流域尺度种养系统养分管理研究的意义与重点以长江流域为例

赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林

赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林. 流域尺度种养系统养分管理研究的意义与重点−以长江流域为例[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1230−1239. DOI: 10.12357/cjea.20230131
引用本文: 赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林. 流域尺度种养系统养分管理研究的意义与重点−以长江流域为例[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1230−1239. DOI: 10.12357/cjea.20230131
ZHAO S L, ZHANG N N, CHEN X J, SHI X J, CHEN X P, BAI Z H, MA L. Research priority and main points of integrated nutrient management in the crop-livestock system at the basin scale: a case study of Yangtze River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1230−1239. DOI: 10.12357/cjea.20230131
Citation: ZHAO S L, ZHANG N N, CHEN X J, SHI X J, CHEN X P, BAI Z H, MA L. Research priority and main points of integrated nutrient management in the crop-livestock system at the basin scale: a case study of Yangtze River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1230−1239. DOI: 10.12357/cjea.20230131
赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林. 流域尺度种养系统养分管理研究的意义与重点−以长江流域为例[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1230−1239. CSTR: 32371.14.cjea.20230131
引用本文: 赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林. 流域尺度种养系统养分管理研究的意义与重点−以长江流域为例[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1230−1239. CSTR: 32371.14.cjea.20230131
ZHAO S L, ZHANG N N, CHEN X J, SHI X J, CHEN X P, BAI Z H, MA L. Research priority and main points of integrated nutrient management in the crop-livestock system at the basin scale: a case study of Yangtze River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1230−1239. CSTR: 32371.14.cjea.20230131
Citation: ZHAO S L, ZHANG N N, CHEN X J, SHI X J, CHEN X P, BAI Z H, MA L. Research priority and main points of integrated nutrient management in the crop-livestock system at the basin scale: a case study of Yangtze River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1230−1239. CSTR: 32371.14.cjea.20230131

流域尺度种养系统养分管理研究的意义与重点以长江流域为例

基金项目: 国家自然科学区域创新发展联合基金(U20A2047)、国家重点研发计划-政府间国际科技创新合作项目(2021YFE0101900)、国家重点研发计划项目(2021YFD1700904)、国家自然科学基金青年科学基金项目(42001254)、河北省自然科学基金优秀青年科学基金项目(D2021503015)、河北省重点研发计划项目(21327507D)和石家庄市管拔尖人才项目资助
详细信息
    作者简介:

    赵善丽, 主要研究方向为农牧系统养分资源管理。E-mail: zhaoshanli1998@163.com

    通讯作者:

    马林, 主要研究方向为养分资源管理。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: S1; S8

Research priority and main points of integrated nutrient management in the crop-livestock system at the basin scale: a case study of Yangtze River Basin

Funds: This study was supported by the National Joint Fund for Regional Innovation and Development of Natural Science of China (U20A2047), the National Key R&D Program of China (2021YFE0101900, 2021YFD1700904), the National Natural Science Foundation of China (42001254), the Outstanding Young Scientists Project of Natural Science Foundation of Hebei Province (D2021503015), the Key R&D Program of Hebei Province (21327507D), and Shijiazhuang Top Talent Project.
More Information
  • 摘要: “农牧分离”加剧了种养系统的养分资源浪费和环境污染风险, 而种养一体化是促进养分循环和减少养分损失的重要途径。开展流域尺度种养系统养分管理研究可以将田块尺度的农牧业生产技术上升到流域尺度, 提高种养系统养分利用效率; 在生产优化的基础上, 还可以以流域环境阈值为卡口, 进一步实现养分环境减排; 在流域实行养分管理研究是种养系统大面积协同实现养分高效和环境减排的关键, 也可为农业绿色发展提供支撑。本文以长江流域为例, 综述了流域尺度种养一体化养分管理研究对农业绿色发展的重要意义、种养一体化养分管理的技术和模式以及基于种养系统资源环境代价的空间优化, 并提出未来流域尺度种养一体化养分管理和研究的重点。研究表明: 长江流域已有一系列种养一体化养分管理技术, “自下而上”地大面积推广应用, 可以实现增产增效, 减少养分环境排放。但部分地区种养系统养分承载力与环境排放量过高, 仅通过技术改进仍无法将养分损失控制在环境阈值以内, 还需“自上而下”地对流域种养产业进行优化布局。未来, 流域尺度种养系统养分管理研究应包括: 1)流域尺度种养系统养分流动与环境排放特征及其影响因素; 2)流域尺度养分环境排放脆弱区划分; 3)基于脆弱区的流域种养系统养分分区调控策略与评价研究。
    Abstract: Separation of crop and livestock production increases the risk of environmental pollution and the wastage of nutrient resources derived from crop-livestock systems. Integration of crop and livestock production is an important pathway for promoting nutrient cycling and reducing nutrient losses. Research on nutrient management at the basin scale can upscale agricultural production technologies from the farm scale to the basin scale and improve nutrient-use efficiency. Based on production optimization, the environmental threshold of the basin can be used as a bayonet to further reduce environmental nutrient losses. In addition, it is important to achieve higher nutrient efficiency and greater environmental emission reduction of crop-livestock production systems in a large area via nutrient management at the basin scale, which may also support the green development of agriculture. Taking the Yangtze River Basin as an example, this study reviewed the significance of nutrient management based on the integration of crop and livestock production at the basin scale with green development, nutrient management technologies based on the integration of crop and livestock production, and spatial optimization based on the environmental cost of the crop-livestock production system. In addition, the present study focuses on the nutrient management of crop-livestock production systems at the basin scale. Based on the present review, we found that there are a series of nutrient management technologies for crop-livestock systems in the Yangtze River Basin, and the promotion and application of these technologies via a bottom-up approach could further reduce nutrient losses and improve agricultural production efficiency. However, the nutrient losses of the crop-livestock system in some areas are too high and cannot be controlled within the environmental threshold only through technical improvement; it is also necessary to conduct spatial planning for crop-livestock systems via a top-down approach. Future studies on nutrient management of crop-livestock systems at the basin scale should include (1) characteristics and driving factors of nutrient flow and environmental emissions at the basin scale, (2) classification of vulnerable areas of nutrient losses at the basin scale, and (3) evaluation and optimization of crop-livestock systems based on vulnerable areas.
  • 近几十年来, 我国集约化种养系统快速发展支撑了粮食安全与国民营养健康, 但是过量的化肥投入和畜禽粪尿的不合理管理, 也造成了严重的环境问题[1-2]。研究表明: 全球氮排放已超过行星边界, 氮素环境排放与农牧业生产密切相关[3]。我国农业和畜牧业生产活动导致的氮损失也较高, 造成了地表水硝酸盐含量超标, 例如牡丹江、海河、长江口的硝酸盐浓度均超过90 mg∙L−1[4]。由于我国农业面源污染最为普遍, 且面源污染具有养分不定时定点损失的特征, 所以现有的污水处理技术, 如气浮物理法、化学吸附法、生物膜法等很难在农业实施[5]。农田和养殖场尺度的养分管理措施可以提高种养系统生产效率, 减少田块尺度养分损失, 而这些措施如何在流域尺度大面积应用成为推进面源污染阻控和实现农业绿色发展的关键[6]

