 覆膜农田玉米常出现早衰症状。

    地膜覆盖能显著改善土壤水热条件, 是干旱半干旱区广泛采用的栽培措施[4]。地膜覆盖对作物出苗[5]、植株营养生长与光合生理[6]的正面作用已有大量报道, 但也有研究指出覆膜可能引发农田土壤温度过高[6]、有机质耗竭[7]、作物“奢侈耗水”[7]和植株生育后期“脱水脱肥”[8]等现象, 从而对作物后期生长及产量造成不利影响。土壤通气性调节土壤养分转化和作物生长, 是仅次于土壤水分和养分的第三大环境因子[9]。根系是作物获取土壤水分和养分的主要器官[10], 氧气(O2)在维持根系生理代谢和功能方面发挥着重要作用[11]。土壤缺氧会极大地限制作物根系发育和土壤微生物活动[12-15], 进而对土壤养分供给和作物生长产生负面影响[16]。在土壤中, 土壤呼吸导致土壤-大气界面存在O2/CO2 浓度梯度。土壤通过气体的对流和扩散吸收O2并排放CO2, 从而将土壤气体中O2 和CO2分压(即土壤气体中O2和CO2所占的质量比例) 维持在稳定水平[17]

    近年来, 地表覆盖抑制土-气界面气体交换并导致土壤通气性不良的现象屡有报道[18-21]。例如, 在我国南方, 地表有机物覆盖引起土壤气体CO2分压(pCO2)过高、根系生长受限和人工林退化 [22]。在新疆的研究发现, 覆膜对土壤水热条件的改善并未显著提高棉花(Gossypium herbaceum L.)产量, 并推测该现象可能与土壤通气不良有关[22]。在我国西北地区的研究也发现, 膜下滴灌土壤通气不良激发了玉米气生根的生长, 使根系生长呈现浅层化分布, 限制了根系对土壤水肥的吸收并增加了作物早衰风险[23-24]。目前, 关于土壤压实[25-26]、淹水[27-28]降低土壤气体中O2和CO2质量比的作用机制已有深入研究, 然而地表覆盖对土壤通气性的影响还有待进一步明确。

    相比土壤中O2分压(pO2), 土壤pCO2对外界环境变化的响应更为敏感, 是土壤呼吸作用强弱的指示因子, 且对作物生理特性和产量的影响也更为明显[29-30]。因此, 土壤pCO2广泛用于土壤通气性的表征。地膜通常覆盖于作物种植行, 形成了覆膜区域和未覆膜区域交替分布的非均匀性土-气地表界面, 并可能影响土壤通气性[31]。在新垦绿洲农田过量灌溉情景下, 覆膜是否会造成土壤pCO2升高及其在覆膜区-未覆膜区的“两区”分布还不清楚, 其是否会导致作物根叶衰老并影响玉米籽粒的产量与品质也有待验证。因此, 本研究在河西走廊新垦绿洲农田针对土壤水分、CO2分布以及玉米根叶衰老与籽粒产量品质对覆膜的响应开展研究, 旨在为西北新垦绿洲农田的稳产增效提供理论与实践依据。

    试验于2020年4—10月在中国科学院临泽内陆河流域研究站进行(39°20′N, 100°12′E, 海拔1370 m)。该地区属温带大陆性干旱荒漠气候, 多年平均降雨量为117 mm, 蒸发量为2390 mm, 降雨集中在7—9月。试验地年均气温为7.6 ℃, 无霜期为165 d, 年日照时数约为3250~3500 h。试验站属中国生态系统研究网络(CERN)站, 站内设有标准气象观测站, 试验期春玉米生育期平均温度为18.0 ℃, 累积降雨量为100.5 mm, 累积蒸发量为1845.5 mm (图1)。当地采取井(地下水)渠(黑河水)结合的灌溉引水结构, 年地下水位在4~6 m之间波动, 地下水电导率为0.73 dS·m−1。试验地土壤为灌耕灰棕漠土(灌漠土), 基本理化性质如表1所示。当地种植的春玉米多为中晚熟品种, 种植制度为一年1季, 新垦沙地农田春玉米产量为9000~12 000 kg·hm−2

    图  1  试验地玉米生育期(2020年4—10月)气温、降水和水面蒸发量
    Figure  1.  Air temperature, precipitation and pan evaporation during maize growth period (April to October in 2020) at the experimental site
    表  1  试验地0~120 cm土层土壤基本理化性质
    Table  1.  Basic soil physical and chemical properties (0−120 cm depth) at the experimental site
    土层深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g·cm−3)
    田间持水量
    Field capacity
    (%)
    有机质
    Organic matter
    (g·kg−1)
    NO3含量
    NO3 content
    (mg·kg−1)
    NH4+ 含量
    NH4+ content
    (mg·kg−1)
    土壤粒径分布
    Soil particle size distribution (%)
    黏粒
    Clay
    粉粒
    Slit
    砂粒
    Sand
    0~201.4333.27.8118.513.216.218.365.5
    20~401.4931.93.7312.321.813.118.368.6
    40~601.5228.62.789.813.411.214.274.6
    60~901.5626.52.226.77.39.69.880.6
    90~1201.5824.31.575.86.27.86.485.8
    下载: 导出CSV 
    | 显示表格

    试验设2个处理(NM: 不覆盖; PFM: 地膜覆盖), 每个处理设3个重复, 小区面积5 m×10 m。春玉米采用宽窄行种植, 窄行40 cm, 宽行60 cm, 株距为30 cm。覆盖处理中, 地膜(无色透明地膜, 膜厚度为0.008 mm, 覆盖宽度为60 cm)覆盖在窄行, 覆盖度为0.6。两个处理的灌水和除草措施保持一致。采用畦灌方式灌溉, 自玉米3叶期起每10 d灌溉1次, 灌水定额由E601型蒸发皿确定, 全生育期灌水13次, 总灌水量为920.6 mm。两个处理的施肥也保持一致, 即氮肥300 kg(N)·hm−2和磷肥200 kg(P2O5)·hm−2, 一半肥料以底肥的形式施入, 其余肥料于春玉米6叶期、10叶期、抽雄期和灌浆期平均分次施入。于4月12日旋耕整地并起埂划分小区, 旋耕深度为15 cm, 无秸秆覆盖; 4月15日人工覆膜, 地膜两边以土压实; 4月20日播种, 供试春玉米品种为‘陇单10号’, 播种方式为人工点播, 播种深度为5 cm。

