氯盐胁迫下施氮对西瓜生理特性和氮素吸收利用的影响

王西娜, 柳雪, 李雪芳, 王湘银, 赵伟杰, 孙晶晶, 谭军利

王西娜, 柳雪, 李雪芳, 王湘银, 赵伟杰, 孙晶晶, 谭军利. 氯盐胁迫下施氮对西瓜生理特性和氮素吸收利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1758−1767. DOI: 10.12357/cjea.20230162
引用本文: 王西娜, 柳雪, 李雪芳, 王湘银, 赵伟杰, 孙晶晶, 谭军利. 氯盐胁迫下施氮对西瓜生理特性和氮素吸收利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1758−1767. DOI: 10.12357/cjea.20230162
WANG X N, LIU X, LI X F, WANG X Y, ZHAO W J, SUN J J, TAN J L. Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1758−1767. DOI: 10.12357/cjea.20230162
Citation: WANG X N, LIU X, LI X F, WANG X Y, ZHAO W J, SUN J J, TAN J L. Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1758−1767. DOI: 10.12357/cjea.20230162
王西娜, 柳雪, 李雪芳, 王湘银, 赵伟杰, 孙晶晶, 谭军利. 氯盐胁迫下施氮对西瓜生理特性和氮素吸收利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1758−1767. CSTR: 32371.14.cjea.20230162
引用本文: 王西娜, 柳雪, 李雪芳, 王湘银, 赵伟杰, 孙晶晶, 谭军利. 氯盐胁迫下施氮对西瓜生理特性和氮素吸收利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1758−1767. CSTR: 32371.14.cjea.20230162
WANG X N, LIU X, LI X F, WANG X Y, ZHAO W J, SUN J J, TAN J L. Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1758−1767. CSTR: 32371.14.cjea.20230162
Citation: WANG X N, LIU X, LI X F, WANG X Y, ZHAO W J, SUN J J, TAN J L. Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1758−1767. CSTR: 32371.14.cjea.20230162

氯盐胁迫下施氮对西瓜生理特性和氮素吸收利用的影响

基金项目: 国家自然科学基金项目(31860590, 31460546)、宁夏自然科学基金(2022AAC02013)、宁夏回族自治区大学生创新创业训练计划项目(S202210749082, S202310749097)和宁夏大学大学生创新创业训练计划项目(202210749557)资助
详细信息
    作者简介:

    王西娜, 主要研究方向为植物营养高效利用与调控。E-mail: eunicexina-w@163.com

    通讯作者:

    谭军利, 主要研究方向为农业水资源高效利用。E-mail: tanjl@nxu.edu.cn

  • 中图分类号: S143.1; S143.7; S651

Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress

Funds: This study was supported by the National Natural Science Foundation of China (31860590, 31460546), Ningxia Natural Science Foundation (2022AAC02013), Innovation and Entrepreneurship Training Program for College Students of Ningxia Hui Autonomous Region (S202210749082, S202310749097), and the Innovation and Entrepreneurship Training Program for College Students of Ningxia University (202210749557).
More Information
  • 摘要: 由于长期使用地下含氯微咸水补灌, 氯盐胁迫已经成为限制宁夏西瓜产量和品质的主要因素之一, 而施用氮肥可在一定程度上缓解盐胁迫引起的生长抑制作用, 因此, 探索氮素对西瓜氯盐胁迫的调控机制, 对氯盐胁迫下合理施用氮肥和西瓜氯毒害调控具有重要意义。本研究以‘金城5号’西瓜品种为供试作物, 采用土培试验, 探索氯盐胁迫[160 mg (Cl−1)∙kg−1(烘干土)]下不同施氮水平[0 g∙kg−1(烘干土)、0.10 g∙kg−1(烘干土)、0.15 g∙kg−1(烘干土)、0.20 g∙kg−1(烘干土)、0.25 g∙kg−1(烘干土)]对西瓜幼苗阴阳离子平衡、有机渗透调节物质、抗氧化酶活性、氧化损伤和氮素吸收利用的影响, 以期为揭示氮素对作物氯盐胁迫的调控机理提供理论依据。结果表明, 施用氮肥使西瓜根、茎、叶中的Cl和Na+均显著减少, 而NO3和K+均显著增加, 因此, 整株Cl/NO3值和Na+/K+值分别比不施氮降低46.0%~69.5%和31.0%~54.3%; 叶片中可溶性糖和脯氨酸含量、超氧化物歧化酶和过氧化氢酶活性均在0.15 g∙kg−1氮水平时达最大值, 分别比不施氮提高75.6%、70.1%、55.8%和54.8%, 而丙二醛含量则比不施氮降低59.3%; 同时, 施氮0.15 g∙kg−1时, 西瓜的氮累积量增加157.7%, 硝酸还原酶活性提高62.4%, 氮吸收效率和氮素利用效率分别达26.25%和97.10%, 西瓜植株鲜重和干物质累积量亦显著提高96.9%和29.0%。对施氮量与西瓜各生长生理指标的聚类分析和相关分析表明, 施氮处理对氯盐胁迫的缓解效果表现为0.15 g∙kg−1>0.20 g∙kg−1>0.10 g∙kg−1>0.25 g∙kg−1, 生物量和干物质累积与氮吸收利用效率及氮累积呈显著正相关, 而氮累积量与抗氧化酶活性、渗透调节物质含量间均具有显著的正相关性, 与Na+/K+值、Cl/ NO3值和丙二醛含量呈负相关。综合各指标与施氮量之间的曲线拟合结果, 氯盐浓度为160 mg (Cl−1)∙kg−1(烘干土)时西瓜生长和生理活性适宜施氮量为0.14~0.18 g∙kg−1。可见, 氯盐胁迫下适量施氮可通过调节Na+/K+值和Cl/NO3值来维持植株体内离子稳态, 并提高渗透调节物质含量和抗氧化酶活性, 从而降低细胞膜氧化损伤, 增强西瓜植株的生理抗性, 达到对氯盐胁迫的调控作用。
    Abstract: Chloride stress is one of the main factors limiting the yield and quality of watermelon in Ningxia due to long-term irrigation with underground chlorinated brackish water. Nitrogen could alleviate the chlorine toxicity of crops. Therefore, it is crucial to explore the regulatory mechanism of nitrogen on the chloride stress by applying nitrogen fertilizer rationally and controlling chlorosis of watermelon under chloride stress. In this study, a soil culture experiment was conducted to determine the effects of different nitrogen application rates [0, 0.10, 0.15, 0.20, 0.25 g∙kg1 (oven-dry soil)] on anion-cation balance, organic osmotic regulators, antioxidant enzyme activity, oxidative damage, and nitrogen uptake and utilization in watermelon seedlings under chloride stress of 160 mg(Cl1)∙kg1 (oven-dry soil). The test crop was the ‘Jincheng No. 5’ variety of watermelon. The results showed that nitrogen application considerably reduced Cl and Na+ contents in the roots, stems, and leaves of watermelon while significantly increased NO3 and K+ contents at P<0.05; thus the ratios of Cl/NO3 and Na+/K+ of the whole plant decreased by 46.0%−69.5% and 31.0%−54.3% compared with that of 0 g∙kg1 nitrogen rate, respectively. Moreover, the contents of soluble sugar and proline, the activities of superoxide dismutase (SOD) and catalase (CAT) in leaves all reached the maximum levels at 0.15 g∙kg1 N, which statistically increased by 75.6%, 70.1%, 55.8%, and 54.8% at P<0.05 compared with those at 0 g∙kg1 N, respectively; while the content of malondialdehyde (MDA) significantly decreased by 59.3%. Moreover, when nitrogen was applied at 0.15 g∙kg1, the nitrogen accumulation of watermelon increased by 157.7%, activity of nitrate reductase (NR) increased by 62.4%, and nitrogen uptake efficiency and nitrogen use efficiency were 26.25% and 97.10%, respectively. Thus, the fresh and dry weights of the plant increased by 96.9% and 29.0% at P<0.05, respectively. Cluster and correlation analyses of nitrogen application rate and physiological growth indexes of watermelon showed that the mitigation effect of nitrogen application on watermelon chloride stress was 0.15 g∙kg1 > 0.20 g∙kg1 > 0.10 g∙kg1 > 0.25 g∙kg1. There was significant positive correlation between biomass and dry matter accumulation with nitrogen uptake, utilization efficiency, and nitrogen accumulation; while there were also significant positive correlations between nitrogen accumulation and antioxidant enzyme activity and osmo-modulator content, and negative correlations with Na+/K+ ratio, Cl/NO3 ratio, and MDA content. Based on the curve fitting results of each index, the nitrogen application rate of 0.14−0.18 g∙kg1 was available for the growth and physiological activity of watermelon when the chloride concentration was 160 mg(Cl1)∙kg1(oven-dry soil). This indicates that appropriate nitrogen application under chloride salt stress can maintain ion homeostasis in plants by adjusting the Na+/K+ and Cl/NO3 ratios, as well as improve the content of osmoregulatory substances and antioxidant enzyme activities, thereby reducing cell membrane oxidative damage, enhancing the physiological resistance of watermelon plants, and achieving a regulatory effect on chloride stress.
  • 西瓜(Citrullus lanatus)是宁夏的主要经济作物之一, 由于当地干旱少雨, 种植中农民长期使用含氯30 mmol∙L−1左右的地下微咸水进行补灌[1], 长期灌溉引起的盐分累积可能成为限制生产力的主要因素, 导致忌氯作物西瓜产生氯盐毒害现象, 使西瓜产量和品质下降。盐胁迫是限制作物生产力最普遍的非生物胁迫之一, 土壤盐胁迫对植物的不利影响包括渗透胁迫、离子毒害及氧化应激和营养紊乱等次生胁迫[2]。首先, 高盐环境会破坏离子稳态, 影响细胞中的K+、Na+分布[3], 同时由于高Na+和高Cl影响, 硝酸还原酶(NR)活性降低, 植物氮吸收减少, 氮素利用效率降低。其次, 在盐胁迫下活性氧(ROS)大量累积, 造成细胞膜氧化损伤。ROS作为生物和非生物胁迫下细胞损伤的主要来源, 植物已发展出各种保护机制来消除或减少ROS[4], 包括抗氧化酶的诱导、离子运输和分隔、有机溶质合成和积累。氮素是植物生长所必需的大量营养元素, 施用氮肥可在一定程度上缓解盐毒害作用。因此, 研究氯盐胁迫下不同氮用量对西瓜生长生理的影响, 对于氯盐胁迫下合理施用氮肥和西瓜氯毒害调控具有重要意义。氮素积极参与酶活性调节、光合作用、蛋白质合成、抗氧化剂和渗透液代谢[5], 被认为是缓解盐胁迫, 改善植物生长的最有效方式之一。已有研究报道盐胁迫下添加氮素营养可以提高植物耐盐性。隋利等[6]指出, NH4+-N∶NO3-N = 25∶75时, 比全铵态氮、全硝态氮和全酰胺态氮更有利于减轻盐胁迫对紫苏[Perillafrutescens (L.) Britt]的生长抑制, 促进生物量增加, 维持抗氧化酶、氮代谢酶活性。贾向阳等[7]发现, 叶面喷施一氧化氮可增加红砂[Reaumuria songarica (Pall.) Maxim]可溶性蛋白和硝态氮含量。张艳艳等[8]指出, NO可促进玉米(Zea mays L.)根系对K+的吸收运输, 提高植株体内K+/Na+值; 田甜等[9]研究指出, 所供应氮肥的缓解效果与其供应的浓度有关, 适量施氮可以缓解盐分对油菜(Brassica napus L.)的毒害, 而过量施氮则会加重盐分对油菜的负面影响, 抑制油菜体内渗透调节物质积累。可见, 氮素可通过多种途径调控和缓解盐胁迫对植物生长的抑制作用。施氮作为农业生产中减轻多种非生物胁迫的方法之一, 目前的研究多关注于盐胁迫或施氮对植物的单独效应, 而对于添加氮素对盐胁迫调节作用研究较少。本研究通过土培试验, 研究氯盐胁迫下不同氮水平对西瓜生理抗性和氮素吸收利用的影响, 以期揭示氮素调节西瓜盐胁迫的机制, 为调控西瓜氯盐毒害提供理论依据。

