养殖场外排氨气及温室气体末端处理技术研究

李思, 张晓航, 王选, 马林

李思, 张晓航, 王选, 马林. 养殖场外排氨气及温室气体末端处理技术研究[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1821−1838. DOI: 10.12357/cjea.20230238
引用本文: 李思, 张晓航, 王选, 马林. 养殖场外排氨气及温室气体末端处理技术研究[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1821−1838. DOI: 10.12357/cjea.20230238
LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838. DOI: 10.12357/cjea.20230238
Citation: LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838. DOI: 10.12357/cjea.20230238
李思, 张晓航, 王选, 马林. 养殖场外排氨气及温室气体末端处理技术研究[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1821−1838. CSTR: 32371.14.cjea.20230238
引用本文: 李思, 张晓航, 王选, 马林. 养殖场外排氨气及温室气体末端处理技术研究[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1821−1838. CSTR: 32371.14.cjea.20230238
LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838. CSTR: 32371.14.cjea.20230238
Citation: LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838. CSTR: 32371.14.cjea.20230238

养殖场外排氨气及温室气体末端处理技术研究

基金项目: 河北省重点研发计划项目(20327305D, 20327301D)、中国科学院青年创新促进会(2021095)和河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)资助
详细信息
    作者简介:

    李思, 主要从事农业生态学研究, E-mail: 84527452f@qq.com

    张晓航, 主要从事养殖废弃物处理与资源化利用技术研究, E-mail: zhangxiaohang@ms.sjziam.ac.cn

    通讯作者:

    马林, 主要从事农业生态学和养分管理研究。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: X51; X713

Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms

Funds: This study was supported by the Key Research and Development Program of Hebei Province (20327305D, 20327301D), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021095), and Hebei Province Modern Agricultural Industrial Technology System Dairy Cow Industry Innovation Team Project (HBCT2018120206).
More Information
  • 摘要: 养殖场排放氨气及温室气体(NH3、N2O、CH4)末端处理技术近年来获得了国内外学者的广泛关注与持续研究, 但不同畜种粪污管理各环节气体排放规律和阻控优先序尚不清楚, 不同处理技术的处理效果、处理成本和适用场景尚不明确, 缺乏多气体协同处理的技术体系。因此, 本研究通过系统梳理已发表的文献, 采用数据挖掘(data mining)的方法分析了猪、鸡、牛、羊4种畜种不同粪污管理环节(圈舍环节、固体粪污贮藏环节、液体粪污贮藏环节和固体粪污堆肥环节)气体排放和优先序特征, 总结了与气体排放相匹配的减排技术特点, 梳理了针对NH3、N2O、CH4减排的各种技术原理与减排效果, 探讨了粪污管理过程各环节气体阻控的优先序及潜在技术途径, 可以为养殖场外排尾气处理不同类型技术组合和设计提供支撑, 以实现养殖场氨气及温室气体减排的目标。指出现有NH3、N2O、CH4末端处理技术的不足, 展望了NH3、N2O、CH4末端协同处理技术的研究方向, 旨在为养殖场外排尾气未来技术研发提供依据。
    Abstract: The end treatment technology for ammonia and greenhouse gas emissions (NH3, N2O, CH4) from livestock farms has received widespread attention and continuous research from scholars both domestically and internationally in recent years. However, the gas emission patterns and priorities of control in different livestock manure management stages are still unclear. A comprehensive comparison of treatment effects, costs, and applicable scenarios of different treatment technologies are uncertain, lacking a technical system for multi gas reduction. Therefore, this study systematically reviewed the published literatures and used data mining methods to analyze the gas emission characteristics, priority characteristics, emission reduction technologies, and application potential of the livestock house, solid manure storage, liquid manure storage, and solid manure composting processes of pig, chicken, cattle, and sheep manure management. The emission reduction technology characteristics that match the gas emissions priority were summarized. The emission reduction technologies for NH3, N2O, and CH4 were discussed. The various technical principles and potential effects of NH3, N2O, and CH4 emission reduction were discussed, and the priority and potential technical approaches for gas resistance control in various stages of manure pollution management process were explored. These works could provide support for the combination and design of different technologies for the treatment of tail gas discharged from livestock farms to achieve the goal of reducing ammonia and greenhouse gas emissions. Pointing to the shortcomings of existing end treatment technologies, this study looked forward to the research direction of NH3, N2O, and CH4 end treatment technology, aiming to provide a basis for the design of tail gas treatment processes and future technology research and development in livestock farms.
  • 近年来, 中国集约化养殖业快速发展, 导致大量养殖废弃物集中产生, 养殖场粪污管理过程排放氨气(NH3)和温室气体(N2O、CH4)分别占我国总排放量的52% (NH3)、29% (N2O)、11% (CH4) [1]。氨气作为PM2.5的前驱体, 其大量排放会诱导雾霾产生。温室气体排放会增加温室效应, 导致全球变暖, 造成生态系统恶化。畜牧业氨气和温室气体减排对于缓解大气污染风险, 降低全球变暖压力具有重要意义。

    随着集约化养殖场对圈舍-处理-储存环节的封闭处理, 末端处理作为养殖场有组织外排氨气和温室气体进入大气前阻控的主要技术手段获得了广泛关注与持续研究。目前粪污管理过程废气控制的研究主要集中在氨气减排方面, 常用的氨末端处理技术从原理上可分为物理化学法(吸附法、空气洗涤法)和生物方法(生物洗涤法、生物过滤法、生物滴滤法)[2]。从应用场景上分, 吸附法和空气洗涤法一般用于圈舍尾气、氧化塘尾气等低氨气浓度场景, 生物洗涤法、生物过滤法和生物滴滤法等更适用于堆肥等高氨气浓度场景[3]。目前, 对于养殖场温室气体减排研究多集中于粪污管理过程调控与添加剂添加等源头控制和过程减排等方面, 相关末端处理技术还鲜见报道。另外, 氨气和温室气体在粪污管理过程各环节产排和优先序规律尚不明确, 缺乏与氨气和温室气体产排规律相匹配的末端协同减排处理技术与工艺。因此, 本文通过对养殖场粪污管理过程各环节氨气和温室气体排放规律和优先序的分析, 结合外排NH3、N2O和CH4阻控技术原理与减排效果的梳理, 明确粪污管理过程各环节适用技术, 探讨有组织排放氨气和温室气体末端处理技术途径, 分析和展望未来NH3、N2O和CH4末端处理技术研究重点和方向, 为养殖场外排尾气处理工艺设计和未来技术研发提供依据。

    养殖场粪污管理过程NH3、N2O和CH4有组织外排环节包括: 养殖圈舍气体收集与排放、粪污密闭贮藏气体收集与排放、液体粪污氧化塘储存气体收集与排放、固体粪污堆肥过程气体排放[4]。粪污各环节管理方式与技术手段不同, 导致外排NH3、N2O和CH4组分浓度和优先序存在差异(图1), 探究粪污管理过程NH3、N2O和CH4排放特征与优先序规律对于匹配合理末端处理技术链条极为关键。

    图  1  养殖粪污全链条管理有组织排放氨气和温室气体产排原理
    POLL: 污染物; OC: 有机碳; OA: 有机酸; ON: 有机氮。
    Figure  1.  Principles of organized emissions of ammonia and greenhouse gases in the whole chain management of livestock manure pollution
    POLL: pollutants; OC: organic carbon; OA: organic acids; ON: organic nitrogen.

    在畜禽养殖过程中, NH3、N2O和CH4排放主要来源于舍内粪尿、饲料残渣和垫料等有机物的腐败分解。NH3、N2O和CH4外排主要通过2种途径: 1)于圈舍内设置集气管, 待废气收集后统一排放; 2)经通风风机抽取后统一排放。外排NH3、N2O和CH4浓度特征和优先序主要受养殖类型、清粪工艺和圈舍管理制度(清粪、通风频率)影响。

    不同养殖类型饲料配方差异会造成粪污中氮含量不同, 导致圈舍外排NH3、N2O和CH4浓度具有不同特征。王悦等[5]认为鸡粪比猪粪和牛粪具有更高的氮含量, 鸡舍内NH3浓度最高(肉鸡: 7~22.5 mg∙m−3; 蛋鸡: 3.5~10 mg∙m−3), 猪舍(5~12.5 mg∙m−3)次之, 牛舍最低(肉牛: 1~3 mg∙m−3; 奶牛: 1.5~3 mg∙m−3)。梅林德等[6]采用实测法测定18家畜禽养殖场圈舍氨排放浓度, 表明氨气排放浓度肉牛(32.5 mg∙m−3)>肉鸡(23.2 mg∙m−3)>奶牛(16.4 mg∙m−3)>蛋鸡(7.5 mg∙m−3)。王悦等[7]连续8 d测得蛋鸡舍出风口处NH3浓度为0~13.2 mg∙m−3。周忠凯等[8]测定猪舍中NH3浓度变化范围为8.42~15.63 mg∙m−3。赵婉莹等[9]测定牛场漏缝地板和实体地板NH3浓度, 漏缝地板NH3浓度为(3.23±0.26) mg∙m−3, 实体地板NH3浓度为(2.10±0.24) mg∙m−3。赵彦超等[10]测定了羊舍内NH3气体, 质量浓度为5.5~12.5 mg∙m−3。周忠凯等[8,11]分析笼养鸡舍和通风猪舍N2O、CH4排放规律, 鸡舍内没有监测到N2O排放, CH4排放质量浓度为2.5~32.4 mg∙m−3。猪舍内没有监测到N2O排放, CH4排放质量浓度为1.5~5.3 mg∙m−3。牛舍内N2O质量浓度为1.43~1.63 mg∙m−3, CH4质量浓度为0.2~11.3 mg∙m−3[9], 羊舍内CH4浓度为7.05~250.62 mg∙m−3[12]

    清粪工艺和圈舍管理制度决定了粪便所处环境(好氧、厌氧)、粪便总量和圈舍内气体浓度。王悦等[5]分析了鸡舍清粪频率与圈舍内NH3浓度之间关系, 发现舍内NH3浓度随着两天1次的清粪频率呈现出两天的周期变化趋势, 清粪完成后舍内NH3排放浓度明显降低, 之后随着鸡粪在舍内积累, 舍内NH3浓度逐渐升高, 并于清粪完成后第2天凌晨达到最大。朱志平等[13]对春夏两个育肥季节猪舍内NH3含量进行连续3 d监测, 发现圈舍NH3平均含量峰值每天会出现1~2次, 峰值主要集中在凌晨和傍晚。赵婉莹等[9]采用Innova1412对奶牛舍NH3浓度进行了24 h连续监测, 结果表明奶牛圈舍内10:00—14:00为NH3排放峰值。焦伟娜[14]分析了集约化羊场圈舍内NH3排放规律, 认为14:00—18:00为NH3排放峰值。不同季节温度变化对圈舍内气体浓度变化具有显著影响, 畜禽圈舍夏季通风量大, 舍内NH3浓度相对较低, 排放通量较高, 冬季由于关窗保温, 舍内NH3浓度高, 排放通量较低[5]。鸡舍CH4浓度冬季最高(6.25±1.59 mg∙m−3), 春夏秋季浓度变化不明显[11]。猪舍内CH4浓度受季节影响显著, 夏季CH4浓度峰值高于春秋季[13]。羊舍内秋冬季温度较低时CH4排放增加, 升温后排放量降低[12]。朱志平等[13]研究了猪舍内春夏育肥季节N2O气体浓度变化规律, 认为春季和夏季圈舍内N2O浓度存在显著差异, 夏季试验舍N2O含量高于春季试验舍。周忠凯等[11]研究了笼养肉鸡生产过程中N2O排放随气温的变化, 认为鸡舍内N2O排放与气温高度相关, 气温越高N2O排放量越大。赵婉莹等[9]研究了奶牛养殖场N2O的日排放规律, 认为N2O的排放特征曲线与风速仪获得的空气温度变化曲线呈现相同规律, 即N2O的排放高峰与大气温度变化规律基本一致, 且高峰期排放速率大约为非高峰期的2~3倍。目前, 对羊舍内N2O浓度季节变化特征的相关研究还比较少。因此, 不同季节对于圈舍内N2O浓度变化基本具有相同的影响规律。