    在春玉米花期初, 采用烘干法测定灌水前和灌水后第3天、第6天和第9天的土壤含水率, 取样深度为0~10 cm、10~20 cm、20~30 cm、30~40 cm和40~60 cm。水平方向上, 窄行取样点为距植株0~20 cm的中点, 即10 cm; 宽行取样点分别为距植株 0~10 cm、10~20 cm和20~30 cm处的中点部位, 即5 cm、15 cm和25 cm处(图2), 每个小区重复取样3次。

    图  2  土壤水分测定的水平方向取样点示意图
    Figure  2.  Diagram of sampling points in the horizontal direction for soil moisture measurement

    在春玉米花期的第7 天, 采用气井法收集土壤气体, 装置在Wang等[32]的基础上略作改变, 主要由集气管、输气管和采样器组成, 水平采样点与土壤水分保持一致, 采样深度为5 cm、15 cm、30 cm和50 cm, 每个小区设3个采样点。集气管由内径为2.5 cm的聚氯乙烯(PVC)管制成, PVC管的下部被打孔, 并由防水膜覆盖, 允许土壤空气从周围土壤扩散到取样器中。将配有三通阀的微孔聚四氟乙烯管(内径为0.25 cm, 外径为0.30 cm)插入集气管, 用于连接集气管和采样器。在春玉米花期的第7 天采集各层土壤气体, 并采用气相色谱仪(Agilent 7890A, Agilent, Palo Alto, USA)测定土壤CO2分压(图3)。

    图  3  土壤气体采样系统 (以 15 cm采样深度为例)
    Figure  3.  Soil gas sampling system (taking the sampling depth of 15 cm as an example)

    在春玉米花期的第10 天采用根钻法采集根系样品, 每个小区重复取样3次, 取样点和土壤水分保持一致。根系取出后放入尼龙网袋中冲洗, 冲洗干净的根系样品经过扫描后(EPSON Perfection V700)使用WinRHIZOPro STD4800 LA2400 软件分析得到RLD。保存覆膜区和非覆膜区0~20 cm深度的作物根尖组织, 采用氯化三笨基四氮唑法测定根系活力。

    从吐丝期开始, 在每个试验小区标记3株有代表性植株, 每周测量一次绿叶面积, 监测单株绿叶面积的动态变化。叶面积(LA, cm2)计算如下所示:

    $$ \mathrm{LA}={L}\times{W}\times{0.75} $$ (1)

    式中: L为绿叶部分的叶脉长度(cm), W为绿叶部分的最大宽度(cm)。

    相对绿叶面积 (RGLA, %)为吐丝后某时刻绿叶面积与吐丝期最大绿叶面积之比, 其变化过程用以下方程描述[33]

    $$ {y}={\mathrm{e}}^{a-bx}/(1+{\mathrm{e}}^{a-bx}) $$ (2)

    式中: y 为某一时刻的RGLA(%), x为吐丝后的天数, 参数ab分别和叶片衰老的启动时间和衰老速度有关。通常认为相对绿叶面积达到95%时为植株衰老启动时间(Ts)。对上述方程求导可得到RGLA的最大衰减速率(Vmax)及其发生时间(Tmax)[34]

    在玉米吐丝期, 选择晴朗天气的上午9:00—11:30, 各小区随机选取3株长势一致的玉米, 使用便携式气体交换系统(Li-6400XT, Li-COR, USA)测定旗叶的净光合速率(Pn)和蒸腾速率(Tr), 采用人工光源测定叶片光合速率, 预设光强为1500 µmol·m−2·s−1, 每次测定重复3次。

    于蜡熟期进行地上部干物质量和籽粒产量的测定。在各小区中间两行随机选择连续的10株玉米, 脱粒后记录每株的籽粒数和籽粒鲜重, 计算单株百粒重和籽粒产量, 百粒重与产量按称取重量的15%扣除水分。地上部植株装入纸袋后放入烘箱中于105 ℃杀青30 min, 然后于75 ℃烘干至恒重。收获指数(HI)由籽粒产量(kg·hm−2)除以地上部干物质量(kg·hm−2)获得。籽粒粉碎后过100目筛, 其淀粉含量采用蒽酮比色法测定, 蛋白质含量采用凯氏定氮法测定。

    利用 t 检验法进行两处理间各测定指标的比较, P<0.05则视为存在显著差异, 分析工具为SPSS 15.0。采用Sigmaplot 12.0软件制图。

    灌水前后NM处理和PFM处理的土壤含水率如图4 所示。结果表明, 除灌水后第3天外, NM处理和PFM处理的土壤含水率差异均显著, 灌水前和灌水后第3天、6 天、9天, PFM处理的土壤含水率较NM处理分别高16.9% (P<0.05)、5.2% (P>0.05)、9.8% (P<0.05)和10.8% (P<0.05)。此外, 覆膜还影响土壤水分的水平分布: 灌水前和灌水后第6天和9天, PFM处理膜下土壤(窄行及宽行距植株5 cm)平均含水率较膜间(宽行距植株25 cm)分别高28.1% (P<0.05)、15.2% (P<0.05)和21.7% (P<0.05); 相比而言, NM处理在相应水平位置土壤含水率的差异仅在灌水后第6天显著, 且与PFM处理结果相反, 宽行距植株25 cm处的土壤含水率较窄行及宽行距植株5 cm处的平均土壤含水率高7.2% (P<0.05)。

    图  4  覆膜(PFM)和不覆膜(NM)处理下灌水前后春玉米根区土壤(0~60 cm)含水率
    −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm 和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域。不同小写字母表示同一处理不同水平距离间差异显著(P<0.05), 不同大写字母表示同一水平距离两处理间差异显著(P<0.05)。−10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction, and 5, 15 and 25 are the sampling points at 5 cm, 15 cm and 25 cm distance from the plant in wide row in the horizontal direction, respectively. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Different lowercase letters indicate significant differences at P<0.05 level among different horizontal distances of the same treatment, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same horizontal distance.
    Figure  4.  Soil water content in root zone (0−60 cm) of spring maize before and after irrigation under no mulching (NM) and plastic film mulching (PFM) treatments