    供试作物为西瓜, 以当地普遍使用的嫁接苗为试验材料, 接穗西瓜品种为‘金城5号’, 砧木为‘金城雪峰’白籽南瓜[Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.]。供试土壤为灌淤土, 基本化学性质见表1

    表  1  供试土壤化学性质
    Table  1.  Soil basic physical and chemical properties
    指标
    Index

    pH
    有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total nitrogen
    (g∙kg−1)
    全磷
    Total phosphorus
    (g∙kg−1)
    矿质态氮
    Mineral nitrogen
    (mg∙kg−1)
    速效磷
    Available phosphorus
    (mg∙kg−1)
    速效钾
    Available potassium
    (mg∙kg−1)
    氯离子
    Chloridion
    (g∙kg−1)
    数值 Value8.037.140.960.8731.566.95114.880.06
    下载: 导出CSV 
    | 显示表格

    土培试验于2022年5月在宁夏大学农科实训基地日光温室中进行。根据本课题组前期的研究结果, 当土壤Cl含量达到156.82 mg∙kg−1时, 西瓜生长受到明显抑制[10], 因此, 本试验以160 mg(Cl)∙kg−1(烘干土)为氯胁迫浓度。在此基础上, 设置5个氮水平(以烘干土计), 分别为0 g∙kg−1、0.10 g∙kg−1、0.15 g∙kg−1、0.20 g∙kg−1、0.25 g∙kg−1, 每个处理设置3个重复。采用盆栽试验, 试验用盆为聚乙烯塑料盆, 直径31 cm, 高21 cm, 每盆栽3株大小一致的西瓜苗, 每隔7 d浇灌1 L去离子水, 及时除虫除草。

    施肥: 氮源为尿素(含N46%), 磷肥选用重过磷酸钙(含P2O5 12%), 用量0.10 g(P2O5)∙kg−1 (烘干土), 钾肥选用KCl (含K2O 60%), 用量0.05 g(K2O)∙kg−1(烘干土), 均在移栽前与土壤混匀施入。每盆装土7 kg, 其中土壤中含Cl0.06 g∙kg−1, 施入的KCl中含Cl0.28 g, 还需再用水灌入0.41 g Cl(以11.23 mmol∙L−1 Cl分两次灌入, 每次灌水1 L)才能将土壤Cl含量调至胁迫浓度。氯源用CaCl2和NaCl, 按当地微咸水中含量以5∶7施入。施入的总NaCl浓度为10.74 mmol∙L−1, 该浓度并不会对西瓜造成钠胁迫[11] , 但会对植物产生氯胁迫, 因为植物对Cl比对Na+更敏感[12]