    综上所述, 由于圈舍内NH3、N2O、CH4浓度是多因素相互影响的结果, 通过数据整理与分析(图2a), 圈舍NH3浓度均值变化趋势为: 猪粪>鸡粪>牛粪>羊粪; N2O浓度均值变化趋势为: 猪粪>鸡粪>牛粪>羊粪; CH4浓度均值变化趋势为: 羊粪>猪粪>鸡粪>牛粪。圈舍NH3、N2O、CH4浓度变化主要受清粪频率和气温影响, 日内清粪会导致NH3、N2O、CH4排放峰值的出现。气温主要通过影响粪便发酵强度和圈舍通风策略来改变圈舍内NH3、N2O、CH4浓度, 圈舍NH3、N2O、CH4季节浓度变化规律基本一致, 即夏季浓度低, 排放量高, 春秋冬季浓度高, 排放量低, 但不同畜种圈舍内NH3、N2O、CH4 排放未见明显优先序(表1)。因此, 圈舍环节不同畜禽类型外排氨气与温室气体末端处理技术特征为: 1)猪舍和鸡舍应侧重NH3、N2O减排, 猪舍和羊舍应侧重CH4减排。2) 末端处理技术处理能力应随圈舍气体产排规律进行匹配调整, 夏季处理能力应较高, 去除率应较低, 冬季处理能力应较低, 去除率应较高; 针对日内变化, 末端处理技术应在刮粪期间强化处理能力。3)圈舍内NH3、N2O和CH4排放无明显优先序特征, 应注重外排NH3、N2O和CH4的同步去除。

    表  1  养殖场粪污全链条管理过程NH3和温室气体排放速率和优先序规律
    Table  1.  NH3 and greenhouse gases emission rates and priorties in the whole-chain management process of livestock manure pollution
    粪污管理环节
    Manure management stage
    畜种
    Species
    排放浓度/排放速率
    Emission concentration/Emission rate
    排放规律
    Emission pattern
    优先序
    Priority order
    参考文献
    Reference
    NH3CH4N2ONH3CH4, N2O
    圈舍环节
    Housing stage (mg∙m−3)

    Pig
    0.7~26.5 1.6~9.8 0.47~0.9 日内受清粪频率影响, 夏季排放
    通量大, 冬季排放通量小
    Daily ammonia emissions are influenced by manure removal frequency, with higher emission rates in summer and lower emission rates in winter
    夏季排放通量大, 冬季排放通量小
    Methane and nitrous oxide emissions exhibit higher emission rates in summer and lower emission rates in winter
    气体排放无明显优先序
    Gas emissions show no discernible priority order
    [1-2]

    Chicken
    3~19 2.5~32.4 [3-4]

    Cattle
    11~79 0.2~11.3 1.43~1.63 [5-6]

    Sheep
    0.71~1.35 7.05~250.62 [7]
    贮藏环节
    Storage stage (g∙m−2∙d−1)

    Pig
    0~6.48 0~5.5 0~144 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    CH4排放较为均匀; N2O夏天排放量大, 冬天排放量小
    Methane emissions are relatively uniform (consistent or evenly distributed), while nitrous oxide emissions are higher in summer and lower in winter
    贮存前期以NH3、N2O和CH4
    排放为主, 贮存中后期以N2O和
    CH4排放为主
    During the early stage of storage, ammonia, nitrous oxide, and methane emissions are predominant, while in the mid to late storage period, nitrous oxide and methane emissions take precedence
    [8-10]

    Chicken
    6.00~85.92 0~30.08 CH4夏天排放量大, 冬天排放量小
    Methane emissions are higher in summer and lower in winter
    [11-13]

    Cattle
    0~5.0 0~25 0~2.3 CH4夏天排放量大, 冬天排放量小; N2O夏天排放量小, 冬天排放量大
    Methane emissions are higher in summer and lower in winter, whereas nitrous oxide emissions are lower in summer and higher in winter
    [9,14]

    Sheep
    0~8 0.30~11.86 0~1.1 夏天排放量大, 冬天排放量小
    Methane and nitrous oxide emissions are higher in summer and lower in winter
    [15-17]
    液体粪污贮存环节
    Liquid manure storage stage
    (g∙m−2∙d−1)

    Pig
    0~19.9 0~35 79~91 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    夏天排放量大, 冬天排放量小
    Methane and nitrous oxide emissions are higher in summer and lower in winter
    气体排放无明显优先序
    Gas emissions show no clear priority order
    [18-21]
    液体粪污贮存环节
    Liquid manure storage stage
    (g∙m−2∙d−1)

    Cattle
    0~13.69 0~80 0~1 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    CH4夏天排放量大, 冬天排放量小; N2O冬夏排放量大
    Methane emissions are higher in summer and lower in winter, while nitrous oxide emissions are substantial during both summer and winter
    气体排放无明显优先序
    Gas emissions show no clear priority order
    [21-24]
    固体粪污堆肥环节
    Solid manure composting stage
    (mg∙d−1)

    Pig
    100~980 80.60~807.61 57.25~71.7 氨气排放集中在高温期
    Ammonia gas emissions are concentrated during the high-temperature period
    CH4排放集中在升温期, N2O排放集中在降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the cooling and decomposition periods
    CH4排放集中在堆肥前期,
    NH3排放集中在堆肥前期和中期,
    N2O排放集中在堆肥后期
    Methane emissions are
    concentrated during the early
    phase of composting, ammonia emissions are concentrated during both the early and middle phases of composting, and nitrous oxide emissions are concentrated during the later phase of composting
    [25-26]

    Chicken
    800~840 65.00~842.48 7.5~39.50 CH4排放集中在升温期, N2O排放集中在升温期、降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the warming, cooling, and decomposition periods
    [26-27]

    Cattle
    0~980 140~3522 4.5~267 CH4排放集中在升温期, N2O排放集中在升温期、降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the warming, cooling, and decomposition periods
    [26-28]

    Sheep
    2600~5400 7.05~290.00 2.6 CH4排放集中在降温期, N2O排放集中在降温期
    Methane emissions are concentrated during the cooling period, while nitrous oxide emissions are concentrated during the cooling period
    [29-30]
    下载: 导出CSV 
    | 显示表格
    图  2  不同动物粪污管理过程各环节NH3、N2O和CH4排放特征
    Figure  2.  Characteristics of NH3, N2O, and CH4 emissions from various stages of manure management process of different animals

    固体粪污贮藏受好氧、厌氧共同作用影响, 该过程伴随大量NH3、N2O和CH4排放, 覆盖和密闭处理作为固体粪污储藏过程气体减排的重要技术措施, 被越来越多地应用于畜禽固体粪污处理过程中, 为外排NH3、N2O和CH4末端处理提供可能。贮藏和覆盖环境的变化使固体粪污贮藏环节NH3、N2O和CH4产排和优先序规律尚不清楚。Amon等[15]研究了猪粪固体粪污贮藏过程中气体排放规律, 认为NH3 (210.9 g∙m−3)累积排放量远高于N2O (56.2 g∙m−3)累积排放量。Zhuang等[16]研究了猪粪和牛粪固体粪污贮藏过程氨气和温室气体排放特征, 结果表明猪粪贮藏过程外排NH3通量为0~6.48 g∙m−2∙d−1, N2O通量为0~144 mg∙m−2∙d−1, CH4 通量为0~1.2 g∙m−2∙d−1; 牛粪贮藏过程外排NH3通量为0~2.16 g∙m−2∙d−1, N2O通量为0~168 mg∙m−2∙d−1, CH4 通量为0~20.4 g∙m−2∙d−1。Misselbrook等[17-18]分别研究了猪粪、牛粪和羊粪固体粪污贮藏过程氨气和温室气体排放特征, 结果显示猪粪贮藏过程NH3通量为3.5~8 g∙m−2∙d−1, CH4通量为0.8~5.5 g∙m2∙d−1; 牛粪贮藏过程NH3通量为0.8~3 g∙m−2∙d−1, CH4通量为0~2.9 g∙m−2∙d−1; 羊粪贮藏过程NH3通量为0~2.5 g∙m−2∙d−1。Li等[19]研究了物理和环境因素对鸡粪固体粪污贮存过程气体排放影响, 测定结果表明NH3排放通量为6~85.92 g∙m−2∙d−1, CH4排放通量为0~30.08 g∙m−2∙d−1, N2O未检出。袁玉玲等[20]研究了猪粪固体粪污自然堆放方式下含氮气体排放规律, 一个堆放周期试验结果表明, NH3前期排放较多, 后期排放较少, N2O呈现前期排放量较小, 后期排放增多的趋势。Zhu等[21]测定了猪粪、鸡粪、奶牛粪和肉牛粪固体粪污贮藏过程NH3、N2O、CH4排放规律, NH3排放规律为鸡粪>猪粪>肉牛粪>奶牛粪, N2O排放规律为肉牛粪>鸡粪>猪粪>奶牛粪, CH4排放规律为肉牛粪>鸡粪>猪粪>奶牛粪。猪粪NH3排放在各个阶段的分布较均匀, N2O、CH4排放集中于前期, 后逐渐降低; 鸡粪NH3、N2O、CH4排放均集中在前期, 后逐步降低; 牛粪NH3排放在各个阶段的分布也较均匀, N2O排放集中于贮藏中期, CH4排放集中于中后期。朱海生等[22]研究了牛粪固体粪污堆积储藏过程中NH3、N2O和CH4的排放优先序, 认为NH3和N2O排放主要集中在前期, 随着时间延长均经历先升高再降低后趋于平稳的趋势, CH4排放水平开始较低, 随后逐渐升高, 后期排放水平显著高于前期。季节对固体粪污贮藏过程中NH3、N2O和CH4排放影响主要体现在排放量的差别, 对贮藏周期内气体优先序影响较小[23-24]

    综上所述, 结合数据分析(图2b), 固体粪污贮藏环节NH3排放规律为: 鸡粪>猪粪>牛粪>羊粪; N2O排放规律为: 牛粪>鸡粪>猪粪>羊粪; CH4排放规律为: 猪粪>鸡粪>羊粪>牛粪。在固体粪污贮藏过程中, 前期NH3 、N2O和CH4均有排放, 中期和后期主要排放N2O和CH4 (表1)。因此, 不同畜禽粪污储藏过程气体末端处理技术特征应为: 1)应侧重鸡粪和猪粪的NH3减排, 牛粪和鸡粪的N2O减排, 猪粪和羊粪的CH4减排; 2)贮存前期应注重NH3、N2O和CH4的协同减排, 中后期应注重N2O和CH4的协同减排。