    图5可以看出, 覆膜显著改变了根区土壤剖面的pCO2分布。灌水前和灌水后第3天、6天和9天, PFM处理的土壤pCO2均值较NM处理分别高24.9%、34.3%、32.7%和28.9% (P<0.05)。整个观测期, PFM处理覆膜区域和不覆膜区域的土壤pCO2均值较NM处理分别高41.5%和13.8% (P<0.05); 灌水前和灌水后第3天、6天和9天, PFM处理膜下土壤pCO2均值较NM处理相应区域分别高37.7%、47.6%、43.3%和36.2% (P<0.05), 膜间土壤pCO2均值较NM处理相应区域分别高8.2%、14.7%、14.6%和17.3% (P<0.05)。水平方向上, 灌水前和灌水后第3天、6天和9天, PFM处理膜下土壤pCO2较膜间土壤分别高45.0%、49.7%、44.0%和43.9% (P<0.05), 而NM处理的相应值为13.9%、16.2%、15.2%和24.0% (P<0.05)。

    图  5  覆膜(PFM)和不覆膜(NM)处理下灌水前后春玉米生育期根区(0~60 cm)土壤CO2分压
    −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域。不同小写字母表示同一处理不同水平距离间差异显著(P<0.05), 不同大写字母表示同一水平距离两处理间差异显著(P<0.05)。−10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction, and the 5, 15, and 25 are the sampling points at 5 cm, 15 cm, and 25 cm distance from the plant in wide row in the horizontal direction. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Different lowercase letters indicate significant differences at P<0.05 level among different horizontal distances at the same treatment, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same horizontal distance.
    Figure  5.  Partial pressure of soil CO2 (pCO2) in root zone (0−60 cm) of spring maize before and after irrigation under no mulching (NM) and plastic film mulching (PFM) treatments

    研究结果表明, NM和PFM处理的总生育期长度分别为122.5 d和121.5 d, 物候期差异主要发生在苗期和拔节期。相比不覆膜处理, 覆膜处理将玉米苗期缩短了6 d (P<0.05), 拔节期、抽雄期和灌浆期分别延长了4 d、0.5 d和 0.5 d, 因此两个处理的物候期在抽雄期和灌浆期已无显著差异。覆膜处理对植株根系取样、叶片光合测定和绿叶面积衰减动态观测不受物候期的影响(图6)。

    图  6  覆膜(PFM)和不覆膜(NM)处理下春玉米物候期
    Figure  6.  Phenological phase of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    覆膜对春玉米根系分布及活力的影响如图7所示。无论NM处理或PFM处理, 根长密度随垂直深度和水平方向的增大而逐渐递减。PFM处理提高了表层土壤的根长密度(图7), 其在0~10 cm 和10~20 cm土层的根长密度较NM处理分别高 10.2%和4.7% (P<0.05), 其余土层无显著性差异。此外, PFM处理还改变了根系的水平分布特征。PFM处理未覆膜区域土壤(宽行距植株水平方向25 cm处)的平均根长密度提高了22.7% (图7, P<0.05), 但是对覆膜区域土壤(窄行及宽行5 cm处)的根长密度无显著影响。与NM处理相比, PFM处理使玉米根系整体上呈浅层化分布。覆膜还显著影响春玉米水平方向的根系活力(图7)。相比NM处理, PFM处理覆膜区域的根系活力降低19.7% (P<0.05), 但非覆膜区域根系活力增加了9.6% (P<0.05)。

    图  7  覆膜(PFM)和不覆膜(NM)处理下春玉米花期根长密度分布及根系活力
    不同小写字母表示同一指标在同一垂直深度(左图)或水平距离(右图)不同处理间差异显著(P<0.05)。右图中, −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm 和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域; 柱子和带散点的折线分别为平均根长密度和根系活力。
    Figure  7.  Root length density and activity of spring maize at flower stage at different soil depth and horizontal distance from plant under no mulching (NM) and plastic film mulching (PFM) treatments
    Different lowercase letters indicate significant differences at P<0.05 level of the same indicator among different treatments at the same depth (left figure) or horizontal distance (right figure). In the right figure, −10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction; 5, 15 and 25 are the sampling points at 5 cm, 15 cm and 25 cm distance from the plant in wide row in the horizontal direction, respectively. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Bars and lines with dots in the right figure refer to average root length density and root activity, respectively.

    两个处理的相对绿叶面积变化均符合“S”型生长曲线, 可用y=ea−bx/(1+ea−bx)方程拟合(图8)。NM处理相对绿叶面积的衰减启动时间(Ts)、平均衰减速率(Vm)、最大衰减速率(Vmax)和最大衰减速率时间(Tmax)分别为9.3 d、1.5%∙d−1、2.3%∙d−1和36.0 d, 而覆膜处理的相应值分别为7.6 d、1.6%∙d−1、2.8%∙d−1和28.9 d。PFM和NM的相对绿叶面积的TsVmaxTmax 均达显著差异水平(P<0.05)。

    图  8  覆膜(PFM)和不覆膜(NM)处理下春玉米吐丝后相对绿叶面积的动态变化
    Figure  8.  Dynamic changes of relative green leaf area after silking of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    图9可知, 覆膜对春玉米叶片光合和蒸腾速率的影响在作物拔节期(6月15日)和灌浆期(8月15日)存在差异。在拔节期, PFM处理春玉米的叶片光合和蒸腾速率较NM处理分别高20.0%和8.5% (P<0.05); 而在灌浆期, PFM处理春玉米的叶片光合和蒸腾速率较NM处理分别低40.0%和18.0% (P<0.05)。作物叶片光合速率和蒸腾速率之比反映了叶片尺度的水分利用效率。两个处理均表明, 叶片光合和蒸腾速率存在显著的线性关系(图9)。在拔节期和灌浆期, PFM处理春玉米的叶片水分利用效率较NM处理分别高10.6% (P>0.05)和26.9% (P<0.05)。上述结果表明, 从作物叶片光合速率、蒸腾速率和叶片水分利用效率的角度看, 覆膜引发了春玉米花后叶片生理早衰。

    图  9  覆膜(PFM)和不覆膜(NM)处理下春玉米不同生长阶段叶片光合与蒸腾速率
    不同小写字母表示拔节期同一时间点两处理间差异显著(P<0.05), 不同大写字母表示灌浆期同一时间点两处理间差异显著(P<0.05)。
    Figure  9.  Leaf photosynthetic rates and transpiration rates of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments at different growth stages
    Different lowercase letters indicate significant differences at P<0.05 level between different treatments at the same time at elongation stage, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same time at grain filling stage.