    西瓜幼苗土培43 d后, 每个处理取3盆, 共取9株西瓜幼苗。然后, 取其中3株(每盆1株)用来测定生物量和养分含量。生物量测定时将根、茎、叶分开, 擦洗干净之后, 称鲜重, 然后在105 ℃杀青30 min, 后75 ℃烘干, 称量干重; 烘干的样品用研钵磨细, 用来测定Na+、K+、Cl、N等养分含量, 其中Na+和K+含量用火焰光度计法测定、Cl含量用莫尔法测定、N含量用凯氏蒸馏法测定。另6株样品摘下所有叶片, 混匀, 分别采用硫代巴比妥酸法[13]测定丙二醛(MDA)含量, 采用酸性茚三酮法[14]测定脯氨酸含量, 采用蒽酮法[14]测定可溶性糖含量, 采用氮蓝四唑(NBT)法[13]测定超氧化物歧化酶(SOD)活性, 采用高锰酸钾滴定法[14]测定过氧化氢酶(CAT)活性, 采用离体法[14]测定硝酸还原酶(NR)活性, 并用紫外吸收法[14]分别测定根、茎、叶的硝酸根(NO3)含量。

    $$ \begin{split} &\qquad 氮素吸收效率\;(\text{%})\;=\; 整株氮累积量\,/\,根系表面\\ & 积\times 100^{[15]} \end{split} $$ (1)
    $$ \begin{split} &\qquad 氮素表观利用率(\text{%})=(施氮处理的植株氮吸收\\ &量-未施氮处理的植株氮吸收量)/施氮量\times 100^{[15]} \end{split}$$ (2)

    采用Microsoft Excel 2003软件进行数据处理和作图, 利用DPS进行方差分析, Origin 2019作图。

    施氮显著影响氯胁迫下西瓜的鲜重和干物质累积(图1)。与不施氮处理相比, 施氮0.15 g∙kg−1和0.20 g∙kg−1时, 西瓜鲜重显著增加96.9%和73.9% (P<0.05), 干物质累积量增加29.0%和17.5%, 施氮0.10 g∙kg−1和0.25 g∙kg−1处理的增加量不显著。经曲线拟合, 鲜重和干物质累积与施氮量间均具有显著相关关系(P<0.05), 相关系数r分别为0.8440*和0.8817*, 最高鲜重和干物质累积量时对应的施氮量均为0.15 g∙kg−1。可见, 适量施氮可增加盐胁迫下西瓜生物量累积, 对缓解氯盐胁迫下西瓜生长抑制具有积极作用。

    图  1  氯胁迫下施氮水平对西瓜幼苗生物量的影响
    Figure  1.  Effects of N rate on biomass of watermelon under chlorine stress

    施氮会减少西瓜植株内Na+含量而增加K+的含量, 从而降低Na+/K+值(表2)。施氮0.20 g∙kg−1处理时, 叶片、茎、根和整株的K+含量均为最高, 分别比不施氮提高47.3%、62.3%%、112.1%和62.2% (P<0.05)。施氮使整株Na+含量降低16.2%~31.4%, 叶、茎、根中Na+含量在施氮0.15 g∙kg−1时均较低, 分别较不施氮处理显著降低48.2%、13.9%、34.7% (P<0.05)。因此, Na+/K+值亦在施氮0.15 g∙kg−1和0.20 g∙kg−1时较低, 整株Na+/K+值分别比不施氮处理的显著降低51.3%和54.3% (P<0.05)。可见, 适量施氮可通过降低植株体内Na+累积和提高K+吸收而降低氯盐胁迫下Na+/K+值, 维持阳离子的稳定。

    表  2  氯胁迫下不同施氮水平对西瓜幼苗离子含量的影响
    Table  2.  Ions contents of watermelon seedlings affected by N rate under chlorine stress
    项目
    Item
    氮水平 N rate (g∙kg−1)
    00.100.150.200.25
    K+含量
    K+ content
    (g∙kg−1)
    叶 Leaf7.08±0.81c8.10±0.82bc9.44±0.94ab10.44±0.47a7.43±0.47bc
    茎 Stem6.43±0.47b8.77±0.94ab9.10±0.82ab10.44±1.70a8.77±1.25ab
    根 Root2.09±0.82b2.75±0.47ab3.76±0.72ab4.43±0.72a2.42±0.47b
    整株 Plant5.20±0.31c6.54±0.61bc7.32±1.14ab8.43±0.55a6.32±0.16bc
    Na+含量
    Na+ content
    (g∙kg−1)
    叶 Leaf0.32±0.03a0.21±0.03b0.17±0.02b0.17±0.02b0.19±0.02b
    茎 Stem0.44±0.05a0.40±0.03ab0.38±0.03b0.39±0.03ab0.43±0.01ab
    根 Root0.70±0.03a0.58±0.03abc0.46±0.04c0.52±0.03bc0.61±0.05ab
    整株 Plant0.49±0.01a0.40±0.01b0.33±0.01c0.36±0.02bc0.41±0.03b
    Na+/K+叶 Leaf0.05a0.03b0.02b0.02b0.03b
    茎 Stem0.07a 0.05ab0.04b0.04b 0.05ab
    根 Root0.34a 0.21ab0.12b0.12b 0.25ab
    整株 Plant0.09a 0.06bc0.05c0.04c0.06b
    NO3含量
    NO3 content
    (mg∙kg−1)
    叶 Leaf230.4±30.9b239.6±14.4b287.0±16.2ab314.5±17.3a305.4±19.6ab
    茎 Stem273.2±10.0b355.8±8.7b415.4±6.2b754.9±10.6a377.2±12.5b
    根 Root152.4±26.2b337.5±42.0a366.5±14.2a430.7±42.6a267.1±26.1ab
    整株 Plant218.7±17.7c311.0±25.2bc356.3±6.9b500.1±69.8a316.6±4.4b
    Cl含量
    Cl content
    (mg∙kg−1)
    叶 Leaf8878.6±397.6a6418.6±389.3ab4921.4±432.5b6209.1±587.9b6284.3±438.0ab
    茎 Stem12 866.7±599.4a11 011.0±635.9ab9950.2±809.1b10 071.0±488.2b11 553.5±231.4ab
    根 Root7882.3±266.8a5324.2±274.6b4004.9±234.4b4355.2±377.3b5089.2±272.8b
    整株 Plant9875.9±183.7a7584.6±457.4b6292.2±853.3b6878.4±781.6b7642.3±283.4b
    Cl/NO3叶 Leaf38.53±5.95a26.79±5.61ab17.15±1.32b19.74±4.55ab20.58±3.48ab
    茎 Stem47.09±3.21a30.95±1.65a23.95±2.46ab13.34±3.03b30.63±1.42a
    根 Root51.71±6.12a15.78±1.16b10.93±1.04b10.11±1.40b19.05±1.24b
    整株 Plant45.16±3.93a24.39±3.51b17.66±2.22bc13.76±3.65c24.14±0.71bc
      不同小写字母表示施氮水平间在P<0.05水平差异显著。Different lowercase letters mean significant differences among different nitrogen rates at P<0.05 level.
    下载: 导出CSV 
    | 显示表格

    施氮增加西瓜各器官硝态氮含量, 降低氯离子吸收和Cl/NO3值(表2)。西瓜叶、茎、根、整株的NO3含量均以施氮0.20 g∙kg−1处理最高, 分别比不施氮处理显著增加36.5%、176.3%、182.5%、128.6% (P<0.05); 施氮0.15 g∙kg−1处理下, 根系和整株NO3含量增加140.4%和62.9%; 施氮0.10 g∙kg−1下, 根系NO3含量增加121.5%; 其他处理西瓜各器官中NO3含量有增加趋势但差异不显著。氯盐胁迫下施氮可使根系和整株Cl含量显著降低32.5%~49.2%和22.6%~36.3% (P<0.05), 0.15 g∙kg−1和0.20 g∙kg−1氮处理时叶、茎Cl含量较不施氮处理显著降低44.6%和30.1%、22.7%和21.7% (P<0.05); 相比不施氮处理, 整株Cl/NO3值显著降低46.0%~69.5%, 根系Cl/NO3值显著降低58.7%~77.7%, 叶片Cl/NO3值在0.15 g∙kg−1氮处理时可显著降低58.3%, 茎的Cl/NO3值在0.20 g∙kg−1氮处理显著降低69.1% (P<0.05)。表明适量氮素可以增加NO3含量, 抑制Cl吸收累积, 降低Cl/NO3值, 缓解氯盐毒害导致的营养失衡。