    生猪和奶牛饲养过程中会产生大量液体粪污, 近几年, 养殖粪水资源化还田获得了越来越多的研究与关注[25-26]。厌氧发酵+氧化塘贮存作为规模化养殖场液体粪污还田前的主要工艺, 也是重要的氨气和温室气体排放源[27-28]。Lohita等[29]的研究中指出猪场污水贮藏过程中NH3排放通量为0.8~2.5 g∙m−2∙d−1, 牛场污水贮藏过程中NH3排放通量为0.63~3.66 g∙m−2∙d−1。Arogo等[30]综述了养猪液体粪污贮藏过程NH3排放通量, 为0.03~19.9 g∙m−2∙d−1, 春天和夏天排放量大, 冬秋天排放量小。Leytem等[31]在奶牛场周年测定氧化塘NH3和温室气体排放, NH3排放通量为0.59~13.69 g∙m−2∙d−1, CH4排放通量为3.64~54.12 g∙m−2∙d−1, N2O排放通量为0.03~1 g∙m−2∙d−1, 夏季排放量大, 冬季排放量小。Ni等[32]研究发现猪场液体粪污在整个贮藏过程中都有NH3排放, 但是没有排放高峰期。王悦[33]发现猪场沼液整个贮藏过程中的NH3排放呈现下降的趋势。过去氧化塘采用开放式设计, 液体粪污贮藏过程产生气体直接排入大气, 难以收集和处理。近年来由于养殖场环保观念提升, 氧化塘表面覆盖作为降低液体粪污氧化塘贮藏NH3及温室气体排放的重要手段, 通过采用多孔渗水膜[34]、黑膜囊[35]或负压盖[36]等覆盖液面实现NH3、N2O和CH4的应收尽收, 为末端处理提供可能。

    综上所述, 结合数据分析(图2c), 液体粪污贮藏过程外排气体特征主要表现为: 1) NH3、N2O和CH4气体排放通量: 猪>牛。2)不同季节对气体排放通量有影响: NH3、N2O和CH4气体排放通量均呈夏季>冬季的规律。3)液体粪污贮藏过程NH3、N2O和CH4气体排放未见明显优先序特征。因此, 针对猪牛液体粪污贮藏环节气体末端处理的技术特征为: 1)应采用其他技术手段实现NH3、N2O和CH4的应收尽收; 2)畜禽种类对氧化塘气体排放种类和通量影响较小, 应注重NH3、N2O和CH4的协同减排; 3)夏季应适当提高末端处理技术的处理能力和去除率(表1)。

    堆肥是指在微生物作用下通过高温发酵使有机物矿质化、腐殖化、无害化而形成腐熟肥料的过程[37-38]。余鑫[39]研究表明, 在猪粪好氧堆肥车间内NH3浓度变化范围为0.85~22.40 mg∙m−3。董春欣等[40]研究了鸡粪堆肥过程NH3的排放规律, NH3排放速率为45~230 mg∙h−1。Liu等[41]分别测定了鸡粪、猪粪和牛粪堆肥周期(28 d)内NH3、N2O和CH4排放特征, 猪粪NH3 排放量为0~0.98 g∙d−1, N2O排放量为0~71.79 mg∙d−1, CH4排放量为0~807.61 mg∙d−1。鸡粪NH3 排放量为0~0.84 g∙d−1, N2O排放量为0~39.50 mg∙d−1, CH4排放量为0~842.48 mg∙d−1。牛粪NH3 排放量为0~0.98 g∙d−1, N2O排放量为0~63.00 mg∙d−1, CH4排放量为0~698.43 mg∙d−1。朱伟等[12]研究表明羊粪堆肥过程(40 d)中, NH3浓度范围为3.0~5.4 mg∙m−3。Awasthi等[42]测定羊粪堆肥NH3、N2O和CH4排放特征, NH3排放速率为0~2.6 g∙d−1, N2O排放速率为0~2.6 mg∙d−1, CH4排放速率为0~290 mg∙d−1

    猪粪、鸡粪、牛粪、羊粪堆肥过程中, NH3一般在高温期集中排放[41-42], NH3挥发受温度影响较大。Pagans等[43]指出NH3挥发在堆肥升温期随温度线性上升, 在高温期呈指数上升, 升温期和高温期NH3排放约占总排放量的50%~70%[44]。CH4一般在升温期集中排放[41-42], Osada等[45]对猪粪连续堆肥30 d, 第1 d、2 d CH4排放量最大。万合锋[46]对猪粪堆肥的N2O排放进行观测研究(60 d), 发现N2O排放主要发生在堆肥的后腐熟期。Seredych等[47]观测了牛粪堆肥过程的气体排放规律, 发现NH3与CH4主要产生于堆肥前期, 而当氨气开始下降时, N2O排放增加, 其排放主要集中于中后期。

    综上所述, 固体粪污堆肥过程中外排NH3、N2O和CH4浓度变化均较大, 结合分析数据(图2d), 固体粪污堆肥过程NH3排放浓度呈: 牛粪>鸡粪>猪粪>羊粪, CH4排放浓度呈: 牛粪>鸡粪>猪粪>羊粪, N2O排放浓度呈: 牛粪>鸡粪>羊粪>猪粪。在固体粪污堆肥处理环节, NH3排放主要集中在升温期和高温期, N2O排放集中在降温期和腐熟期, CH4升温期和腐熟期均有排放(表1)。因此, 不同畜禽粪污堆肥过程气体末端处理技术特征为: 1)应重点关注牛粪NH3、N2O和CH4气体的协同去除; 2)工艺路线设计在堆肥前期应注重CH4减排, 高温期应注重NH3减排, 后期应注重N2O减排。

    目前, 养殖场粪污管理过程外排气体主要采用尾气收集+集中处理的方式去除, 但针对粪污处理全链条各环节特征的适用性推荐技术尚少见报道。另外, 现有技术通过组合实现NH3、N2O和CH4的协同减排效果尚不明确, 通过对各种终端处理技术的原理机制(图3)、去除效果和处理成本进行总结, 讨论养殖场NH3、N2O和CH4终端处理技术的适用场景。

    图  3  氨气和温室气体末端处理技术原理与设备
    Figure  3.  Principle and equipment of terminal treatment technology for ammonia and greenhouse gases

    1)吸附法

    吸附法采用吸附剂作为氨吸附介质, 吸附剂具有多孔结构或可与被吸附物质发生化学反应, 吸附剂的氨减排原理主要是通过对溶于液体中的NH4+的吸附作用实现。对氨具有吸附效果的常见材料有活性炭、生物炭、沸石等, 活性炭具有多孔结构和较大的比表面积, 易与待吸附的污染物充分接触[47], 其表面有着丰富的含氧官能团, 其中羧基、羟基等含氧官能团可通过氢键或路易斯酸碱效应吸附NH3[47]。Mochizuki 等[48]采用石油焦和KOH制备活性炭, 并认为NH3吸附效果主要来源于活性炭表面羧基和羟基。但是, 活性炭表面缺乏足够的表面酸性, 吸附能力较弱, 一般被认为是一种效率较低的吸附材料[47]。在限氧条件下由生物质原料可制备生物炭, 但生物炭对NH3的吸附容量较为有限。Yu等[49]分别采用猪粪和麦秆制备生物炭, 两种材料对NH3的吸附容量分别可达到13.66 mg·g−1和11.36 mg·g−1。由Al3+和Si4+组成的沸石, 在氧桥(O)作用下形成带负电荷晶格的四面体三维多孔框架, 这些负电荷被可交换的阳离子平衡, 从而具有吸附能力[50]。Zeng 等[51]采用硅胶吸附NH3, 该材料对NH3的吸附容量可达100 mg·g−1。Martins等[52]测定了天然沸石对NH3的吸附能力达10.8 mg·g−1, 并采用硝化细菌悬浊液进行再生, 再生后吸附容量仅下降4.55%。但吸附剂吸附容量较小, 极易饱和, 连续使用过程需要不断再生, 处理成本较高, 故适用于圈舍或液体粪污贮存环节等浓度和流速较低的氨气去除, 或适用于突发气体的应急处理, 也可与其他气体处理技术联用。

    2)空气洗涤法

    空气洗涤法是一种通过气液接触去除尾气中氨气的方法, 该方法在尾气流通通道上设置有大孔隙率和比表面积的填料/滤料, 水或酸液从顶部或侧面喷淋进入填料, 氨气在填料内部与水或酸液发生气液传质, 实现尾气中氨气组分的去除。Roh等[53]研究了水洗湿式洗涤器除氨效率, 湿式洗涤器对氨的去除率为45%~72%。由于水作为吸收介质存在易饱和和二次释放的问题[54], 与水洗湿式洗涤器相比, 采用酸(柠檬酸、盐酸、硫酸)作为吸收介质的酸性洗涤器除氨效率为69%~100%, 处理能力介于12.54~628.8 g(NH3)·m−3·h−1[55-56]。该技术可通过串联或并联的方式, 实现处理能力和去除率的灵活配置, 故适用于圈舍环节、固体粪污贮藏环节、液体粪污贮藏环节与固体粪污堆肥环节排放氨气的去除, 特别适用于固体粪污贮藏环节和固体粪污堆肥环节等高浓度氨气的去除。但空气洗涤法采用水或酸液作为吸收介质, 吸收前期去除效果较好, 随着持续运行, 去除效果逐渐降低, 需要定期更换吸收介质。

    1)生物洗涤法

    生物洗涤法是一个悬浮的活性污泥处理系统, 由一个装有惰性填料的传质洗涤器和一个具有活性污泥的生物降解器两部分组成[57]。生物洗涤法与空气洗涤法原理相同, 吸收了气体污染物的洗涤液进入含有活性污泥的生物降解器后, 污染物被活性污泥所降解, 废水循环重复利用[58]。Kang等[59]开发了一种改良生物洗涤系统去除氨气, 该系统NH3处理能力为2.13 g(NH3)·m−3·h−1, 去除率为94.5 %。Liu等[60]采用生物洗涤法处理猪场废气, 13台生物洗涤器对NH3的平均去除效率为79%, 具有良好的稳定性。Nisola等[61]采用气泡柱吸收氨气, 并使用二级生物反应器去除污染物, 该系统的最大处理能力可达26.7 g(NH3)·m−3·h−1。生物洗涤法对氨气具有较好的处理效果, 但存在过量剩余污泥和二次排放废水需要处理[58]

    2)生物过滤法

    生物过滤法通过在尾气流通通道上设置含有微生物的填充床(如堆肥), 填充床上附着的生物膜可降解有害化合物。污染物通过吸附和吸收两种方式从气相转移到生物膜中, 生物膜中同时发生扩散和好氧生物降解两个过程[62]。Melse等[63]采用木片作为填充料处理尾气中的NH3, 去除率可达74%。Demeestere等[64]采用堆肥作为填充料处理尾气中的NH3, 进气氨浓度为0.10~0.45 g·L−1, 去除率可达87%。生物过滤法对尾气中NH3的最大去除能力为50~60 g (NH3)·m−3·h−1, 大部分生物过滤器可达较高去除效果(>80%)[65]。生物过滤器多用于低浓度大流量尾气中氨的去除, 过滤介质连续使用, 由于微生物增殖与代谢, 会升高过滤介质通气阻力, 提高整个尾气处理系统压力, 另外, 需要经常加水提高生物过滤器气体减排效率, 但加水过多会引起N2O排放[66]