    表2可知, PFM处理与NM处理的玉米干物质量、产量和收获系数均无显著差异(P<0.05), 但PFM处理春玉米籽粒淀粉含量和蛋白质含量分别较NM处理低20.1%和22.1% (P<0.05)。这表明在干旱区新垦绿洲农田, 覆膜对作物产量无显著影响, 但降低了春玉米的籽粒品质。从产量构成要素看, PFM百粒重较NM处理降低9.6%, 但单株籽粒数提高7.4%, 因此并未显著改变玉米籽粒产量。相关分析结果表明: 土壤水分和pCO2 存在正相关关系, 但与作物各指标相关性不显著。相比而言, 土壤pCO2与春玉米植株根系活力、光合速率和籽粒品质存在显著负相关关系, 而与叶片失绿显著正相关(表3)。

    表  2  覆膜(PFM)和不覆膜(NM)处理下春玉米干物质量、产量、收获系数及籽粒品质
    Table  2.  Dry biomass, grain yield, harvest index, and grain quality of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments
    处理
    Treatment
    干物质量
    Dry biomass
    (kg·hm−2)
    产量
    Yield
    (kg·hm−2)
    单株籽粒数
    Kernel numbers
    per plant
    百粒重
    100-grain weight
    (g)
    收获系数
    Harvest
    index
    淀粉含量
    Starch content
    (%)
    蛋白质含量
    Protein content
    (%)
    NM19 185.2±506.3a11 177.6±613.7a601.9±58.1b29.6±3.9a0.58±0.06a67.7±3.95a11.3±0.86a
    PFM19 401.9±416.6a10 658.5±309.5a646.3±41.6a26.8±4.5b0.55±0.04a53.5±4.36b8.8±0.62b
      同列不同小写字母表示两处理在P<0.05水平差异显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level between different treatments.
    下载: 导出CSV 
    | 显示表格
    表  3  春玉米籽粒产量和品质以及土壤和作物的其他指标的相关矩阵
    Table  3.  Correlation matrix containing grain yield and quality and other indexes of soil and crop of spring maize
    土壤
    水分
    Soil
    moisture
    土壤CO2分压
    Partial pressure of CO2 in soil
    根系活力
    Root activity
    光合速率
    Photosynth-etic rate
    绿叶衰减
    启动时间
    Leaf senescence start time
    绿叶平均
    衰减速率
    Average leaf senescence
    rate
    产量
    Grain yield
    淀粉
    含量
    Starch
    content
    蛋白质
    含量
    Protein
    content
    土壤水分
    Soil moisture
    1.000.53*−0.21−0.140.190.280.25−0.27−0.18
    土壤CO2分压
    Partial pressure
    of CO2 in soil
    1.00−0.66*−0.57*0.73**0.66*0.32−0.61*−0.59*
    根系活力
    Root activity
    1.000.62*−0.51*−0.57*0.210.350.62*
    光合速率
    Photosynthetic rate
    1.00−0.78**−0.82**0.280.52*0.48
    绿叶衰减启动时间
    Leaf senescence start time
    1.000.73**0.16−0.69*−0.52*
    绿叶平均衰减速率
    Average leaf senescence rate
    1.000.41−0.75**−0.64*
    产量 Grain yield1.000.17−0.22
    淀粉含量
    Starch content
    1.00−0.30
    蛋白质含量
    Protein content
    1.00
      *和**分别表示在P<0.05和P<0.01水平显著相关。* and ** indicate significant correlations at P<0.05 and P<0.01 levels, respectively.
    下载: 导出CSV 
    | 显示表格

    在年均降水量少于800 mm的干旱、半干旱以及半湿润偏旱地区, 水热条件不足是限制作物产量的主要因素[35]。覆膜对土-气界面物质传输的阻隔不仅抑制了土面蒸发、减少了潜热损失, 还增加了地表长波逆辐射能量收入[4,36-37], 从而改善了农田水热条件。基于以上机制, 覆膜加快了叶片生长速率并增加了生物性耗水占蒸散发的比例[38-39]。虽然覆膜对土壤水热条件的改善已基本达成共识, 但其对作物产量的正负效应却均有报道。越来越多的研究表明, 覆膜在水热胁迫严重时能显著提高作物产量[35], 而当生长季降水量大于770 mm或生长季平均气温超过24 ℃时, 覆膜对玉米的增产效应消失[40]。有学者认为, 覆膜虽然加速了作物生育前期的生长, 但有可能导致作物根冠生长失调及早衰。覆膜条件下, 作物冠层生长冗余被认为是引起作物根冠比失调和早衰的主要原因[41], 有学者据此提出了氮肥后移的施氮策略以保障覆膜作物花后冠层生长对养分的需求[8]。此外, 覆膜导致的根系浅层化分布可能降低根系吸收功能, 也可能是导致作物早衰的原因[42]。在我国南方雷竹(Phyllostachys praecox)林的研究[20]同样表明, 有机物覆盖增加了土壤CO2浓度并引起根系上浮, 从而不利于作物生长。以上研究表明, 随着降水和温度的升高, 地膜的增温保水作用对作物产量的影响会逐渐减弱, 而土壤通气状况可能成为影响作物产量的主要原因。