    可溶性糖和脯氨酸累积有利于缓解植物盐害。经曲线拟合发现, 施氮量与可溶性糖、脯氨酸间均呈先增加后降低的二次曲线关系(图2)。施氮量为0.10 g∙kg−1和0.15 g∙kg−1时, 叶片可溶性糖含量较不施氮处理显著升高44.2%和75.6% (P<0.05), 施氮0.15 g∙kg−1和0.20 g∙kg−1时西瓜叶片脯氨酸含量较不施氮处理显著增加70.1%和59.8% (P<0.05)。施氮量与可溶性糖、脯氨酸含量曲线的相关系数分别为0.8650和0.9338, 分别达显著水平(P<0.05)和极显著水平(P<0.01), 最高可溶性糖和脯氨酸含量对应的施氮量均为0.14 g∙kg−1。可见, 适量施氮亦可增加氯盐胁迫下西瓜幼苗可溶性糖和脯氨酸含量, 提高了渗透调节能力, 从而缓解氯盐胁迫。

    图  2  氯胁迫下施氮水平对西瓜幼苗渗透调节物质含量的影响
    Figure  2.  Effect of N rate on organic osmoregulation substances contents of watermelon seedlings under chlorine stress

    适量施氮可以显著提高西瓜叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性(图3)。叶片SOD以施氮0.15 g∙kg−1和0.20 g∙kg−1处理时较高, 比不施氮处理显著增加55.8%和54.9% (P<0.05); 叶片CAT活性以0.15 g∙kg−1氮水平的最高, 较不施氮处理显著上升54.8%。经曲线拟合发现, 施氮量与SOD和CAT活性间分别呈显著(P<0.05)和极显著(P<0.01)相关关系, 相关系数分别为0.8920和0.9448, SOD和CAT活性达到最高时的施氮量分别为0.18 g∙kg−1和0.14 g∙kg−1。可见, 氯盐胁迫下适量施氮能够增加抗氧化酶活性, 提高西瓜耐盐性, 缓解氯盐胁迫引起的生长抑制。

    图  3  氯胁迫下施氮水平对西瓜幼苗抗氧化酶(SOD: 超氧化物歧化酶; CAT: 过氧化氢酶)活性的影响
    Figure  3.  Effect of N rate on antioxidant enzymes (SOD: superoxide dismutase; CAT: catalase) activities of watermelon seedlings under chlorine stress

    施氮可以降低氯盐胁迫下西瓜叶片丙二醛(MDA)含量(图4)。与不施氮相比, 施氮0.10 g∙kg−1、0.15 g∙kg−1、0.20 g∙kg−1时叶片MDA含量显著降低33.0%、59.3%、42.8% (P<0.05); 施氮量与叶片MDA含量可拟合为二次曲线, 相关系数r=0.9340, 呈极显著相关关系(P<0.01), 当施氮量为0.14 g∙kg−1时叶片MDA含量最低。表明适量施氮能够减轻盐胁迫造成的氧化损伤。

    图  4  氯胁迫下施氮水平对西瓜幼苗丙二醛(MDA)含量的影响
    Figure  4.  Effect of N rate on malondialdehyde (MDA) content of watermelon seedlings under chlorine stress

    施氮可以提高硝酸还原酶(NR)活性, 增加西瓜根、茎、叶中氮累积量, 促进氮吸收利用(表3)。施氮使西瓜植株总氮吸收累积量显著提高64.07%~157.71% (P<0.05), 叶片和根系氮累积分别增加1.04~2.60倍和0.39~0.79倍; 与不施氮处理相比, 在施氮0.15 g∙kg−1和0.20 g∙kg−1处理下, 西瓜茎中氮累积量分别显著增加89.11%和79.88% (P<0.05), NR活性分别显著增加62.40%和78.71% (P<0.05), 氮吸收效率分别提高1.39和1.43倍; 氮表观利用率以施氮0.15 g∙kg−1处理时最高, 比施氮0.25 g∙kg−1处理的显著提高1.45倍。可见, 适量氮素可以增加氯盐胁迫下西瓜苗的NR活性, 促进氮素累积, 提高氮吸收和利用效率, 减缓氯盐毒害造成的养分亏缺。

    表  3  氯胁迫下不同施氮水平对西瓜幼苗氮吸收利用的影响
    Table  3.  Effects of different N rates on N uptake and utilization of watermelon seedlings under chlorine stress
    氮水平
    N rate (g∙kg−1)
    氮吸收累积量
    N absorption accumulation (g∙plant−1)
    氮吸收效率
    N absorption efficiency
    (%)
    氮利用率
    N utilization ratio
    (%)
    硝酸还原酶活性
    Nitrate reductase activity
    (μg∙g−1)

    Leaf

    Stem

    Root
    整株
    Whole plant
    04.23±0.15d4.87±0.21b1.27±0.15c10.38±0.24d 11.00±0.78b12.26±1.40c
    0.108.64±1.51c6.63±1.50ab1.76±0.18b17.03±2.27c16.04±1.31ab66.50±17.35ab16.27±1.82bc
    0.1515.25±1.16a9.21±1.04a2.28±0.06a26.75±0.88a26.25±2.54a97.10±7.86a19.91±1.43ab
    0.2013.70±1.58ab8.76±0.56a2.26±0.19a24.72±2.24ab26.71±2.23a71.73±6.72ab21.91±1.38a
    0.2511.00±1.50bc7.01±1.12ab2.27±0.07a20.27±2.60bc24.10±3.94ab39.56±6.01b15.69±0.76bc
      不同小写字母表示施氮水平间在P<0.05水平差异显著。Different lowercase letters mean significant differences among different nitrogen rates at P<0.05 level.
    下载: 导出CSV 
    | 显示表格

    聚类分析表明(图5a), 施氮0.15 g∙kg−1和0.20 g∙kg−1首先聚为一类, 表现为两者的西瓜生长生理指标较为接近, 然后依次与施氮0.10 g∙kg−1和0.25 g∙kg−1聚在一起, 最终与0 g∙kg−1并列到一起, 表现为施氮0.15 g∙kg−1处理的生物量与0 g∙kg−1差异最明显。层次聚类分析发现, 施氮0.15 g∙kg−1和0.20 g∙kg−1处理与0 g∙kg−1处理相比, 增加了抗氧化酶(SOD和CAT)活性、有机渗透调节物质(脯氨酸和可溶性糖)含量, 维持了离子稳态(Na+/K+和Cl/NO3较低), 提高了西瓜生物量累积。各处理对西瓜生长改善情况表现为0.15 g∙kg−1>0.20 g∙kg−1>0.10 g∙kg−1>0.25 g∙kg−1

    图  5  氯胁迫下不同氮水平处理西瓜幼苗相关指标聚类分析热图和相关分析图
    FW: 生物量; DM: 干物质; Pro: 脯氨酸含量; ss: 可溶性糖含量; SOD: 超氧化物歧化酶活性; CAT: 过氧化氢酶活性; MDA: 丙二醛含量; N Accum: 氮累积; N Abs: 氮吸收效率; NUE: 氮利用率; NR: 硝酸还原酶活性。Na/K(L): leaf Na+/K+ ratio; Na/K(S): stem Na+/K+ ratio; Na/K(R): root Na+/K+ ratio; Cl/N(L): leaf Cl/NO3 ratio; Cl/N(S): stem Cl/NO3 ratio; Cl/N(R): root Cl/NO3 ratio; FW: frest weight; DM: dry matter; Pro: proline content; ss: soluble sugar content; SOD: superoxide dismutase activity; CAT: catalase activity; MDA: malondialdehyde content; N Accum: N accumulation; N Abs: N absorption efficiency; NUE: N utilization ratio; NR: nitrate reductase activity.
    Figure  5.  Heat map and correlation analysis diagram among relative indexes of watermelon seedlings of different N rates under chlorine stress