    3)生物滴滤法

    生物滴滤法中微生物附着于惰性填料(陶瓷、塑料等)表面, 气体通过填料床, 填料床不断滴入利于微生物生长的营养水溶液, 待处理污染物被生物膜周围的水膜吸收后被附着于填料上的硝化细菌和硝化杆菌氧化为亚硝酸根, 并最终转化为硝酸根[67]。由于液相不断循环, 更容易消除污染物在生物氧化过程中产生的有毒副产物, 从而使生物滴滤法具有更高的处理能力。Melse等[55]对肉鸡舍和育肥猪舍采用生物滴滤系统氨减排效果进行监测, 连续1年测定结果发现NH3减排效率可达71%~86%。Andreasen等[68]对猪舍采用的生物滴滤过滤器NH3减排效果进行评价, 猪舍氨排放量减少96%。有研究表明, 生物滴滤法的最大处理能力均值接近120 g(NH3)·m−3·h−1, 高于生物过滤法处理能力[69]。另外, 与酸洗涤相比, 生物滴滤对水的消耗量较大, 每只猪年耗水量达到790 L, 每只肉鸡年耗水量达到25 L[70], 且长时间连续运行由于进气粉尘累积和微生物增殖会导致填料层发生一定堵塞现象。因此, 生物滴滤法适用于尾气中具有较低量悬浮物的氨去除。

    1)微生物氧化法

    好氧甲烷氧化菌是能以CH4为唯一碳源和能源的微生物, 能将厌氧环境产生的CH4氧化, 避免其逃逸到大气。目前, 大部分研究采用好氧甲烷菌+生物过滤法实现对低浓度CH4的去除。Girard等[70]采用该方法处理猪舍外排气体中的CH4, 当入口CH4负荷为(38±1) g·m−3·h−1时的最大去除能力为(14.5±0.6) g·m−3·h−1, CH4去除率可达43%。Liu等[71]分别采用养殖废水、甲烷氧化菌培养基和自来水作为生物洗涤器的循环水处理, 结果表明, 当入口CH4负荷为100 g·m−3·h−1时, 通过养殖废水为甲烷氧化菌提供养分, 生物洗涤器对CH4去除率达到25%, 且大部分CH4在生物洗涤器中后部去除。随着进气中CH4负荷增加, 好氧甲烷菌去除能力逐步降低, 且约有57%~75%的CH4外排。因此, CH4微生物氧化法具有较高的处理能力, 可通过多个反应器的串联或并联实现处理能力和去除能力的提高。

    2)催化转化法

    目前, CH4催化转化主要有两条技术路线, 分别为完全氧化技术和高值转化技术。完全氧化技术根据气态CH4分子在一些过渡金属晶体晶面上发生解吸附所需表观活化能较低(29.26~41.80 kJ·mol−1), 远小于均相反应中CH4分子C—H键能解离所需活化能特征, 能将CH4在较低温度下完全氧化为CO2和H2O, 该技术具有效率高、寿命长、无二次污染等优势[72]。高值转化技术通过催化剂作用打破CH4中C—H键, 将CH4分解为CO和H2, 或在H或O的作用下合成醇类或烃类[73]。Li等[74]采用铈基催化剂氧化CH4, 随着温度由400 ℃升高至550 ℃, CH4转化率由9%升高至97%, 反应产物只有CO2和H2O。Periana等[75]发现CH4在浓硫酸中可被Hg2+转化为硫酸甲酯(CH3OSO3H), 在0.1 mol·L−1 Hg(OSO3H)2浓硫酸溶液中, 温度为453 K, CH4压力为34.5 bar, CH4转化率可达50%, 产物中硫酸甲酯占比可达85%。但是, 催化转化法对转化环境要求较高, 一般需要高温或高压, 应用多见于煤炭开采等释放低浓度CH4等工业领域, 且部分技术在工业领域也尚处研发阶段, 未大规模应用。在养殖过程排放废气处理处置方面还未见报道, 未来可根据养殖场尾气产排特征, 开展相关技术探索。

    3)热氧化技术

    CH4燃烧是气相自由基反应, C—H键能高, 难以被活化, 燃烧断裂活化能达434.72 kJ·mol−1[76]。热氧化技术将低浓度CH4和空气预混进入超出CH4燃烧最小活化能的高温反应装置, 将CH4完全氧化成CO2和H2O。根据CH4在燃料中所占比例不同, 可分为主要燃料燃烧技术和辅助燃料燃烧技术。Kvist等[77]针对沼气纯化过程中排放的废气, 采用热氧化技术处理, 使废气中CH4排放量降低99.5%。目前, 该技术主要用于煤炭开采过程乏风中CH4处理, 在养殖废弃物处理方面还未见报道, 未来可加强低浓度CH4与高浓度CH4相配合的辅助燃料燃烧技术方面的研究工作。

    4)富集回收法

    制约粪污处理过程排放CH4资源化利用的主要原因是其CH4含量低, 如果将CH4浓度提高至80%以上, 则可作为高能燃料或化工原料; 若CH4含量达到95%, 且CO2浓度小于3%就可并入天然气管网输送。目前, 低浓度CH4气体浓缩技术包括膜分离法、深冷液化法等[78]。膜分离法根据气体在膜材料内移动速度差异进行组分分离, Marín等[79]分别采用SAPO-34和碳分子筛材料制备选择性透过膜, 发现SAPO-34膜适合在稀薄混合物中浓缩CH4, 碳膜在丰富混合物中浓缩效果更好, 在贫CH4气体(1%)下, 膜工艺处理能力达1000 m3·h−1, CH4回收率70%。深冷液化法通过一系列压缩和热交换, 将气流冷却至液化, 再根据各组分沸点差异, 在精馏塔中实现组分分离, 低温液化技术CH4回收率可达83%~95%[80]。目前, 富集回收法主要应用于煤炭开采过程中低浓度CH4气体的富集与回收, 在养殖废弃物处理过程方面未见报道, 未来可根据养殖场实际情况开展相关研究。

    1)氧化分解法

    物理化学法一般采用氧化或还原的方法将N2O分解, 如高温分解法[81]、催化还原法[82]、催化分解法[83]。高温分解法利用N2O的助燃性, 将N2O与燃料气体(如CH4等)一起送入高温反应炉, N2O在燃烧温度达到800~1200 ℃时可分解, 但该方法燃烧后会产生NO等二次污染气体[84-85]。催化还原法利用还原剂(NH3、CO等)在催化剂作用下将N2O还原。催化分解法是在一定温度下, 利用催化剂催化将N2O分解成N2和O2[86]。目前, 物理化学法除N2O主要应用于工业领域, 特别是乙二酸生产尾气中N2O的去除。粪污处理过程中N2O减排的诸多技术集中于源减排, 但源减排难以达到N2O的完全去除, 粪污管理过程N2O末端处理技术还未见报道, 未来可根据养殖场N2O产排规律开展相关技术研究。

    2)生物法

    生物法主要通过反硝化作用实现对N2O的去除, 采用有机物为电子供体和碳源将N2O还原为N2, 该反应由N2OR酶催化进行[87]。Frutos等[88]设计了两种去除N2O的生物反应器(生物滤池、生物洗涤器), 采用甲醇作为电子供体和碳源, 生物反应器内为厌氧环境, N2O去除率可达40%。Ramezani等[89]采用污水厂回流污泥作为接种物, 以氯化铵为氮源, 以葡萄糖为原料, 厌氧条件下N2O去除率为60%, 处理能力为10.1 g·m−3·h−1。目前, 生物法处理养殖粪污处理过程中释放N2O还鲜见报道, 另外, 现有生物法去除N2O对处理环境氧气浓度要求极高, 有组织排放气体中氧气组分较高, N2O组分比例较低, 下一步要提高生物法的耐受程度或降低进气中的O2浓度。

    NH3、N2O和CH4的去除技术比较如表2所示, 在NH3处理技术中, 水洗/酸洗处理成本比生物法处理成本低, 但生物法去除率整体较高, 去除率整体也相对稳定。活性炭、硅胶、沸石等吸附剂对NH3具有一定的吸附能力, 但处理成本过高, 且吸附容量有限, 需要不断再生。因此, 对于大流量尾气, 水洗/酸洗技术更为适用; 对于高浓度尾气, 采用生物洗涤/生物过滤/生物滴滤法更为适用, 可避免不断换水/加酸。在CH4处理技术中, 微生物氧化法和富集回收法具有较低的处理成本, 但微生物氧化法在养殖场尾气处理中的应用中存在一些报道, 富集回收法在养殖场的应用还需要开展更多研究。催化转化技术和热氧化技术的转化和分解能力均较高, 但设备投入成本较高, 处理条件较为苛刻。在N2O处理技术中, 氧化分解法对N2O具有较高的处理能力, 但处理设备投入大, 反应限制条件多。生物法去除率较高, 但需要开展更多研究以提高该技术的适用性和去除率。

    表  2  不同氨气和温室气体末端处理技术比较
    Table  2.  Comparison of different treatment technologies for ammonia and greenhouse gases
    气体类型
    Gas type
    处理方法
    Processing method
    处理效果
    Processing effect
    处理成本
    Processing cost
    [¥·kg−1(NH3) or (CO2eq)]
    文献来源
    Literature source
    氨气
    Ammonia
    物理化学法
    Physicochemical method
    吸附法
    Adsorption
    活性炭/生物炭
    Activated carbon/biochar:
    4~75 mg·g−1;
    硅胶 Silica gel: 5~45 mg·g−1;
    沸石 Zeolite: 24~38 mg·g−1
    活性炭/生物炭
    Activated carbon/biochar: 52~800
    硅胶 Silica gel: 220~2000
    沸石 Zeolite: 105.2~333.6
    [52, 90-93]
    空气洗涤法
    Air washing method
    水洗法去除率 Reduction rate
    of water washing method −20%~80%
    酸洗法去除率 Reduction rate
    of acid washing method 29.83%~90.88%
    水洗法 Water washing method: 4.2~5.2

    酸洗法 Acid washing method: 5.24~6.24
    [55, 94-97]
    生物法
    Biological method
    生物洗涤法
    Biological washing method
    去除率 Reduction rate: 79%~98%20.82~90.60[96]
    生物过滤法
    Biofiltration
    去除率 Reduction rate: 30%~92%65.18~181.08[39, 98-99]
    生物滴滤法
    Bio-trickling filtration
    去除率 Reduction rate: 70%~98.5%69.49~362.15[100-102]
    温室气体
    Greenhouse gases
    CH4处理方法
    Processing method of CH4
    微生物氧化法
    Microbial oxidation method
    去除率 Reduction rate: 25%~43%1.04~6.93[71-72,
    103-105]
    催化转化法
    Catalytic conversion
    转化率 Conversion rate: 9%~97%11.19~16.84 [75, 106-107]
    热氧化技术
    Thermal oxidation technology
    分解率 Decomposition rate: 2%~100%5~5.8 [105-106]
    富集回收法
    Enrichment and recovery method
    回收率 Recovery rate: 70%~95%1.21~2.21[79, 80, 107]
    N2O处理方法
    Processing method of N2O
    氧化分解法
    Oxidative decomposition method
    去除率 Reduction rate: 8.9%~93.3%[108-111]
    生物法
    Biological method
    去除率 Reduction rate: 40%~60%[88-89]
    下载: 导出CSV 
    | 显示表格