    相关学者针对地膜覆盖对土壤通气性的影响已开展了一些研究。在新疆膜下滴灌棉田的研究发现[19], 覆膜后棉田土壤CO2排放量减少7.9%, 根区土壤pCO2 (0.51%~2.59%)则显著高于不覆膜处理(0.22%~2.40%), 覆膜在减少了棉田土壤排放CO2的同时增加了土壤pCO2, 对土壤气体交换存在阻隔效应。在黄土高原雨养玉米农田的研究表明[43], 夏玉米生育期覆膜农田近地表CO2浓度与不覆膜处理无显著差异, 然而覆膜农田根区土层的pCO2 (0.33%~0.88%)显著高于不覆膜处理(0.18%~0.61%)。上述研究表明, 覆膜显著增加了根区土壤的pCO2, 且在水分供应充足条件下更为显著。前人研究认为, 增加土壤呼吸和减少CO2排放是覆膜提高土壤pCO2的主要原因。土壤呼吸是异养呼吸(土壤微生物和动物呼吸)和自养呼吸(根呼吸)的总和, 根呼吸速率通常远高于土壤微生物呼吸速率[9], 且根系周边的土壤微生物数量通常较高(即根际效应)。本研究针对干旱区新垦绿洲农田的研究发现, 不覆膜和覆膜处理的土壤pCO2在水平方向上虽然均表现出“两区分布”, 但在过程上有所不同。在不覆膜处理中, 土壤pCO2的水平“两区分布”随灌水时间的增加愈发显著, 很可能与根系分布差异导致的土壤呼吸分异有关, 因为淹水会降低根系呼吸, 而随着水分入渗根系呼吸会逐渐恢复[23,28-29]。覆膜处理下, 土壤CO2的“两区分布”不受灌水时间影响, 这表明地膜的阻隔效应是引起覆膜农田土壤CO2 “两区分布”的主要原因, 而并非灌水导致的土壤水分或温度变化。

    在德国西南区的研究发现, 过高的土壤pCO2抑制了根系生长, 导致了橡树(Quercus robur)林的退化[44]。有室内模拟试验表明, 当pCO2为0.5%时, 仙人掌根呼吸抑制率达40%左右[29]。我国学者的试验同样证实, 土壤pCO2增加使苜蓿(Medicago sativa)根冠比从1.04下降到0.63, 苜蓿地上鲜重和地下鲜重分别下降43.6%和66.1%, 苜蓿中的粗蛋白和总氨基酸分别下降约15.2%和11.4%, 这表明pCO2增加对根系的抑制作用大于地上部分[30]。在我国南方雷竹林[20]的研究表明, 有机物覆盖增加了土壤pCO2, 不利于作物生长。笔者前期的膜下滴灌玉米试验同样发现, 玉米气生根的增多可能与土壤通气性不良有关[42]。本研究根据E602型蒸发皿灌水量, 土壤含水率在作物生育期均保持在田间持水量(表1)的60%以上(图4), 因此水分不是限制作物根系生长的因素。此外, 在高频粗放的灌溉模式下, 地膜覆盖未显著改变新垦绿洲农田膜下土壤春玉米的根长密度, 但显著降低了该区域的根系活力; 相反, 覆膜显著提高了未覆膜区域的根长密度和根系活力。这表明根系对土壤pCO2 “两区分布”有显著的响应。此外, 覆膜虽然提高了新垦绿洲农田春玉米拔节期叶片光合速率和蒸腾速率, 但却引发了春玉米花后早衰。前人研究认为, 覆膜使作物前期生长冗余并导致作物生育后期根系无法维系地上部生长, 最终引发作物“脱水脱肥”和叶片早衰[8,41]。本研究进一步发现, 在新垦绿洲高频粗放的灌溉模式下, 覆膜区域土壤过高的 pCO2 导致作物根系生长受限也可能是引起植株早衰的原因。然而, 在本研究中, 覆膜对春玉米灌浆的负面效应并未显著降低作物产量, 但对作物品质造成了不良影响。这是因为覆膜有利于拔节期作物生长, 其较高的单株籽粒数弥补了灌浆不足对百粒重的负面作用。在后期研究中, 需要关注覆膜对玉米品质的影响并开展相关机理及对策研究, 比如在覆膜条件下采取适时揭膜[45]、控制灌溉(如亏缺灌溉、分根交替灌溉)[23]或加气灌溉[12]等对覆膜新垦绿洲农田土壤通气性的改善研究。

    在干旱区新垦绿洲农田, 相比不覆膜农田, 覆膜农田膜下土壤水分和pCO2显著高于非覆膜区土壤, 表现出显著的“两区分布”特征。覆膜区域过高的土壤pCO2抑制了覆膜区土壤根系活力, 但增加了未覆膜区土壤的根系密度和活力。覆膜虽然提高了春玉米拔节期叶片光合速率和蒸腾速率, 但抑制了花后叶片光合速率和蒸腾速率, 并加速了花后绿叶面积衰减。覆膜的上述效应虽未显著影响作物产量, 但降低了玉米籽粒淀粉含量和蛋白质含量。因此, 覆膜根区土壤pCO2过高可能是导致作物花后根、叶早衰和籽粒品质降低的潜在因素, 后期建议开展适时揭膜、控制灌溉(如亏缺灌溉、分根交替灌溉)或加气灌溉对覆膜新垦绿洲农田土壤通气性的改善研究。

  • 图  1   试验地玉米生育期(2020年4—10月)气温、降水和水面蒸发量

    Figure  1.   Air temperature, precipitation and pan evaporation during maize growth period (April to October in 2020) at the experimental site

    图  2   土壤水分测定的水平方向取样点示意图

    Figure  2.   Diagram of sampling points in the horizontal direction for soil moisture measurement

    图  3   土壤气体采样系统 (以 15 cm采样深度为例)

    Figure  3.   Soil gas sampling system (taking the sampling depth of 15 cm as an example)

    图  4   覆膜(PFM)和不覆膜(NM)处理下灌水前后春玉米根区土壤(0~60 cm)含水率

    −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm 和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域。不同小写字母表示同一处理不同水平距离间差异显著(P<0.05), 不同大写字母表示同一水平距离两处理间差异显著(P<0.05)。−10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction, and 5, 15 and 25 are the sampling points at 5 cm, 15 cm and 25 cm distance from the plant in wide row in the horizontal direction, respectively. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Different lowercase letters indicate significant differences at P<0.05 level among different horizontal distances of the same treatment, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same horizontal distance.

    Figure  4.   Soil water content in root zone (0−60 cm) of spring maize before and after irrigation under no mulching (NM) and plastic film mulching (PFM) treatments

    图  5   覆膜(PFM)和不覆膜(NM)处理下灌水前后春玉米生育期根区(0~60 cm)土壤CO2分压

    −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域。不同小写字母表示同一处理不同水平距离间差异显著(P<0.05), 不同大写字母表示同一水平距离两处理间差异显著(P<0.05)。−10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction, and the 5, 15, and 25 are the sampling points at 5 cm, 15 cm, and 25 cm distance from the plant in wide row in the horizontal direction. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Different lowercase letters indicate significant differences at P<0.05 level among different horizontal distances at the same treatment, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same horizontal distance.