    相关分析表明(图5b), 生物量和干物质均与脯氨酸和可溶性糖含量、SOD和CAT活性、NR活性、氮累积、氮吸收利用呈正相关关系, 与Na+/K+值、Cl/NO3值、MDA含量呈负相关; Na+/K+值、Cl/NO3值与MDA含量呈正相关关系, 与其他指标呈负相关。说明施加适量氮素有助于提高西瓜渗透调节、抗氧化系统、离子稳态维持等, 降低氧化损失, 减缓氯盐对西瓜的毒害。

    离子稳态是维持植物正常生长所需的基本细胞活动, 盐胁迫扰乱了植物细胞离子稳态并减少了植物的新陈代谢[16]。Na+和Cl参与植物新陈代谢, 在较高浓度下, 会引发离子毒性, 导致Na+/K+平衡破坏, 因此, 维持植物细胞中Na+/K+的稳态对于正常细胞代谢至关重要[17], 为维持细胞Na+/K+平衡, 植物最大限度将Na+外排, 并减少从根部吸收Na+[18], 过量的Na+通过Na+/H+交换剂流出到液泡或根部蛋白中, 参与Na+区域化和封存的转运蛋白的改善有助于增强植物的耐盐性[19]。施氮能够截留Na+向地上部运输[20], 减少Na+摄取、促进质膜结合移位蛋白的合成[21]。本研究中氮有效性介导的Na+含量下降可能是由于转运蛋白表达增加阻止了Na+在根水平的吸收, 氮促进了K+吸收而抑制了Na+吸收, 从而降低Na+/K+, 这与孙立荣等[22]的研究结果一致。本研究还观察到, 适量施氮可以降低西瓜幼苗中Cl含量, 增加NO3含量, 保持较低的Cl/NO3值, 维持阴离子稳态, 这可能是由于盐离子的竞争吸收影响了氮的吸收, 而硝酸盐的吸收与盐渍土中的Cl吸收呈竞争关系, 这种相互作用导致在施氮量增加时Cl吸收累积减少[23], 缓解了盐胁迫对离子平衡的破坏, 这与Duan等[24]、苏兰茜等[25]的研究结果一致。可见, 适量施氮通过增加K+和NO3吸收和减少Na+和Cl的摄取调节Na+/K+和Cl/NO3值, 维持离子稳态, 抵御盐胁迫对西瓜细胞的影响。

    盐胁迫下会产生活性氧(ROS), 导致蛋白质合成减少、酶失活、膜系统破坏[26], 通过抗氧化酶SOD、CAT、过氧化物酶(POD)等, 可以清除过氧化氢和氧自由基, 使植物ROS处于动态平衡[27], ROS生产和清除之间的平衡决定了植物损害程度[28], MDA通常用作氧化损伤程度的生物标志物。氮肥在狗牙根[Cynodon dactylon (L.) Pers.]中的应用已被证明可以通过调节抗氧化酶系统、降低MDA含量来减少干旱的负面影响[29], 在花铃期棉花(Gossypium herbaceum L.)中施用适量氮肥可以提高抗氧化酶活性和减少MDA累积来缓解短期渍水对生长的抑制作用[30]。渗透调节是植物适应渗透胁迫、避免脱水的有效措施[31]。渗透调节剂的累积在维持细胞稳定性和保护细胞免受胁迫和离子毒害方面起重要作用[32]。据报道, 脯氨酸和可溶性糖作为有机渗透调节剂在作物抗逆机制中发挥着重要作用, 脯氨酸在盐胁迫下参与细胞渗透压维持, 还有助于稳定亚细胞结构(膜和蛋白质), 调节氧化还原电位平衡等[33], 可溶性糖通过加固细胞壁和增加壁弹性以减少盐离子进入和维持渗透压, 防止结构受到压力诱导的损害[34], 在黄瓜(Cucumis sativus L.)和麻疯树(Jatropha curcas L.)幼苗中施用适量氮肥可以增加胁迫条件下脯氨酸和可溶性蛋白等有机渗透调节物质的含量, 缓解胁迫造成的生长抑制[35-36]。本研究发现, 在氯盐胁迫下, 施用不同浓度的氮肥可以在一定程度上增加SOD、CAT活性, 提高抗氧化能力, 氮作为抵御内部和外部环境氧化应激源的第一道防线, 植物抗氧化能力在很大程度上取决于氮的有效性, 较高的氮可通过增强植物抗氧化能力和抑制脂质过氧化来提高植物的抗逆性[37], 可见氮肥的作用取决于其浓度, 在本研究所采用的处理浓度中, 0.15 g∙kg−1氮水平对西瓜幼苗抗氧化酶SOD、CAT的促进作用及对MDA产生的抑制作用最显著, 而高氮用量的作用效果会减弱, 这可能与过量的氮破坏了西瓜体内的营养平衡有关, 需进一步研究。同时施氮0.15 g∙kg−1也能够最大程度增加氯盐胁迫下可溶性糖和脯氨酸含量, 缓解氯盐毒害, 之后继续增加氮用量, 缓解作用减弱。这可能是由于施用氮肥可以促进可溶性蛋白和糖合成, 稳定了特定蛋白和膜系统, 同时提高了脯氨酸合成过程中吡咯啉-5-羧酸合成酶(P5CS)的活性[38], 而当氮肥施用过量时, 氮同化加强, 更多氮被用于合成有机化合物, 并且氮肥施用量高会增加蔗糖磷酸合酶和磷酸烯醇式丙酮酸(PEP)羧化酶, 抑制糖的合成, 降低脯氨酸和可溶性糖含量, 氮对盐胁迫的缓解效应下降[39]

    氮代谢是负责植物生长发育的重要生化过程, 其调控作用对植物耐盐性至关重要[40]。NR表达和活性诱导取决于底物的存在和无机氮进入有机化合物的通量, 盐处理的植物NR活性降低伴随着氮累积量的降低[41]。本研究表明, 施氮可以诱导氯盐胁迫下西瓜体内NR, 增加氮累积量。研究氮素高效吸收利用对减少氮肥使用量、提高氮肥利用率、改善农田生态环境、提高作物产量具有重要意义, 氮吸收和利用为氮素高效利用奠定了基础[42], 张智猛等[43]研究表明轻度干旱胁迫下花生(Arachis hypogaea L.)植株氮肥利用率随施氮量增加而先增加后降低, 与上述研究结果类似, 本研究发现, 施氮促进了氮素吸收利用, 同样, 施氮对氮素的吸收利用也表现出了浓度效应, 施氮0.15 g∙kg−1处理有利于保持较高的氮素吸收利用效率。

    盐胁迫是农业中最常见的非生物胁迫因素之一, 限制了植物幼苗正常生长发育, 导致作物产量下降[44]。生物量累积是植物耐盐性的直接指标[45], 增施氮肥施用量是缓解作物受到盐分胁迫影响的一个重要方式, 氮肥能够促进盐胁迫下的作物生长, 增加植株生物量和干物质[46]。武荣等[47]研究表明在相同的盐分胁迫下, 增加氮肥使用量有利于促进小麦(Hordeum vulgare L.)分蘖成穗, 提高其产量; 宁建凤等[48]的研究也表明外源氮会显著增加芦荟[Aloe vera (L.) Burm. f.]幼苗的植株干重, 但存在浓度效应。与上述研究结果类似, 本研究中施氮对氯盐胁迫的调控作用也表现出低促高抑的现象, 适量施氮可以促进西瓜氮钾吸收, 提高氮素利用效率, 增加SOD和CAT活性及渗透调节物质可溶性糖和脯氨酸含量, 进而改善氯盐胁迫下植株生长, 增加西瓜幼苗生物量累积。