    综合分析畜禽粪污粪便管理过程中圈舍环节、固体粪污贮藏环节、液体粪污贮藏环节、固体粪污堆肥环节气体排放特征, 可知圈舍环节CH4浓度>NH3浓度>N2O浓度, 圈舍内CH4、NH3、N2O浓度均较低, 且无明显优先序。固体粪污贮藏环节NH3排放通量>CH4排放通量>N2O排放通量, 固体贮藏过程气体排放通量较大, 且贮藏前期主要排放NH3、N2O和CH4, 贮藏中期和后期主要排放N2O和CH4。液体粪污贮藏环节CH4排放通量>NH3排放通量>N2O排放通量, 与固体粪污贮藏环节相比, 液体粪污贮藏环节CH4和N2O排放量较大, NH3排放量较小, 排放未见明显优先序。固体粪污堆肥环节NH3排放量>CH4排放量>N2O排放量, NH3排放主要集中在升温期和高温期, N2O排放集中在降温期和腐熟期, CH4主要在升温期和腐熟期排放。因此, 圈舍环节尾气处理应强化CH4去除, 固体粪污贮藏环节应强化NH3和CH4去除, 且处理单元配置应注重功能切换, 液体粪污贮藏环节应强化CH4去除, 固体粪污堆肥环节应具有较高的处理能力, 且处理单元应根据排放气体特征切换。

    基于养殖粪污处理过程氨气与温室气体外排特征, 结合目前国内外氨气与温室气体控制技术与运行案例, 以实现粪污处理过程氨气与温室气体全过程控制和有效减排为目标, 提出如下潜在污染控制技术列单(表3)。结合表1所总结粪污管理过程各环节气体排放和优先序特征, 提出如图4所示末端减排潜在污染控制技术路线。圈舍环节排放气体具有浓度低、粉尘多、夏季浓度小排放量大、冬季浓度大排放量小的特点, NH3去除可采用空气洗涤或生物洗涤技术; 由于N2O氧化分解技术会产生高温尾气, 故适合与CH4的催化转化法相配合, 或采用生物反应器+生物氧化技术联合去除N2O和CH4。固体贮藏环节排放气体具有浓度高、分阶段排放的特征, NH3去除可采用生物洗涤或生物过滤技术, N2O去除可采用生物反应器或氧化分解法, 与N2O生物反应器相匹配的CH4处理技术可采用生物氧化、富集回收或催化转化, 与N2O氧化分解法相匹配的CH4处理技术可采用催化转化法和富集回收法。贮藏环节尾气处理工艺上可设置超越管, 在固体粪污贮藏前期主要去除NH3、N2O和CH4, 后期主要去除N2O和CH4, 实现根据气体排放优先序分阶段分组分去除的目标。液体粪污贮藏环节具有CH4排放量高、粉尘含量低的特征, NH3去除所有技术均可适用, N2O去除可采用生物反应器或氧化分解法, 与N2O生物反应器相匹配的CH4处理技术可采用生物氧化, 与N2O氧化分解法相匹配的CH4处理技术可采用催化转化法或富集回收法。固体粪污堆肥环节排放气体具有粉尘多、各组分分阶段排放的特征, NH3去除可采用生物洗涤或生物过滤技术, N2O去除可采用生物反应器或氧化分解法, 与生物反应器相匹配的CH4处理技术可采用生物氧化法, 与氧化分解法相匹配的CH4处理技术可采用催化氧化法, 与贮藏阶段类似, 堆肥环节尾气处理工艺上可设置超越管, 堆肥前期主要去除NH3、CH4, 中期主要去除NH3、N2O, 后期主要去除N2O和CH4

    表  3  养殖粪污管理过程各环节NH3、N2O和CH4潜在污染控制技术列单
    Table  3.  List of potential pollution control technologies of NH3, N2O and CH4 at different stages of aquaculture manure management process
    场景 Application scenarioNH3N2OCH4
    圈舍环节
    Housing stage
    空气洗涤/生物洗涤
    Air / biological washing method
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化
    Biological oxidation / catalytic conversion
    固体粪污贮藏环节
    Storage of solid manure
    生物洗涤/生物过滤
    Biological washing method / biofiltration
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化/富集回收
    Biological oxidation / catalytic conversion /
    enrichment and recovery method
    液体粪污储存
    Storage of liquid manure
    空气洗涤/生物洗涤/生物过滤/生物滴滤
    Air washing / biological washing / biofilter /
    bio-trickling filtration
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化/富集回收
    Biological oxidation / catalytic conversion /
    enrichment and recovery method
    固体废物堆肥
    Compost of solid manure
    生物洗涤/生物过滤
    Biological washing / biofilter
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化氧化
    Biological oxidation / catalytic conversion
    下载: 导出CSV 
    | 显示表格
    图  4  养殖粪污管理过程各环节氨气和温室气体末端减排潜在技术路线
    Figure  4.  Potential technology routes for terminal emission reduction of ammionia and greenhouse gases at different stages of aquaculture manure management process

    本研究系统梳理了猪、鸡、牛、羊4种畜种粪污管理圈舍环节、固体粪污贮藏环节、液体粪污贮藏环节和固体粪污堆肥环节的NH3、N2O和CH4排放浓度、通量、速率等变化范围与排放优先序, 为后续处理工艺设计提供依据。分别梳理NH3、N2O和CH4末端处理技术原理, 并从处理效果和处理成本方面开展技术比较, 结合粪污管理过程NH3、N2O和CH4气体排放特征, 明确提出粪污管理过程各环节适用技术, 提出潜在技术路线。

    未来的研究重点和方向:

    成熟单项技术(空气洗涤、生物洗涤、生物滴滤)获得了广泛研究和报道, 且在诸多养殖场和不同应用场景获得了应用, 对污染物取得良好去除效果。但是, 如何进一步提高装置的处理能力, 拓展在极端环境下(极高温、极低温、高粉尘)应用的研究, 降低生物洗涤、生物过滤、生物滴滤池等运行过程中可能会造成的二次污染, 从而进一步拓展单项技术的应用场景。

    不成熟技术深入研发与应用: N2O的生物法去除和氧化分解, CH4的生物氧化、催化转化和富集回收技术均处于试验室研究阶段, 需要解决技术放大过程中存在的问题, 开展中试研究, 并验证不同应用场景下各技术的处理能力和处理效果。

    气体协同减排技术的研发: 现有尾气处理技术均采用工艺链条式单组分去除思路设计, 具有占地面积大、处理效率低、不同处理技术间相互影响的问题。未来可从生物技术集成和催化氧化技术集成两个方面开展深入研究。通过多种减排微生物筛选、功能组装与复配, 实现粪污管理过程中NH3、N2O和CH4的同步协同减排。通过催化剂的开发与耦合反应器的设计, 实现N2O和CH4的同步协同去除。

  • 图  1   养殖粪污全链条管理有组织排放氨气和温室气体产排原理

    POLL: 污染物; OC: 有机碳; OA: 有机酸; ON: 有机氮。

    Figure  1.   Principles of organized emissions of ammonia and greenhouse gases in the whole chain management of livestock manure pollution

    POLL: pollutants; OC: organic carbon; OA: organic acids; ON: organic nitrogen.

    图  2   不同动物粪污管理过程各环节NH3、N2O和CH4排放特征

    Figure  2.   Characteristics of NH3, N2O, and CH4 emissions from various stages of manure management process of different animals

    图  3   氨气和温室气体末端处理技术原理与设备

    Figure  3.   Principle and equipment of terminal treatment technology for ammonia and greenhouse gases

    图  4   养殖粪污管理过程各环节氨气和温室气体末端减排潜在技术路线

    Figure  4.   Potential technology routes for terminal emission reduction of ammionia and greenhouse gases at different stages of aquaculture manure management process

    表  1   养殖场粪污全链条管理过程NH3和温室气体排放速率和优先序规律

    Table  1   NH3 and greenhouse gases emission rates and priorties in the whole-chain management process of livestock manure pollution

    粪污管理环节
    Manure management stage
    畜种
    Species
    排放浓度/排放速率
    Emission concentration/Emission rate
    排放规律
    Emission pattern
    优先序
    Priority order
    参考文献
    Reference
    NH3CH4N2ONH3CH4, N2O
    圈舍环节
    Housing stage (mg∙m−3)

    Pig
    0.7~26.5 1.6~9.8 0.47~0.9 日内受清粪频率影响, 夏季排放
    通量大, 冬季排放通量小
    Daily ammonia emissions are influenced by manure removal frequency, with higher emission rates in summer and lower emission rates in winter
    夏季排放通量大, 冬季排放通量小
    Methane and nitrous oxide emissions exhibit higher emission rates in summer and lower emission rates in winter
    气体排放无明显优先序
    Gas emissions show no discernible priority order
    [1-2]

    Chicken
    3~19 2.5~32.4 [3-4]

    Cattle
    11~79 0.2~11.3 1.43~1.63 [5-6]

    Sheep
    0.71~1.35 7.05~250.62 [7]
    贮藏环节
    Storage stage (g∙m−2∙d−1)

    Pig
    0~6.48 0~5.5 0~144 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    CH4排放较为均匀; N2O夏天排放量大, 冬天排放量小
    Methane emissions are relatively uniform (consistent or evenly distributed), while nitrous oxide emissions are higher in summer and lower in winter
    贮存前期以NH3、N2O和CH4
    排放为主, 贮存中后期以N2O和
    CH4排放为主
    During the early stage of storage, ammonia, nitrous oxide, and methane emissions are predominant, while in the mid to late storage period, nitrous oxide and methane emissions take precedence
    [8-10]

    Chicken
    6.00~85.92 0~30.08 CH4夏天排放量大, 冬天排放量小
    Methane emissions are higher in summer and lower in winter
    [11-13]

    Cattle
    0~5.0 0~25 0~2.3 CH4夏天排放量大, 冬天排放量小; N2O夏天排放量小, 冬天排放量大
    Methane emissions are higher in summer and lower in winter, whereas nitrous oxide emissions are lower in summer and higher in winter
    [9,14]

    Sheep
    0~8 0.30~11.86 0~1.1 夏天排放量大, 冬天排放量小
    Methane and nitrous oxide emissions are higher in summer and lower in winter
    [15-17]
    液体粪污贮存环节
    Liquid manure storage stage
    (g∙m−2∙d−1)

    Pig
    0~19.9 0~35 79~91 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    夏天排放量大, 冬天排放量小
    Methane and nitrous oxide emissions are higher in summer and lower in winter
    气体排放无明显优先序
    Gas emissions show no clear priority order
    [18-21]
    液体粪污贮存环节
    Liquid manure storage stage
    (g∙m−2∙d−1)

    Cattle
    0~13.69 0~80 0~1 夏天排放量大, 冬天排放量小
    Ammonia gas emissions are higher in summer and lower in winter
    CH4夏天排放量大, 冬天排放量小; N2O冬夏排放量大
    Methane emissions are higher in summer and lower in winter, while nitrous oxide emissions are substantial during both summer and winter
    气体排放无明显优先序
    Gas emissions show no clear priority order
    [21-24]
    固体粪污堆肥环节
    Solid manure composting stage
    (mg∙d−1)

    Pig
    100~980 80.60~807.61 57.25~71.7 氨气排放集中在高温期
    Ammonia gas emissions are concentrated during the high-temperature period
    CH4排放集中在升温期, N2O排放集中在降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the cooling and decomposition periods
    CH4排放集中在堆肥前期,
    NH3排放集中在堆肥前期和中期,
    N2O排放集中在堆肥后期
    Methane emissions are
    concentrated during the early
    phase of composting, ammonia emissions are concentrated during both the early and middle phases of composting, and nitrous oxide emissions are concentrated during the later phase of composting
    [25-26]

    Chicken
    800~840 65.00~842.48 7.5~39.50 CH4排放集中在升温期, N2O排放集中在升温期、降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the warming, cooling, and decomposition periods
    [26-27]