    Figure  5.   Partial pressure of soil CO2 (pCO2) in root zone (0−60 cm) of spring maize before and after irrigation under no mulching (NM) and plastic film mulching (PFM) treatments

    图  6   覆膜(PFM)和不覆膜(NM)处理下春玉米物候期

    Figure  6.   Phenological phase of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    图  7   覆膜(PFM)和不覆膜(NM)处理下春玉米花期根长密度分布及根系活力

    不同小写字母表示同一指标在同一垂直深度(左图)或水平距离(右图)不同处理间差异显著(P<0.05)。右图中, −10为窄行在水平方向距植株10 cm处, 5、15和25分别为宽行在水平方向距植株5 cm、15 cm 和25 cm处; PFM处理中, −10和5为覆膜区域, 15为覆膜区域边缘, 25为不覆膜区域; 柱子和带散点的折线分别为平均根长密度和根系活力。

    Figure  7.   Root length density and activity of spring maize at flower stage at different soil depth and horizontal distance from plant under no mulching (NM) and plastic film mulching (PFM) treatments

    Different lowercase letters indicate significant differences at P<0.05 level of the same indicator among different treatments at the same depth (left figure) or horizontal distance (right figure). In the right figure, −10 is the sampling point at 10 cm distance from the plant in narrow row in the horizontal direction; 5, 15 and 25 are the sampling points at 5 cm, 15 cm and 25 cm distance from the plant in wide row in the horizontal direction, respectively. Under PFM treatment, −10 and 5 refer to the mulching area, 15 refers to the edge of mulching area, and 25 refers to uncovered area. Bars and lines with dots in the right figure refer to average root length density and root activity, respectively.

    图  8   覆膜(PFM)和不覆膜(NM)处理下春玉米吐丝后相对绿叶面积的动态变化

    Figure  8.   Dynamic changes of relative green leaf area after silking of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    图  9   覆膜(PFM)和不覆膜(NM)处理下春玉米不同生长阶段叶片光合与蒸腾速率

    不同小写字母表示拔节期同一时间点两处理间差异显著(P<0.05), 不同大写字母表示灌浆期同一时间点两处理间差异显著(P<0.05)。

    Figure  9.   Leaf photosynthetic rates and transpiration rates of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments at different growth stages

    Different lowercase letters indicate significant differences at P<0.05 level between different treatments at the same time at elongation stage, and different capital letters indicate significant differences at P<0.05 level between different treatments at the same time at grain filling stage.

    表  1   试验地0~120 cm土层土壤基本理化性质

    Table  1   Basic soil physical and chemical properties (0−120 cm depth) at the experimental site

    土层深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g·cm−3)
    田间持水量
    Field capacity
    (%)
    有机质
    Organic matter
    (g·kg−1)
    NO3含量
    NO3 content
    (mg·kg−1)
    NH4+ 含量
    NH4+ content
    (mg·kg−1)
    土壤粒径分布
    Soil particle size distribution (%)
    黏粒
    Clay
    粉粒
    Slit
    砂粒
    Sand
    0~201.4333.27.8118.513.216.218.365.5
    20~401.4931.93.7312.321.813.118.368.6
    40~601.5228.62.789.813.411.214.274.6
    60~901.5626.52.226.77.39.69.880.6
    90~1201.5824.31.575.86.27.86.485.8
    下载: 导出CSV

    表  2   覆膜(PFM)和不覆膜(NM)处理下春玉米干物质量、产量、收获系数及籽粒品质

    Table  2   Dry biomass, grain yield, harvest index, and grain quality of spring maize under no mulching (NM) and plastic film mulching (PFM) treatments

    处理
    Treatment
    干物质量
    Dry biomass
    (kg·hm−2)
    产量
    Yield
    (kg·hm−2)
    单株籽粒数
    Kernel numbers
    per plant
    百粒重
    100-grain weight
    (g)
    收获系数
    Harvest
    index
    淀粉含量
    Starch content
    (%)
    蛋白质含量
    Protein content
    (%)
    NM19 185.2±506.3a11 177.6±613.7a601.9±58.1b29.6±3.9a0.58±0.06a67.7±3.95a11.3±0.86a
    PFM19 401.9±416.6a10 658.5±309.5a646.3±41.6a26.8±4.5b0.55±0.04a53.5±4.36b8.8±0.62b
      同列不同小写字母表示两处理在P<0.05水平差异显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level between different treatments.
    下载: 导出CSV

    表  3   春玉米籽粒产量和品质以及土壤和作物的其他指标的相关矩阵

    Table  3   Correlation matrix containing grain yield and quality and other indexes of soil and crop of spring maize

    土壤
    水分
    Soil
    moisture
    土壤CO2分压
    Partial pressure of CO2 in soil
    根系活力
    Root activity
    光合速率
    Photosynth-etic rate
    绿叶衰减
    启动时间
    Leaf senescence start time
    绿叶平均
    衰减速率
    Average leaf senescence
    rate
    产量
    Grain yield
    淀粉
    含量
    Starch
    content
    蛋白质
    含量
    Protein
    content
    土壤水分
    Soil moisture
    1.000.53*−0.21−0.140.190.280.25−0.27−0.18
    土壤CO2分压
    Partial pressure
    of CO2 in soil
    1.00−0.66*−0.57*0.73**0.66*0.32−0.61*−0.59*
    根系活力
    Root activity
    1.000.62*−0.51*−0.57*0.210.350.62*
    光合速率
    Photosynthetic rate
    1.00−0.78**−0.82**0.280.52*0.48
    绿叶衰减启动时间
    Leaf senescence start time
    1.000.73**0.16−0.69*−0.52*
    绿叶平均衰减速率
    Average leaf senescence rate
    1.000.41−0.75**−0.64*
    产量 Grain yield1.000.17−0.22
    淀粉含量
    Starch content
    1.00−0.30
    蛋白质含量
    Protein content
    1.00
      *和**分别表示在P<0.05和P<0.01水平显著相关。* and ** indicate significant correlations at P<0.05 and P<0.01 levels, respectively.
    下载: 导出CSV
  • [1]

    HUANG T T, YANG N, LU C, et al. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods[J]. Soil and Tillage Research, 2021, 214: 105171 doi: 10.1016/j.still.2021.105171

    [2]