    在氯盐胁迫(160 mg∙kg−1)下, 适量施氮可以通过增加K+和NO3的吸收以抵抗Na+和Cl的摄入, 维持离子稳态, 同时可提高抗氧化酶(SOD和CAT)活性和减少MDA累积, 从而减轻氧化损伤; 并且通过增加有机渗透调节物质(可溶性糖和脯氨酸)含量来提高植株的渗透调节能力, 从而增强西瓜生理抗性, 维持较强的生长势, 缓解氯盐胁迫下的生长抑制作用; 还可通过提高硝酸还原酶(NR)活性而促进氮素吸收利用, 从而促进西瓜生长。综合各指标与施氮量之间的关系来看, 在本研究条件下, 施氮量为0.14~0.18 g∙kg−1时可有效缓解氯盐胁迫对西瓜的生长抑制作用。

  • 图  1   氯胁迫下施氮水平对西瓜幼苗生物量的影响

    Figure  1.   Effects of N rate on biomass of watermelon under chlorine stress

    图  2   氯胁迫下施氮水平对西瓜幼苗渗透调节物质含量的影响

    Figure  2.   Effect of N rate on organic osmoregulation substances contents of watermelon seedlings under chlorine stress

    图  3   氯胁迫下施氮水平对西瓜幼苗抗氧化酶(SOD: 超氧化物歧化酶; CAT: 过氧化氢酶)活性的影响

    Figure  3.   Effect of N rate on antioxidant enzymes (SOD: superoxide dismutase; CAT: catalase) activities of watermelon seedlings under chlorine stress

    图  4   氯胁迫下施氮水平对西瓜幼苗丙二醛(MDA)含量的影响

    Figure  4.   Effect of N rate on malondialdehyde (MDA) content of watermelon seedlings under chlorine stress

    图  5   氯胁迫下不同氮水平处理西瓜幼苗相关指标聚类分析热图和相关分析图

    FW: 生物量; DM: 干物质; Pro: 脯氨酸含量; ss: 可溶性糖含量; SOD: 超氧化物歧化酶活性; CAT: 过氧化氢酶活性; MDA: 丙二醛含量; N Accum: 氮累积; N Abs: 氮吸收效率; NUE: 氮利用率; NR: 硝酸还原酶活性。Na/K(L): leaf Na+/K+ ratio; Na/K(S): stem Na+/K+ ratio; Na/K(R): root Na+/K+ ratio; Cl/N(L): leaf Cl/NO3 ratio; Cl/N(S): stem Cl/NO3 ratio; Cl/N(R): root Cl/NO3 ratio; FW: frest weight; DM: dry matter; Pro: proline content; ss: soluble sugar content; SOD: superoxide dismutase activity; CAT: catalase activity; MDA: malondialdehyde content; N Accum: N accumulation; N Abs: N absorption efficiency; NUE: N utilization ratio; NR: nitrate reductase activity.

    Figure  5.   Heat map and correlation analysis diagram among relative indexes of watermelon seedlings of different N rates under chlorine stress

    表  1   供试土壤化学性质

    Table  1   Soil basic physical and chemical properties

    指标
    Index

    pH
    有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total nitrogen
    (g∙kg−1)
    全磷
    Total phosphorus
    (g∙kg−1)
    矿质态氮
    Mineral nitrogen
    (mg∙kg−1)
    速效磷
    Available phosphorus
    (mg∙kg−1)
    速效钾
    Available potassium
    (mg∙kg−1)
    氯离子
    Chloridion
    (g∙kg−1)
    数值 Value8.037.140.960.8731.566.95114.880.06
    下载: 导出CSV

    表  2   氯胁迫下不同施氮水平对西瓜幼苗离子含量的影响

    Table  2   Ions contents of watermelon seedlings affected by N rate under chlorine stress

    项目
    Item
    氮水平 N rate (g∙kg−1)
    00.100.150.200.25
    K+含量
    K+ content
    (g∙kg−1)
    叶 Leaf7.08±0.81c8.10±0.82bc9.44±0.94ab10.44±0.47a7.43±0.47bc
    茎 Stem6.43±0.47b8.77±0.94ab9.10±0.82ab10.44±1.70a8.77±1.25ab
    根 Root2.09±0.82b2.75±0.47ab3.76±0.72ab4.43±0.72a2.42±0.47b
    整株 Plant5.20±0.31c6.54±0.61bc7.32±1.14ab8.43±0.55a6.32±0.16bc
    Na+含量
    Na+ content
    (g∙kg−1)
    叶 Leaf0.32±0.03a0.21±0.03b0.17±0.02b0.17±0.02b0.19±0.02b
    茎 Stem0.44±0.05a0.40±0.03ab0.38±0.03b0.39±0.03ab0.43±0.01ab
    根 Root0.70±0.03a0.58±0.03abc0.46±0.04c0.52±0.03bc0.61±0.05ab
    整株 Plant0.49±0.01a0.40±0.01b0.33±0.01c0.36±0.02bc0.41±0.03b
    Na+/K+叶 Leaf0.05a0.03b0.02b0.02b0.03b
    茎 Stem0.07a 0.05ab0.04b0.04b 0.05ab
    根 Root0.34a 0.21ab0.12b0.12b 0.25ab
    整株 Plant0.09a 0.06bc0.05c0.04c0.06b
    NO3含量
    NO3 content
    (mg∙kg−1)
    叶 Leaf230.4±30.9b239.6±14.4b287.0±16.2ab314.5±17.3a305.4±19.6ab
    茎 Stem273.2±10.0b355.8±8.7b415.4±6.2b754.9±10.6a377.2±12.5b
    根 Root152.4±26.2b337.5±42.0a366.5±14.2a430.7±42.6a267.1±26.1ab
    整株 Plant218.7±17.7c311.0±25.2bc356.3±6.9b500.1±69.8a316.6±4.4b
    Cl含量
    Cl content
    (mg∙kg−1)
    叶 Leaf8878.6±397.6a6418.6±389.3ab4921.4±432.5b6209.1±587.9b6284.3±438.0ab
    茎 Stem12 866.7±599.4a11 011.0±635.9ab9950.2±809.1b10 071.0±488.2b11 553.5±231.4ab
    根 Root7882.3±266.8a5324.2±274.6b4004.9±234.4b4355.2±377.3b5089.2±272.8b
    整株 Plant9875.9±183.7a7584.6±457.4b6292.2±853.3b6878.4±781.6b7642.3±283.4b
    Cl/NO3叶 Leaf38.53±5.95a26.79±5.61ab17.15±1.32b19.74±4.55ab20.58±3.48ab
    茎 Stem47.09±3.21a30.95±1.65a23.95±2.46ab13.34±3.03b30.63±1.42a
    根 Root51.71±6.12a15.78±1.16b10.93±1.04b10.11±1.40b19.05±1.24b
    整株 Plant45.16±3.93a24.39±3.51b17.66±2.22bc13.76±3.65c24.14±0.71bc
      不同小写字母表示施氮水平间在P<0.05水平差异显著。Different lowercase letters mean significant differences among different nitrogen rates at P<0.05 level.
    下载: 导出CSV

    表  3   氯胁迫下不同施氮水平对西瓜幼苗氮吸收利用的影响

    Table  3   Effects of different N rates on N uptake and utilization of watermelon seedlings under chlorine stress