    Cattle
    0~980 140~3522 4.5~267 CH4排放集中在升温期, N2O排放集中在升温期、降温期和腐熟期
    Methane emissions are concentrated during the warming period, while nitrous oxide emissions are concentrated during the warming, cooling, and decomposition periods
    [26-28]

    Sheep
    2600~5400 7.05~290.00 2.6 CH4排放集中在降温期, N2O排放集中在降温期
    Methane emissions are concentrated during the cooling period, while nitrous oxide emissions are concentrated during the cooling period
    [29-30]
    下载: 导出CSV

    表  2   不同氨气和温室气体末端处理技术比较

    Table  2   Comparison of different treatment technologies for ammonia and greenhouse gases

    气体类型
    Gas type
    处理方法
    Processing method
    处理效果
    Processing effect
    处理成本
    Processing cost
    [¥·kg−1(NH3) or (CO2eq)]
    文献来源
    Literature source
    氨气
    Ammonia
    物理化学法
    Physicochemical method
    吸附法
    Adsorption
    活性炭/生物炭
    Activated carbon/biochar:
    4~75 mg·g−1;
    硅胶 Silica gel: 5~45 mg·g−1;
    沸石 Zeolite: 24~38 mg·g−1
    活性炭/生物炭
    Activated carbon/biochar: 52~800
    硅胶 Silica gel: 220~2000
    沸石 Zeolite: 105.2~333.6
    [52, 90-93]
    空气洗涤法
    Air washing method
    水洗法去除率 Reduction rate
    of water washing method −20%~80%
    酸洗法去除率 Reduction rate
    of acid washing method 29.83%~90.88%
    水洗法 Water washing method: 4.2~5.2

    酸洗法 Acid washing method: 5.24~6.24
    [55, 94-97]
    生物法
    Biological method
    生物洗涤法
    Biological washing method
    去除率 Reduction rate: 79%~98%20.82~90.60[96]
    生物过滤法
    Biofiltration
    去除率 Reduction rate: 30%~92%65.18~181.08[39, 98-99]
    生物滴滤法
    Bio-trickling filtration
    去除率 Reduction rate: 70%~98.5%69.49~362.15[100-102]
    温室气体
    Greenhouse gases
    CH4处理方法
    Processing method of CH4
    微生物氧化法
    Microbial oxidation method
    去除率 Reduction rate: 25%~43%1.04~6.93[71-72,
    103-105]
    催化转化法
    Catalytic conversion
    转化率 Conversion rate: 9%~97%11.19~16.84 [75, 106-107]
    热氧化技术
    Thermal oxidation technology
    分解率 Decomposition rate: 2%~100%5~5.8 [105-106]
    富集回收法
    Enrichment and recovery method
    回收率 Recovery rate: 70%~95%1.21~2.21[79, 80, 107]
    N2O处理方法
    Processing method of N2O
    氧化分解法
    Oxidative decomposition method
    去除率 Reduction rate: 8.9%~93.3%[108-111]
    生物法
    Biological method
    去除率 Reduction rate: 40%~60%[88-89]
    下载: 导出CSV

    表  3   养殖粪污管理过程各环节NH3、N2O和CH4潜在污染控制技术列单

    Table  3   List of potential pollution control technologies of NH3, N2O and CH4 at different stages of aquaculture manure management process

    场景 Application scenarioNH3N2OCH4
    圈舍环节
    Housing stage
    空气洗涤/生物洗涤
    Air / biological washing method
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化
    Biological oxidation / catalytic conversion
    固体粪污贮藏环节
    Storage of solid manure
    生物洗涤/生物过滤
    Biological washing method / biofiltration
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化/富集回收
    Biological oxidation / catalytic conversion /
    enrichment and recovery method
    液体粪污储存
    Storage of liquid manure
    空气洗涤/生物洗涤/生物过滤/生物滴滤
    Air washing / biological washing / biofilter /
    bio-trickling filtration
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化转化/富集回收
    Biological oxidation / catalytic conversion /
    enrichment and recovery method
    固体废物堆肥
    Compost of solid manure
    生物洗涤/生物过滤
    Biological washing / biofilter
    生物反应器/氧化分解法
    Bioreactor / oxidative decomposition
    生物氧化/催化氧化
    Biological oxidation / catalytic conversion
    下载: 导出CSV
  • [1]

    ZHUANG M H, LU X, CARO D, et al. Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: magnitude, trends and spatiotemporal patterns[J]. Journal of Environmental Management, 2019, 242: 40−45

    [2]

    WANG Y C, HAN M F, JIA T P, et al. Emissions, measurement, and control of odor in livestock farms: a review[J]. Science of the Total Environment, 2021, 776: 145735 doi: 10.1016/j.scitotenv.2021.145735

    [3] 邓隆华. 好氧堆肥恶臭气体排放特征及其生物法去除应用研究[D]. 广州: 广东工业大学, 2022

    DENG L H. Study on emission characteristics of malodorous gases from aerobic composting and its biological removal application[D]. Guangzhou: Guangdong University of Technology, 2022

    [4]

    HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment[J]. Global Change Biology, 2015, 21(3): 1293−1312 doi: 10.1111/gcb.12767

    [5] 王悦, 赵同科, 邹国元, 等. 畜禽养殖舍氨气排放特性及减排技术研究进展[J]. 动物营养学报, 2017, 29(12): 4249−4259

    WANG Y, ZHAO T K, ZOU G Y, et al. Research statues of ammonia emission characteristics and mitigation technologies from livestock houses[J]. Chinese Journal of Animal Nutrition, 2017, 29(12): 4249−4259

    [6] 梅林德, 陈军辉, 熊文朋, 等. 基于实测法的畜禽养殖氨排放特征研究[C]. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场, 2021, 10

    MEI L D, CHEN J H, XIONG W P, et al. Study on ammonia emission characteristics of livestock and poultry breeding based on measurement method[C]. 2021 Annual Conference of Science and Technology of Chinese Society For Environmental Sciences— Environmental Engineering Technology Innovation and Application Sub Venue, 2021, 10

    [7] 王悦, 杨金凤, 薛文涛, 等. 规模化笼养蛋鸡舍冬季氨气和颗粒物排放特征研究[J]. 农业工程学报, 2018, 34(23): 170−178

    WANG Y, YANG J F, XUE W T, et al. Study of ammonia and particulate matter emission characteristics from large-scale cage layer house in winter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 170−178

    [8] 周忠凯, 杨殿林, 张海芳, 等. 冬季侧窗通风猪舍氨气和温室气体排放特征[J]. 农业环境科学学报, 2020, 39(6): 1359−1367

    ZHOU Z K, YANG D L, ZHANG H F, et al. Ammonia and greenhouse gas emissions from enclosed pig house with side-vent ventilation in winter season[J]. Journal of Agro-Environment Science, 2020, 39(6): 1359−1367

    [9] 赵婉莹, 许立新, 王朝元, 等. 不同地面形式自然通风奶牛舍冬季温室气体和氨气排放量[J]. 中国农业大学学报, 2020, 25(1): 142−151

    ZHAO W Y, XU L X, WANG C Y, et al. Greenhouse gas and ammonia emissions of naturally ventilated cowsheds with different floor types in winter[J]. Journal of China Agricultural University, 2020, 25(1): 142−151

    [10] 赵彦超, 王瑞宁, 李祥龙, 等. 不同季节不同类型羊舍空气质量分析[J]. 家畜生态学报, 2020, 41(3): 57−61

    ZHAO Y C, WANG R N, LI X L, et al. Analysis on air quality in sheep shed in different seasons[J]. Acta Ecologae Animalis Domastici, 2020, 41(3): 57−61

    [11] 周忠凯, 朱志平, 董红敏, 等. 笼养肉鸡生长过程NH3、N2O、CH4和CO2的排放[J]. 环境科学, 2013, 34(6): 2098−2106

    ZHOU Z K, ZHU Z P, DONG H M, et al. NH3, N2O, CH4 and CO2 emissions from growing process of caged broilers[J]. Environmental Science, 2013, 34(6): 2098−2106

    [12] 朱伟, 冯培功, 马君军, 等. 环境温度对肉羊有害气体排放、环境微生物和血清生化指标的影响[J]. 动物营养学报, 2018, 30(11): 4460−4469

    ZHU W, FENG P G, MA J J, et al. Effects of ambient temperature on harmful gas emission, environmental microorganism and serum biochemical indexes of mutton sheep[J]. Chinese Journal of Animal Nutrition, 2018, 30(11): 4460−4469

    [13] 朱志平, 康国虎, 董红敏, 等. 垫料型猪舍春夏育肥季节的氨气和温室气体状况测试[J]. 中国农业气象, 2011, 32(3): 356−361

    ZHU Z P, KANG G H, DONG H M, et al. Measurement of ammonia and GHGs concentration of hoop structure barn for finishing pigs in summer and spring season[J]. Chinese Journal of Agrometeorology, 2011, 32(3): 356−361

    [14] 焦伟娜. 新疆南北疆地区两集约化羊场羊舍四季环境变化及羔羊健康比较研究[D]. 乌鲁木齐: 新疆农业大学, 2019

    JIAO W N. Comparative study on four seasons environmental changes and lamb health in two intensive sheep farms and sheds in northern and southern Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2019

    [15]

    AMON B, KRYVORUCHKO V, AMON T, et al. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment[J]. Agriculture, Ecosystems & Environment, 2006, 112(2/3): 153−162

    [16]

    ZHUANG M H, SHAN N, WANG Y C, et al. Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China[J]. Science of the Total Environment, 2020, 722: 137693 doi: 10.1016/j.scitotenv.2020.137693

    [17]

    MISSELBROOK T, HUNT J, PERAZZOLO F, et al. Greenhouse gas and ammonia emissions from slurry storage: impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry)[J]. Journal of Environmental Quality, 2016, 45(5): 1520−1530 doi: 10.2134/jeq2015.12.0618

    [18]

    MISSELBROOK T H, VAN DER WEERDEN T J, PAIN B F, et al. Ammonia emission factors for UK agriculture[J]. Atmospheric Environment, 2000, 34(6): 871−880 doi: 10.1016/S1352-2310(99)00350-7

    [19]

    LI H, XIN H. Lab-scale assessment of gaseous emissions from laying-hen manure storage as affected by physical and environmental factors[J]. Transactions of the ASABE, 2010, 53(2): 593−604 doi: 10.13031/2013.29574

    [20] 袁玉玲, 王立刚, 李虎, 等. 猪粪固体自然堆放方式下含氮气体排放规律及其影响因素研究[J]. 农业环境科学学报, 2014, 33(7): 1422−1428

    YUAN Y L, WANG L G, LI H, et al. Nitrogenous gas emissions from solid swine manure under natural composting conditions[J]. Journal of Agro-Environment Science, 2014, 33(7): 1422−1428

    [21]

    ZHU Z P, LI L L, DONG H M, et al. Ammonia and greenhouse gas emissions of different types of livestock and poultry manure during storage[J]. Transactions of the ASABE, 2020, 63: 1723−1733 doi: 10.13031/trans.14079

    [22] 朱海生, 左福元, 董红敏, 等. 堆体规模对牛粪堆肥氨气和温室气体排放的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(5): 77−84

    ZHU H S, ZUO F Y, DONG H M, et al. Effect of pile scale on emissions of ammonia and greenhouse gas during cattle manure composting[J]. Journal of Northwest A& F University (Natural Science Edition), 2018, 46(5): 77−84

    [23]