    WANG T Y, WANG Z H, GUO L, et al. Experiences and challenges of agricultural development in an artificial oasis: A review[J]. Agricultural Systems, 2021, 193: 103220 doi: 10.1016/j.agsy.2021.103220

    [3]

    NIU Z R, SU Y Z, AN F J, et al. Changes in soil carbon and nitrogen content, associated with aggregate fractions, after conversion of sandy desert to irrigation farmland, northwest China[J]. Soil Use and Management, 2022, 38(1): 396−410 doi: 10.1111/sum.12743

    [4]

    GAN Y T, SIDDIQUE K H M, TURNER N C, et al. Ridge-furrow mulching systems − An innovative technique for boosting crop productivity in semiarid rain-fed environments[M]//Advances in Agronomy. Amsterdam: Elsevier, 2013: 429–476

    [5] 李尚中, 王勇, 樊廷录, 等. 旱地玉米不同覆膜方式的水温及增产效应[J]. 中国农业科学, 2010, 43(5): 922−931

    LI S Z, WANG Y, FAN T L, et al. Effects of different plastic film mulching modes on soil moisture, temperature and yield of dryland maize[J]. Scientia Agricultura Sinica, 2010, 43(5): 922−931

    [6] 路海东, 薛吉全, 郝引川, 等. 播期对雨养旱地春玉米生长发育及水分利用的影响[J]. 作物学报, 2015, 41(12): 1906−1914 doi: 10.3724/SP.J.1006.2015.01906

    LU H D, XUE J Q, HAO Y C, et al. Effects of sowing time on spring maize (Zea mays L.) growth and water use efficiency in rainfed dryland[J]. Acta Agronomica Sinica, 2015, 41(12): 1906−1914 doi: 10.3724/SP.J.1006.2015.01906

    [7] 蒋锐, 郭升, 马德帝. 旱地雨养农业覆膜体系及其土壤生态环境效应[J]. 中国生态农业学报, 2018, 26(3): 317−328

    JIANG R, GUO S, MA D D. Review of plastic film mulching system and its impact on soil ecological environment in China’s rainfed drylands[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 317−328

    [8] 魏廷邦, 胡发龙, 赵财, 等. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应[J]. 中国农业科学, 2017, 50(15): 2916−2927

    WEI T B, HU F L, ZHAO C, et al. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas[J]. Scientia Agricultura Sinica, 2017, 50(15): 2916−2927

    [9]

    BEN-NOAH I, FRIEDMAN S P. Review and evaluation of root respiration and of natural and agricultural processes of soil aeration[J]. Vadose Zone Journal, 2018, 17(1): 1−47

    [10]

    LYNCH J P. Roots of the second green revolution[J]. Australian Journal of Botany, 2007, 55(5): 493 doi: 10.1071/BT06118

    [11]

    KUZYAKOV Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods[J]. Soil Biology and Biochemistry, 2002, 34(11): 1621−1631 doi: 10.1016/S0038-0717(02)00146-3

    [12]

    DU Y D, NIU W Q, ZHANG Q A, et al. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation[J]. Soil Science Society of America Journal, 2018, 82(3): 606−613 doi: 10.2136/sssaj2017.11.0377

    [13]

    STADLER L B, LOVE N G. Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors[J]. Water Research, 2016, 104: 189−199 doi: 10.1016/j.watres.2016.08.001

    [14]

    LI Y A, NIU W Q, ZHANG M Z, et al. Artificial soil aeration increases soil bacterial diversity and tomato root performance under greenhouse conditions[J]. Land Degradation & Development, 2020, 31(12): 1443−1461

    [15]

    ZHU Y, DYCK M, CAI H J, et al. The effects of aerated irrigation on soil respiration, oxygen, and porosity[J]. Journal of Integrative Agriculture, 2019, 18(12): 2854−2868 doi: 10.1016/S2095-3119(19)62618-3

    [16]

    LIU Y, GUO K Y, ZHAO Y Z, et al. Change in composition and function of microbial communities in an acid bamboo (Phyllostachys praecox) plantation soil with the addition of three different biochars[J]. Forest Ecology and Management, 2020, 473: 118336 doi: 10.1016/j.foreco.2020.118336

    [17]

    FRIEDMAN S P, NAFTALIEV B. A survey of the aeration status of drip-irrigated orchards[J]. Agricultural Water Management, 2012, 115: 132−147 doi: 10.1016/j.agwat.2012.08.015

    [18] 陶丽佳, 王凤新, 顾小小. 膜下滴灌对土壤CO2与CH4浓度的影响[J]. 中国生态农业学报, 2012, 20(3): 330−336 doi: 10.3724/SP.J.1011.2012.00330

    TAO L J, WANG F X, GU X X. Influence of drip irrigation under plastic film mulching on concentrations of CO2 and CH4 in soil[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 330−336 doi: 10.3724/SP.J.1011.2012.00330

    [19] 俞永祥, 赵成义, 贾宏涛, 等. 覆膜对绿洲棉田土壤CO2通量和CO2浓度的影响[J]. 应用生态学报, 2015, 26(1): 155−160

    YU Y X, ZHAO C Y, JIA H T, et al. Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 155−160

    [20]

    XU M J, ZHUANG S Y, GUI R Y. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox[J]. Scientific Reports, 2017, 7(1): 14353 doi: 10.1038/s41598-017-14798-8

    [21]

    QIAN Z Z, ZHUANG S Y, GAO J S, et al. Aeration increases soil bacterial diversity and nutrient transformation under mulching-induced hypoxic conditions[J]. Science of the Total Environment, 2022, 817: 153017 doi: 10.1016/j.scitotenv.2022.153017

    [22]

    QI J, NIE J J, ZHANG Y J, et al. Plastic film mulching does not increase the seedcotton yield due to the accelerated late-season leaf senescence of short-season cotton compared with non-mulching[J]. Field Crops Research, 2022, 287: 108660 doi: 10.1016/j.fcr.2022.108660

    [23] 罗宏海, 张宏芝, 陶先萍, 等. 膜下滴灌条件下水氮供应对棉花根系及叶片衰老特性的调节[J]. 中国农业科学, 2013, 46(10): 2142−2150

    LUO H H, ZHANG H Z, TAO X P, et al. Effect of irrigation and nitrogen application regimes on senescent characters of roots and leaves in cotton with under-mulch-drip irrigation[J]. Scientia Agricultura Sinica, 2013, 46(10): 2142−2150