    氮水平
    N rate (g∙kg−1)
    氮吸收累积量
    N absorption accumulation (g∙plant−1)
    氮吸收效率
    N absorption efficiency
    (%)
    氮利用率
    N utilization ratio
    (%)
    硝酸还原酶活性
    Nitrate reductase activity
    (μg∙g−1)

    Leaf

    Stem

    Root
    整株
    Whole plant
    04.23±0.15d4.87±0.21b1.27±0.15c10.38±0.24d 11.00±0.78b12.26±1.40c
    0.108.64±1.51c6.63±1.50ab1.76±0.18b17.03±2.27c16.04±1.31ab66.50±17.35ab16.27±1.82bc
    0.1515.25±1.16a9.21±1.04a2.28±0.06a26.75±0.88a26.25±2.54a97.10±7.86a19.91±1.43ab
    0.2013.70±1.58ab8.76±0.56a2.26±0.19a24.72±2.24ab26.71±2.23a71.73±6.72ab21.91±1.38a
    0.2511.00±1.50bc7.01±1.12ab2.27±0.07a20.27±2.60bc24.10±3.94ab39.56±6.01b15.69±0.76bc
      不同小写字母表示施氮水平间在P<0.05水平差异显著。Different lowercase letters mean significant differences among different nitrogen rates at P<0.05 level.
    下载: 导出CSV
  • [1] 马瑞, 王西娜, 田里, 等. 施氯量对压砂西瓜生长、产量及品质的影响[J]. 东北农业大学学报, 2022, 53(9): 58−66

    MA R, WANG X N, TIAN L, et al. Effects of chlorine application on growth, yield and quality of watermelon planting in gravel-sand-mulched field[J]. Journal of Northeast Agricultural University, 2022, 53(9): 58−66

    [2]

    SHAO A, SUN Z C, FAN S G, et al. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings[J]. PeerJ, 2020, 8: e10427 doi: 10.7717/peerj.10427

    [3]

    WANG H, ZHANG M S, GUO R, et al. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12: 194 doi: 10.1186/1471-2229-12-194

    [4]

    BORZOUEI A, ESKANDARI A, KAFI M, et al. Wheat yield, some physiological traits and nitrogen use efficiency response to nitrogen fertilization under salinity stress[J]. Indian Journal of Plant Physiology, 2014, 19(1): 21−27 doi: 10.1007/s40502-014-0064-0

    [5]

    VANACKER H, SANDALIO L, JIMÉNEZ A, et al. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition[J]. Journal of Experimental Botany, 2006, 57(8): 1735−1745 doi: 10.1093/jxb/erl012

    [6] 隋利, 易家宁, 王康才, 等. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志, 2018, 37(11): 3277−3283

    SUI L, YI J N, WANG K C, et al. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress[J]. Chinese Journal of Ecology, 2018, 37(11): 3277−3283

    [7] 贾向阳, 种培芳, 陆文涛, 等. 叶施NO对NaCl胁迫下红砂幼苗叶片和根系中氮代谢酶及营养物质的影响[J]. 西北植物学报, 2020, 40(10): 1722−1731

    JIA X Y, CHONG P F, LU W T, et al. Effect of foliar-spraying nitric oxide on the nitrogen metabolism enzyme activities and nutrients in leaves and roots of Reaumuria soongorica seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1722−1731

    [8] 张艳艳, 刘俊, 刘友良. 一氧化氮缓解盐胁迫对玉米生长的抑制作用[J]. 植物生理与分子生物学学报, 2004, 30(4): 455−459

    ZHANG Y Y, LIU J, LIU Y L. Nitric oxide alleviates growth inhibition of maize seedlings under NaCl stress[J]. Acta Photophysiologica Sinica, 2004, 30(4): 455−459

    [9] 田甜, 王海江, 王金刚, 等. 盐胁迫下施加氮素对饲用油菜有机渗透调节物质积累的影响[J]. 草业学报, 2021, 30(10): 125−136

    TIAN T, WANG H J, WANG J G, et al. Effects of nitrogen application on accumulation of organic osmotic regulating substances in forage rapeseed (Brassica napus) under salt stress[J]. Acta Prataculturae Sinica, 2021, 30(10): 125−136

    [10] 马瑞. 微咸水灌溉下氯在土壤中的累积及西瓜氯吸收特性与耐氯临界值研究[D]. 银川: 宁夏大学, 2022

    MA R. Chlorine accumulation in soil under brackish water irrigation and its effect on watermeion chlorine absorption and chlorine tolerance threshold[D]. Yinchuan: Ningxia University, 2022

    [11] 高博文, 孙德玺, 刘君璞, 等. 盐胁迫对西瓜幼苗生理生化特性的影响[J]. 中国瓜菜, 2022, 35(8): 35−41

    GAO B W, SUN D X, LIU J P, et al. Salt stress affects physiological and biochemical characteristics of water-melon seedlings[J]. China Cucurbits and Vegetables, 2022, 35(8): 35−41

    [12]

    TAVAKKOLI E, RENGASAMY P, MCDONALD G K. High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress[J]. Journal of Experimental Botany, 2010, 61(15): 4449−4459 doi: 10.1093/jxb/erq251

    [13] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006

    GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006

    [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000

    LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000

    [15] 梁继华, 李伏生, 唐梅, 等. 分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J]. 农业工程学报, 2006, 22(10): 68−72 doi: 10.3321/j.issn:1002-6819.2006.10.014

    LIANG J H, LI F S, TANG M, et al. Effects of alternate partial root-zone irrigation on water and nitrogen utilization of pot-grown sweet corn[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 68−72 doi: 10.3321/j.issn:1002-6819.2006.10.014

    [16] 赵振杰, 张海龙, 王明晶, 等. 植物耐盐性相关细胞内pH和离子稳态的调控机制[J]. 植物生理学报, 2020, 56(3): 337−344

    ZHAO Z J, ZHANG H L, WANG M J, et al. Salt stress-related regulation mechanism of intracellular pH and ion homeostasis in plants[J]. Plant Physiology Journal, 2020, 56(3): 337−344

    [17]

    KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat[J]. Journal of Biotechnology, 2021, 325: 73−82 doi: 10.1016/j.jbiotec.2020.11.015

    [18]

    BYUN M O, KWON H B, PARK S C. Recent advances in genetic engineering of potato crops for drought and saline stress tolerance[M]//JENKS M A, HASEGAWA P M, JAIN S M. Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Dordrecht: Springer, 2007: 713–737

    [19]

    ABASS A M, CHENG Q, NAHEEDA B, et al. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation[J]. BMC Plant Biology, 2019, 19(1): 479 doi: 10.1186/s12870-019-2085-3

    [20] 刘梅, 郑青松, 刘兆普, 等. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响[J]. 植物营养与肥料学报, 2015, 21(1): 181−189 doi: 10.11674/zwyf.2015.0120

    LIU M, ZHENG Q S, LIU Z P, et al. Effects of nitrogen forms on transport and accumulation of ions in canola (Brassic napus L.) and rice (Oryza sativa L.) under saline stress[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 181−189 doi: 10.11674/zwyf.2015.0120

    [21] 杨柳, 李絮花, 胡斌, 等. 轻度盐胁迫下施氮量对小麦苗期的生理响应[J]. 中国土壤与肥料, 2020(3): 16−22

    YANG L, LI X H, HU B, et al. Physiological response of nitrogen fertilization to wheat seedling under mild salt stress[J]. Soil and Fertilizer Sciences in China, 2020(3): 16−22

    [22] 孙立荣, 郝福顺, 吕建洲, 等. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J]. 生态学报, 2008, 28(11): 5714−5722 doi: 10.3321/j.issn:1000-0933.2008.11.058