    CHEN B T, KOZIEL J A, BANIK C, et al. Emissions from swine manure treated with current products for mitigation of odors and reduction of NH3, H2S, VOC, and GHG emissions[J]. Data, 2020, 5(2): 54 doi: 10.3390/data5020054

    [24]

    VELASCO-VELASCO J, PARKINSON R, KURI V. Ammonia emissions during vermicomposting of sheep manure[J]. Bioresource Technology, 2011, 102(23): 10959−10964 doi: 10.1016/j.biortech.2011.09.047

    [25] 周海宾, 丁京涛, 孟海波, 等. 中国畜禽粪污资源化利用技术应用调研与发展分析[J]. 农业工程学报, 2022, 38(9): 237−246

    ZHOU H B, DING J T, MENG H B, et al. Survey and development analysis of resource utilization technology of livestock and poultry wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 237−246

    [26] 张克强, 杜连柱, 杜会英, 等. 国内外畜禽养殖粪肥还田利用研究进展[J]. 农业环境科学学报, 2021, 40(11): 2472−2481

    ZHANG K Q, DU L Z, DU H Y, et al. Application of livestock and poultry waste to agricultural land: a review[J]. Journal of Agro-Environment Science, 2021, 40(11): 2472−2481

    [27]

    VANDERZAAG A C, GORDON R J, JAMIESON R C, et al. Permeable synthetic covers for controlling emissions from liquid dairy manure[J]. Applied Engineering in Agriculture, 2010, 26(2): 287−297 doi: 10.13031/2013.29544

    [28]

    MCGINN S M, COATES T, FLESCH T K, et al. Ammonia emission from dairy cow manure stored in a lagoon over summer[J]. Canadian Journal of Soil Science, 2008, 88(4): 611−615 doi: 10.4141/CJSS08002

    [29]

    LOHITA SARI B, RURIANTI W, SIMANJUNTAK P. Toksisitas, aktivitas antioksidan Dan antibakteri ekstrak air kulit kayu massoi (Cryptocarpa Massoy (lauraceae))[J]. FITOFARMAKA: Jurnal Ilmiah Farmasi, 2015, 4(1): 18−26 doi: 10.33751/jf.v4i1.183

    [30]

    AROGO J, WESTERMAN P W, HEBER A J. A review of ammonia emissions from confined swine feeding operations[J]. Transactions of the ASAE, 2003, 46(3): 805−817

    [31]

    LEYTEM A B, DUNGAN R S, BJORNEBERG D L, et al. Greenhouse gas and ammonia emissions from an open-freestall dairy in southern Idaho[J]. Journal of Environmental Quality, 2013, 42(1): 10−20 doi: 10.2134/jeq2012.0106

    [32]

    NI J Q, HEBER A J, SUTTON A L, et al. Mechanisms of gas releases from swine wastes[J]. Transactions of the ASABE, 2009, 52(6): 2013−2025 doi: 10.13031/2013.29203

    [33] 王悦. 猪场沼液贮存过程碳氮气体排放及机理研究[D]. 北京: 中国农业科学院, 2016

    WANG Y. Study on carbon and nitrogen gas emission and mechanism during storage of biogas slurry in pig farm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016

    [34]

    HANSEN M N, SOMMER S G, HENRIKSEN K. Methane emissions from livestock manure-effects of storage conditions and climate[R]//GHG inventories for agriculture in the nordic countries. Helsingor, Denmark: DIAS (Danish Institute of Agricultural Science), 2002: 45–53

    [35]

    FUNK T L, HUSSEY R, ZHANG Y, et al. Synthetic covers for emissions control from earthen embanked swine lagoons partⅠ: positive pressure lagoon cover[J]. Applied Engineering in Agriculture, 2004, 20(2): 233−238 doi: 10.13031/2013.15889

    [36]

    FUNK T L, MUTLU A, ZHANG Y, et al. Synthetic covers for emissions control from earthen embanked swine lagoons partⅡ: negative pressure lagoon cover[J]. Applied Engineering in Agriculture, 2004, 20(2): 239−242 doi: 10.13031/2013.15890

    [37]

    AYILARA M, OLANREWAJU O, BABALOLA O, et al. Waste management through composting: challenges and potentials[J]. Sustainability, 2020, 12(11): 4456 doi: 10.3390/su12114456

    [38]

    NGUYEN M K, LIN C, HOANG H G, et al. Evaluate the role of biochar during the organic waste composting process: a critical review[J]. Chemosphere, 2022, 299: 134488 doi: 10.1016/j.chemosphere.2022.134488

    [39] 余鑫. 腐熟堆肥基料生物滤池对猪粪沼渣堆肥过程氨气减排效果研究[D]. 北京: 中国农业科学院, 2020

    YU X. Study on ammonia emission reduction effect of bio-filter based on decomposed compost during composting of pig manure and biogas residue[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020

    [40] 董春欣, 王玉军. 鸡粪堆肥过程中的挥发性气体控制效果分析[J]. 吉林农业大学学报, 2014, 36(6): 680−684

    DONG C X, WANG Y J. Analysis of the control effect of volatile gas during chicken manure composting[J]. Journal of Jilin Agricultural University, 2014, 36(6): 680−684

    [41]

    LIU T, KUMAR AWASTHI M, VERMA S, et al. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting[J]. Bioresource Technology, 2021, 340: 125713 doi: 10.1016/j.biortech.2021.125713

    [42]

    AWASTHI M K, DUAN Y M, AWASTHI S K, et al. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing[J]. Renewable Energy, 2020, 152: 421−429 doi: 10.1016/j.renene.2020.01.065

    [43]

    PAGANS E, BARRENA R, FONT X, et al. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534−1542 doi: 10.1016/j.chemosphere.2005.06.044

    [44] 李顺义, 张红娟, 郭夏丽, 等. 畜禽粪便堆肥过程中氨挥发及调控措施[J]. 农机化研究, 2010, 32(1): 13−17 doi: 10.3969/j.issn.1003-188X.2010.01.004

    LI S Y, ZHANG H J, GUO X L, et al. Ammonia volatilization and the regulation measures in the livestock manure compost[J]. Journal of Agricultural Mechanization Research, 2010, 32(1): 13−17 doi: 10.3969/j.issn.1003-188X.2010.01.004

    [45]

    OSADA T, KURODA K, YONAGA M. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process[J]. Journal of Material Cycles and Waste Management, 2000, 2(1): 51−56

    [46] 万合锋. 猪粪堆肥及其在蔬菜地利用全过程中温室气体(N2O、CH4)和NH3排放特征研究[D]. 南昌: 南昌大学, 2012: 27–40

    WAN H F. Study on emission characteristics of greenhouse gases (N2O, CH4) and NH3 during pig manure composting and its utilization in vegetable fields[D]. Nanchang: Nanchang University, 2012: 27–40

    [47]

    SEREDYCH M, PETIT C, TAMASHAUSKY A V, et al. Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents[J]. Carbon, 2009, 47(2): 445−456 doi: 10.1016/j.carbon.2008.10.020

    [48]

    MOCHIZUKI T, KUBOTA M, MATSUDA H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation[J]. Fuel Processing Technology, 2016, 144: 164−169 doi: 10.1016/j.fuproc.2015.12.012

    [49]

    YU Q Q, XIA D, LI H, et al. Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues[J]. RSC Advances, 2016, 6(91): 88373−88381 doi: 10.1039/C6RA16913A

    [50]

    LIU Y, YAN C J, ZHAO J J, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11−22 doi: 10.1016/j.jclepro.2018.08.128

    [51]

    ZENG S J, WANG J L, LI P F, et al. Efficient adsorption of ammonia by incorporation of metal ionic liquids into silica gels as mesoporous composites[J]. Chemical Engineering Journal, 2019, 370: 81−88 doi: 10.1016/j.cej.2019.03.180

    [52]

    MARTINS T H, SOUZA T S O, FORESTI E. Ammonium removal from landfill leachate by clinoptilolite adsorption followed by bioregeneration[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 63−68 doi: 10.1016/j.jece.2016.11.024

    [53]

    ROH H, KIM D, SHIN J, et al. Effect of scrubbing liquid type on ammonia removal efficiency of wet scrubber[J]. Journal of Animal Environmental Science, 2021, 23(1): 14−20 doi: 10.11109/JAES.2021.23.1.014

    [54]

    VAN DER HEYDEN C, BRUSSELMAN E, VOLCKE E I P, et al. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities[J]. Journal of Environmental Management, 2016, 181: 163−171 doi: 10.1016/j.jenvman.2016.06.006

    [55]

    MELSE R W, MOSQUERA J. Nitrous oxide (N2O) emissions from biotrickling filters used for ammonia removal at livestock facilities[J]. Water Science and Technology, 2014, 69(5): 994−1003 doi: 10.2166/wst.2013.826

    [56]

    MELSE R W, OGINK N W M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands[J]. Transactions of the ASAE, 2005, 48(6): 2303−2313 doi: 10.13031/2013.20094

    [57]

    BRAVO D, FERRERO P, PENYA-ROJA J M, et al. Control of VOCs from printing press air emissions by anaerobic bioscrubber: performance and microbial community of an on-site pilot unit[J]. Journal of Environmental Management, 2017, 197: 287−295

    [58]

    BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment: a review[J]. Journal of Cleaner Production, 2017, 152: 223−241 doi: 10.1016/j.jclepro.2017.03.093

    [59]

    KANG J, WANG T, XIN H W, et al. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations[J]. Journal of the Air & Waste Management Association, 2014, 64(3): 330−339

    [60]

    LIU F, FIENCKE C, GUO J B, et al. Performance evaluation and optimization of field-scale bioscrubbers for intensive pig house exhaust air treatment in northern Germany[J]. Science of the Total Environment, 2017, 579: 694−701 doi: 10.1016/j.scitotenv.2016.11.039

    [61]

    NISOLA G M, CHO E, ORATA J D, et al. NH3 gas absorption and bio-oxidation in a single bioscrubber system[J]. Process Biochemistry, 2009, 44(2): 161−167 doi: 10.1016/j.procbio.2008.10.004

    [62]

    BAQUERIZO G, GAMISANS X, GABRIEL D, et al. A dynamic model for ammonia abatement by gas-phase biofiltration including pH and leachate modelling[J]. Biosystems Engineering, 2007, 97(4): 431−440 doi: 10.1016/j.biosystemseng.2007.03.031

    [63]

    MELSE R W, HOL J M G. Biofiltration of exhaust air from animal houses: evaluation of removal efficiencies and practical experiences with biobeds at three field sites[J]. Biosystems Engineering, 2017, 159: 59−69 doi: 10.1016/j.biosystemseng.2017.04.007

    [64]

    DEMEESTERE K, VAN LANGENHOVE H, SMET E. Regeneration of a compost biofilter degrading high loads of ammonia by addition of gaseous methanol[J]. Journal of the Air & Waste Management Association, 2002, 52(7): 796−804

    [65]

    MORRAL E, GABRIEL D, DORADO A D, et al. A review of biotechnologies for the abatement of ammonia emissions[J]. Chemosphere, 2021, 273: 128606 doi: 10.1016/j.chemosphere.2020.128606

    [66]

    AKDENIZ N, JANNI K A. Full-scale biofilter reduction efficiencies assessed using portable 24-hour sampling units[J]. Journal of the Air & Waste Management Association, 2012, 62(2): 170−182

    [67]

    MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours−A review[J]. Journal of Environmental Management, 2010, 91(5): 1039−1054 doi: 10.1016/j.jenvman.2010.01.006

    [68]