    [24]

    ZHOU Y P, BASTIDA F, ZHOU B, et al. Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community[J]. Soil Biology and Biochemistry, 2020, 141: 107663 doi: 10.1016/j.soilbio.2019.107663

    [25]

    FLORES FERNÁNDEZ J L, HARTMANN P, SCHÄFFER J, et al. Initial recovery of compacted soil — Planting and technical treatments decrease CO2 concentrations in soil and promote root growth[J]. Annals of Forest Science, 2017, 74(4): 1−12

    [26]

    DE MORAES M T, DEBIASI H, FRANCHINI J C, et al. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil[J]. Soil and Tillage Research, 2020, 200: 104611 doi: 10.1016/j.still.2020.104611

    [27] 雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2): 297−308

    LEI H J, HU S G, PAN H W, et al. Advancement in research on soil aeration and oxygation[J]. Acta Pedologica Sinica, 2017, 54(2): 297−308

    [28]

    BEN-NOAH I, NITSAN I, COHEN B, et al. Soil aeration using air injection in a citrus orchard with shallow groundwater[J]. Agricultural Water Management, 2021, 245: 106664 doi: 10.1016/j.agwat.2020.106664

    [29]

    NOBEL P S, PALTA J A. Soil O2 and CO2 effects on root respiration of cacti[J]. Plant and Soil, 1989, 120(2): 263−271 doi: 10.1007/BF02377076

    [30]

    ZHANG X Y, MA X, SONG H M. Quality degradation of alfalfa caused by CO2 leakage from carbon capture and storage[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114147 doi: 10.1016/j.ecoenv.2022.114147

    [31]

    KADER M A, SENGE M, MOJID M A, et al. Recent advances in mulching materials and methods for modifying soil environment[J]. Soil and Tillage Research, 2017, 168: 155−166 doi: 10.1016/j.still.2017.01.001

    [32]

    WANG Y Y, HU C S, MING H, et al. Concentration profiles of CH4, CO2 and N2O in soils of a wheat-maize rotation ecosystem in North China Plain, measured weekly over a whole year[J]. Agriculture, Ecosystems & Environment, 2013, 164: 260−272

    [33]

    OOSTEROM E J, JAYACHANDRAN R, BIDINGER F R. Diallel analysis of the stay-green trait and its components in sorghum[J]. Crop Science, 1996, 36(3): 549−555 doi: 10.2135/cropsci1996.0011183X003600030002x

    [34] 刘开昌, 董树亭, 赵海军, 等. 我国玉米自交系叶片保绿性及其与产量的关系[J]. 作物学报, 2009, 35(9): 1662−1671 doi: 10.3724/SP.J.1006.2009.01662

    LIU K C, DONG S T, ZHAO H J, et al. Leaf stay-green traits in Chinese maize inbred lines and their relationship with grain yield[J]. Acta Agronomica Sinica, 2009, 35(9): 1662−1671 doi: 10.3724/SP.J.1006.2009.01662

    [35]

    QIN W, HU C S, OENEMA O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis[J]. Scientific Reports, 2015, 5: 16210 doi: 10.1038/srep16210

    [36]

    ZHOU L F, ZHAO W Z, HE J Q, et al. Simulating soil surface temperature under plastic film mulching during seedling emergence of spring maize with the RZ-SHAW and DNDC models[J]. Soil and Tillage Research, 2020, 197: 104517 doi: 10.1016/j.still.2019.104517

    [37] 张彦群, 王建东, 龚时宏, 等. 基于液流计估测蒸腾分析覆膜滴灌玉米节水增产机理[J]. 农业工程学报, 2018, 34(21): 89−97 doi: 10.11975/j.issn.1002-6819.2018.21.011

    ZHANG Y Q, WANG J D, GONG S H, et al. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 89−97 doi: 10.11975/j.issn.1002-6819.2018.21.011

    [38]

    WANG P, DENG Y J, LI X Y, et al. Dynamical effects of plastic mulch on evapotranspiration partitioning in a mulched agriculture ecosystem: measurement with numerical modeling[J]. Agricultural and Forest Meteorology, 2019, 268: 98−108 doi: 10.1016/j.agrformet.2019.01.014

    [39]

    LIN W, LIU W Z, ZHOU S S, et al. Influence of plastic film mulch on maize water use efficiency in the Loess Plateau of China[J]. Agricultural Water Management, 2019, 224: 105710 doi: 10.1016/j.agwat.2019.105710

    [40]

    YU Y Y, TURNER N C, GONG Y H, et al. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients[J]. European Journal of Agronomy, 2018, 99: 138−147 doi: 10.1016/j.eja.2018.07.005

    [41]

    LI F M, GUO A H, WEI H. Effects of clear plastic film mulch on yield of spring wheat[J]. Field Crops Research, 1999, 63(1): 79−86 doi: 10.1016/S0378-4290(99)00027-1

    [42]

    ZHOU L F, FENG H. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 540−550 doi: 10.1002/jsfa.10036

    [43]

    NAN W G, YUE S C, HUANG H Z, et al. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China[J]. Journal of Integrative Agriculture, 2016, 15(2): 451−464 doi: 10.1016/S2095-3119(15)61106-6

    [44]

    GAERTIG T, SCHACK-KIRCHNER H, HILDEBRAND E E, et al. The impact of soil aeration on oak decline in southwestern Germany[J]. Forest Ecology and Management, 2002, 159(1/2): 15−25

    [45] 张守都, 栗岩峰, 李久生. 滴灌条件下揭膜时间对土壤酶活性及玉米吸氮量的影响[J]. 排灌机械工程学报, 2019, 37(5): 454−460

    ZHANG S D, LI Y F, LI J S. Effects of film-uncovering time on soil enzyme activity and maize nitrogen uptake under drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(5): 454−460

  • 期刊类型引用(1)

    1. 连晓荣,何海军,李永生,周文期,王晓娟,杨彦忠,刘忠祥,张彦军,周玉乾. 不同种植模式对玉米光合特性、产量及品质的影响. 干旱地区农业研究. 2024(04): 167-177+209 . 百度学术

    其他类型引用(1)

图(9)  /  表(3)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  64
  • PDF下载量:  32
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-05-22
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2024-01-15

目录

/

返回文章
返回