    SUN L R, HAO F S, LYU J Z, et al. Effects of exogenous nitric oxide on growth and physiological characteristics of ryegrass seedlings under salt stress[J]. Acta Ecologica Sinica, 2008, 28(11): 5714−5722 doi: 10.3321/j.issn:1000-0933.2008.11.058

    [23]

    CHEN W P, HOU Z N, WU L S, et al. Effects of salinity and nitrogen on cotton growth in arid environment[J]. Plant and Soil, 2010, 326(1): 61−73

    [24]

    DUAN P, DING F, WANG F, et al. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 244−250

    [25] 苏兰茜, 白亭玉, 赵顺松, 等. 基于盐胁迫条件下施用氮钾肥对面包果养分吸收及渗透物质积累的影响[J]. 热带作物学报, 2021, 42(8): 2275−2282 doi: 10.3969/j.issn.1000-2561.2021.08.021

    SU L X, BAI T Y, ZHAO S S, et al. Effect of application of nitrogen and potassium fertilizers on nutrient absorption and osmotic accumulation of breadfruit [Artocarpus altilis (Parkinson) Fosberg] under salt stress[J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2275−2282 doi: 10.3969/j.issn.1000-2561.2021.08.021

    [26]

    CHOUDHARY A, KUMAR A, KAUR N. ROS and oxidative burst: roots in plant development[J]. Plant Diversity, 2020, 42(1): 33−43 doi: 10.1016/j.pld.2019.10.002

    [27]

    LI J P, LIU J, ZHU T T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735 doi: 10.3390/ijms20071735

    [28]

    DOGAN M, TIPIRDAMAZ R, DEMIR Y. Effective salt criteria in callus-cultured tomato genotypes[J]. Zeitschrift Für Naturforschung C, 2010, 65(9/10): 613−618

    [29] 孙晓梵, 张一龙, 李培英, 等. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69−78 doi: 10.11686/cyxb2021179

    SUN X F, ZHANG Y L, LI P Y, et al. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress[J]. Acta Prataculturae Sinica, 2022, 31(6): 69−78 doi: 10.11686/cyxb2021179

    [30] 郭文琦, 陈兵林, 刘瑞显, 等. 施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J]. 应用生态学报, 2010, 21(1): 53−60

    GUO W Q, CHEN B L, LIU R X, et al. Effects of nitrogen application rate on cotton leaf antioxidant enzyme activities and endogenous hormone contents under short-term waterlogging at flowering and boll-forming stage[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 53−60

    [31]

    SIKDER R K, WANG X R, ZHANG H H, et al. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum[J]. Plants, 2020, 9(4): 450 doi: 10.3390/plants9040450

    [32]

    CHEN L, LIU L T, LU B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.)[J]. PLoS One, 2020, 15(1): e0228241 doi: 10.1371/journal.pone.0228241

    [33]

    NEMAT ALLA M M, HASSAN N M. Nitrogen alleviates NaCl toxicity in maize seedlings by regulating photosynthetic activity and ROS homeostasis[J]. Acta Physiologiae Plantarum, 2020, 42(6): 1−10

    [34]

    CHOURASIA K N, MORE S J, KUMAR A, et al. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review[J]. Planta, 2022, 255(3): 1−25

    [35] 樊怀福, 郭世荣, 李娟, 等. 外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响[J]. 生态学杂志, 2007, 26(12): 2045−2050

    FAN H F, GUO S R, LI J, et al. Effects of exogenous nitric oxide on Cucumis sativus seedlings growth and osmoatic adjustment substances contents under NaCl stress[J]. Chinese Journal of Ecology, 2007, 26(12): 2045−2050

    [36] 尹丽, 刘永安, 谢财永, 等. 干旱胁迫与施氮对麻疯树幼苗渗透调节物质积累的影响[J]. 应用生态学报, 2012, 23(3): 632−638

    YIN L, LIU Y A, XIE C Y, et al. Effects of drought stress and nitrogen fertilization rate on the accumulation of osmolytes in Jatropha curcas seedlings[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 632−638

    [37]

    FU J M, HUANG B R. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass[J]. Journal of Plant Nutrition, 2003, 26(1): 81−96 doi: 10.1081/PLN-120016498

    [38]

    ZAMBONI A, ASTOLFI S, ZUCHI S, et al. Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line[J]. Journal of Integrative Plant Biology, 2014, 56(11): 1080−1094 doi: 10.1111/jipb.12214

    [39]

    SINGH M, SINGH V P, PRASAD S M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation[J]. Plant Physiology and Biochemistry, 2016, 109: 72−83 doi: 10.1016/j.plaphy.2016.08.021

    [40]

    LAUCHLI A, LUTTGE U. Salinity: Environment-Plants-Molecules[M]: Boston: Boston Kluwer Academic Publishers, 2002

    [41]

    DLUZNIEWSKA P, GESSLER A, DIETRICH H, et al. Nitrogen uptake and metabolism in Populus × canescens as affected by salinity[J]. New Phytologist, 2007, 173(2): 279−293 doi: 10.1111/j.1469-8137.2006.01908.x

    [42]

    CHARDON F, BARTHÉLÉMY J, DANIEL-VEDELE F, et al. Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply[J]. Journal of Experimental Botany, 2010, 61(9): 2293−2302 doi: 10.1093/jxb/erq059

    [43] 张智猛, 戴良香, 慈敦伟, 等. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响[J]. 中国油料作物学报, 2019, 41(4): 614−621 doi: 10.7505/j.issn.1007-9084.2019.04.016

    ZHANG Z M, DAI L X, CI D W, et al. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 614−621 doi: 10.7505/j.issn.1007-9084.2019.04.016

    [44]

    MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911

    [45]

    PARIDA A K, DAS A B, MITTRA B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J]. Trees, 2004, 18(2): 167−174 doi: 10.1007/s00468-003-0293-8

    [46] 代建龙, 卢合全, 李振怀, 等. 盐胁迫下施肥对棉花生长及氮素利用的影响[J]. 应用生态学报, 2013, 24(12): 3453−3458

    DAI J L, LU H Q, LI Z H, et al. Effects of fertilization on cotton growth and nitrogen use efficiency under salinity stress[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3453−3458

    [47] 武荣, 李援农. 不同氮肥条件下盐分处理对小麦生长的影响分析[J]. 节水灌溉, 2013(5): 8−10, 14 doi: 10.3969/j.issn.1007-4929.2013.05.003

    WU R, LI Y N. Effect of salinity and nitrogen interaction on the growth of wheat[J]. Water Saving Irrigation, 2013(5): 8−10, 14 doi: 10.3969/j.issn.1007-4929.2013.05.003

    [48] 宁建凤, 郑青松, 刘兆普, 等. 外源氮对NaCl胁迫下库拉索芦荟生理特性的影响[J]. 植物营养与肥料学报, 2008, 14(4): 728−733

    NING J F, ZHENG Q S, LIU Z P, et al. Effects of supplemental nitrogen on physiological characteristics of Aloe vera seedlings under NaCl stress[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 728−733

  • 期刊类型引用(2)

    1. 张翠玉,徐晓丽,周长明,张超. 盐胁迫条件下不同施氮水平对玉米苗期生理特性的影响. 玉米科学. 2024(07): 46-54 . 百度学术
    2. 吴昕阳,陆佳昊,王彩琴,马红梅,武志明. 氮肥减施与追氮技术对甜荞生理特性的影响. 灌溉排水学报. 2024(11): 27-33 . 百度学术

    其他类型引用(2)

图(5)  /  表(3)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  128
  • PDF下载量:  63
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-07-05
  • 录用日期:  2023-07-05
  • 网络出版日期:  2023-08-09
  • 刊出日期:  2023-11-09

目录

/

返回文章
返回