    ANDREASEN R R, RIIS A L, MORTENSE K. Removal efficiencies in full-scale biotrickling filters used to clean pig house exhaust air[J]. Agricultural Engineering International: CIGR Journal, 2015, 17(3): 33−42

    [69]

    TSANG Y F, WANG L, CHUA H. Effects of high ammonia loads on nitrogen mass balance and treatment performance of a biotrickling filter[J]. Process Safety and Environmental Protection, 2015, 98: 253−260 doi: 10.1016/j.psep.2015.08.008

    [70]

    GIRARD M, RAMIREZ A A, BUELNA G, et al. Biofiltration of methane at low concentrations representative of the piggery industry−influence of the methane and nitrogen concentrations[J]. Chemical Engineering Journal, 2011, 168(1): 151−158 doi: 10.1016/j.cej.2010.12.054

    [71]

    LIU F, FIENCKE C, GUO J B, et al. Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms[J]. Environmental Science and Pollution Research, 2019, 26(16): 15847−15856 doi: 10.1007/s11356-019-04924-6

    [72]

    PAN K L, PAN G T, CHONG S, et al. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. Journal of Environmental Sciences, 2018, 69: 205−216 doi: 10.1016/j.jes.2017.10.012

    [73]

    TANG P, ZHU Q J, WU Z X, et al. Methane activation: the past and future[J]. Energy & Environmental Science, 2014, 7(8): 2580−2591

    [74]

    LI S N, ZHANG Y G, WANG Z N, et al. Morphological effect of CeO2 catalysts on their catalytic performance in lean methane combustion[J]. Chemistry Letters, 2020, 49(5): 461−464 doi: 10.1246/cl.200049

    [75]

    PERIANA R A, TAUBE D J, EVITT E R, et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093): 340−343 doi: 10.1126/science.259.5093.340

    [76] 曹敏敏, 王雪峰, 王荀, 等. 煤矿低浓度甲烷利用技术研究进展[J]. 煤炭技术, 2022, 41(1): 101−105

    CAO M M, WANG X F, WANG X, et al. Research progress on utilization technology of low concentration methane in coal mine[J]. Coal Technology, 2022, 41(1): 101−105

    [77]

    KVIST T, ARYAL N. Methane loss from commercially operating biogas upgrading plants[J]. Waste Management, 2019, 87: 295−300 doi: 10.1016/j.wasman.2019.02.023

    [78] 曲思建, 董卫国, 李雪飞, 等. 低浓度煤层气脱氧浓缩工艺技术开发与应用[J]. 煤炭学报, 2014, 39(8): 1539−1544

    QU S J, DONG W G, LI X F, et al. Research and application of the low concentrated coal bed methane upgrading technique[J]. Journal of China Coal Society, 2014, 39(8): 1539−1544

    [79]

    MARÍN P, YANG Z X, XIA Y D, et al. Concentration of unconventional methane resources using microporous membranes: process assessment and scale-up[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103420 doi: 10.1016/j.jngse.2020.103420

    [80]

    JI Z M, FAN Q H, LIU X D. Simulation and analysis of low-temperature liquefaction and distillation process of low-concentration CBM[J]. Coal Technology, 2010, 29(6): 11−13

    [81] 鲁长海. N2O催化分解技术在处理己二酸尾气中的应用[J]. 河北化工, 2009(9): 20−21

    LU C H. The application of N2O catalytic technology in abatement adipic acid off-gas[J]. Hebei Chemical Engineering and Industry, 2009(9): 20−21

    [82]

    ZHANG X Y, SHEN Q, HE C, et al. N2O catalytic reduction by NH3 over Fe-zeolites: effective removal and active site[J]. Catalysis Communications, 2012, 18: 151−155 doi: 10.1016/j.catcom.2011.11.029

    [83]

    ZHANG C, ZHANG Z P, SUI C, et al. Inside cover: catalytic decomposition of N2O over Co-Ti oxide catalysts: interaction between Co and Ti oxide (ChemCatChem 12/2016)[J]. ChemCatChem, 2016, 8(12): 1992 doi: 10.1002/cctc.201600683

    [84] 于泳, 王亚涛. 己二酸尾气中N2O处理技术进展[J]. 工业催化, 2016, 24(7): 17−20 doi: 10.3969/j.issn.1008-1143.2016.07.003

    YU Y, WANG Y T. Advance in treatment technology of N2O in exhaust gas of adipic acid production[J]. Industrial Catalysis, 2016, 24(7): 17−20 doi: 10.3969/j.issn.1008-1143.2016.07.003

    [85] 孙浩杰, 施耀华, 杨益江. N2O的工业分解方法[J]. 内江科技, 2009, 30(6): 84

    SUN H J, SHI Y H, YANG Y J. Industrial decomposition method of N2O[J]. Neijiang Keji, 2009, 30(6): 84

    [86]

    HUANG C Y, MA Z, MIAO C X, et al. Catalytic decomposition of N2O over Rh/Zn-Al2O3 catalysts[J]. RSC Advances, 2017, 7(8): 4243−4252 doi: 10.1039/C6RA25388A

    [87]

    ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews: MMBR, 1997, 61(4): 533−616

    [88]

    FRUTOS O D, ARVELO I A, PÉREZ R, et al. Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber[J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3695−3706 doi: 10.1007/s00253-014-6329-8

    [89]

    RAMEZANI M, ZAMIR S M. Treatment of nitrous oxide in a trickling bioreactor in the presence of glucose or phenol as the carbon source: performance, kinetic study, and characterization of microbial community shift[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108763 doi: 10.1016/j.jece.2022.108763

    [90]

    KUO S, PEDRAM E O, HINES A L. Analysis of ammonia adsorption on silica gel using the modified potential theory[J]. Journal of Chemical & Engineering Data, 1985, 30(3): 330−332

    [91]

    ASILIAN H, MORTAZAVI S, KAZEMIAN H, et al. Removal of ammonia from air, using three Iranian natural zeolites[J]. Iranian Journal of Public Health, 2004, 33: 45−51

    [92]

    BERNAL M P, LOPEZ-REAL J M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials[J]. Bioresource Technology, 1993, 43(1): 27−33 doi: 10.1016/0960-8524(93)90078-P

    [93]

    GABRIEL D, DESHUSSES M A. Technical and economical analysis of the conversion of a full-scale scrubber to a biotrickling filter for odor control[J]. Water Science and Technology, 2004, 50(4): 309−318 doi: 10.2166/wst.2004.0292

    [94]

    ESTRADA J M, KRAAKMAN N J R B, MUÑOZ R, et al. A comparative analysis of odour treatment technologies in wastewater treatment plants[J]. Environmental Science & Technology, 2011, 45(3): 1100−1106

    [95]

    HADLOCON L J, ZHAO L Y. Production of ammonium sulfate fertilizer using acid spray wet scrubbers[J]. Agricultural Engineering International: The CIGR Journal, 2015, 14: 41−51

    [96]

    JAMALUDIN Z, ROLLINGS-SCATTERGOOD S, LUTES K, et al. Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate[J]. Bioresource Technology, 2018, 270: 596−602 doi: 10.1016/j.biortech.2018.09.007

    [97]

    ALINEZHAD E, HAGHIGHI M, RAHMANI F, et al. Technical and economic investigation of chemical scrubber and bio-filtration in removal of H2S and NH3 from wastewater treatment plant[J]. Journal of Environmental Management, 2019, 241: 32−43 doi: 10.1016/j.jenvman.2019.04.003

    [98] 谢珊珊. 低湿度生物滤池去除NH3及H2S的实验研究[D]. 扬州: 扬州大学, 2019

    XIE S S. Experimental study on removal of NH3 and H2S by low humidity biofilter[D]. Yangzhou: Yangzhou University, 2019

    [99]

    DOBSLAW D, SCHULZ A, HELBICH S, et al. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5501−5511 doi: 10.1016/j.jece.2017.10.015

    [100]

    HERNÁNDEZ J, LAFUENTE J, PRADO Ó J, et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3[J]. Journal of the Air & Waste Management Association, 2013, 63(4): 462−471

    [101]

    MOUSSAVI G, KHAVANIN A, SHARIFI A. Ammonia removal from a waste air stream using a biotrickling filter packed with polyurethane foam through the SND process[J]. Bioresource Technology, 2011, 102(3): 2517−2522 doi: 10.1016/j.biortech.2010.11.047

    [102]

    GEBERT J, GRÖNGRÖFT A. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane[J]. Waste Management, 2006, 26(4): 399−407 doi: 10.1016/j.wasman.2005.11.007

    [103]

    STREESE J, STEGMANN R. Microbial oxidation of methane from old landfills in biofilters[J]. Waste Management, 2003, 23(7): 573−580 doi: 10.1016/S0956-053X(03)00097-7

    [104]

    YOON S, CAREY J N, SEMRAU J D. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters[J]. Applied Microbiology and Biotechnology, 2009, 83(5): 949−956 doi: 10.1007/s00253-009-1977-9

    [105]

    CAI X J, HU Y H. Advances in catalytic conversion of methane and carbon dioxide to highly valuable products[J]. Energy Science & Engineering, 2019, 7(1): 4−29

    [106]

    HEO J, LEE B, LIM H. Techno-economic analysis for CO2 reforming of a medium-grade landfill gas in a membrane reactor for H2 production[J]. Journal of Cleaner Production, 2018, 172: 2585−2593 doi: 10.1016/j.jclepro.2017.11.151

    [107]

    LEE J H, TRIMM D L. Catalytic combustion of methane[J]. Fuel Processing Technology, 1995, 42(2/3): 339−359

    [108]

    KEIPI T, HANKALIN V, NUMMELIN J, et al. Techno-economic analysis of four concepts for thermal decomposition of methane: reduction of CO2 emissions in natural gas combustion[J]. Energy Conversion and Management, 2016, 110: 1−12 doi: 10.1016/j.enconman.2015.11.057

    [109]

    LOKHANDWALA K A, PINNAU I, HE Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, 346(2): 270−279 doi: 10.1016/j.memsci.2009.09.046

    [110] 曹雨来. 氧化亚氮催化分解催化剂的制备及中试实验研究[D]. 北京: 北京石油化工学院, 2017

    CAO Y L. Preparation and pilot test of catalyst for catalytic decomposition of nitrous oxide[D]. Beijing: Beijing Institute of Petrochemical Technology, 2017

    [111] 黄思齐, 王新承, 于泳, 等. 负载型铜铁催化剂直接催化分解N2O的研究[J]. 现代化工, 2019, 39(8): 124−128, 133

    HUANG S Q, WANG X C, YU Y, et al. Study on direct catalytic decomposition of N2O by supported copper-iron catalyst[J]. Modern Chemical Industry, 2019, 39(8): 124−128, 133

  • 期刊类型引用(2)

    1. 赖世平,刘佳,肖尚斌,陈敏,张博文,孟江槐,李元正. 典型人工景观池塘水体甲烷释放特征及其对富营养化的响应. 湖泊科学. 2025(01): 122-137 . 百度学术
    2. 杨攀,王猷鸿,马现永,胡聪,余苗. 养猪生产碳排放核算方法、核算进展和碳减排技术研究进展. 中国畜牧杂志. 2024(08): 34-43 . 百度学术

    其他类型引用(2)

图(4)  /  表(3)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  233
  • PDF下载量:  105
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-05-20
  • 录用日期:  2023-05-20
  • 网络出版日期:  2023-05-21
  • 刊出日期:  2023-11-09

目录

/

返回文章
返回