    长江流域是我国农业主产区, 种植业和养殖业发展迅速。但是, 该地区种植业养分高投入高产出的生产方式, 也加剧了可溶性无机物的水体排放[7], 过量氮磷养分进入水体造成了富营养化频发[8-10]。其中来源于集约化畜牧业畜禽粪便的溶解无机氮占长江水体溶解无机氮的34%~74%, 并具有明显的季节性波动[11]。续衍雪等[12]指出畜禽养殖业的总磷排放占农业源总排放量的68%。由此可见, 长江流域种养系统所带来的养分环境损失问题, 已成为阻碍长江流域种养系统绿色发展的重要限制因素。因此, 本文拟以长江流域为例: 1)梳理流域尺度种养一体化养分管理研究的重要性; 2)分析流域尺度种养一体化养分管理的研究进展; 3)系统探讨流域尺度种养一体化养分管理研究的重点。

    种养一体化可以促进养分在种养系统的循环, 同时减少化肥养分的投入和养分损失带来的环境污染[13]。随着养殖业集约化水平不断提高, 传统种养一体化的养殖模式逐步被无地集约化养殖系统所取代, 种养分离的现象日益突出。1980年, 中国无地集约化畜禽养殖的生产方式约占畜牧业的2.5%, 而2010年其占比已高达56%[14]。1986—2017年, 同时拥有农田种植和牲畜养殖的农户占比从71%下降到12%[15]。种养分离的养殖方式加剧了畜禽粪便等资源的浪费, 同时畜禽废弃物资源的不合理利用引发了一系列环境污染问题。

    促进种养一体化对于化肥减量施用具有重要意义。对我国县域畜禽粪尿承载力和化肥投入的空间分析发现, 粪肥资源并没有作为有机肥被充分利用到作物生产中, 作物生产仍然依赖大量的化肥投入[16]。1990—2010年, 中国27个省的单位耕地氮素投入量增加了5%~92%, 其中大部分来自化肥施用, 过量化肥施用导致作物生产体系氮利用效率偏低[17]。目前中国化肥的投入强度较大, 有机肥的利用率较低, 而通过种养一体化的生产方式, 将畜禽废弃物作为有机肥料替代无机化肥施用, 可以有效减少化肥投入和粪肥资源浪费, 同时提高种养系统的氮素利用效率。Zhang等[18]针对中国种养系统问题设置了种养一体化情景, 研究表明根据作物需求规划牲畜生产, 2030年中国粪尿氮产生量基本维持在全国耕地承载能力范围之内。但是, 全面实现种养一体化, 还需落实在县域和农场尺度, 通过对畜禽养殖场的迁移和关闭规划, 降低部分高承载力地区的粪便氮负荷和环境风险[19]

    促进种养一体化可有效避免畜禽废弃物资源不合理利用导致的一系列环境问题。Bai等[14]和Strokal等[20]的研究结果均表明, 过去30多年, 我国作物与畜禽生产出现严重的脱钩现象, 是导致畜牧业氨挥发和温室气体总排放量增加的重要原因, 进而加剧大气雾霾和全球变暖的风险。此外, 畜禽粪污向水体的直接排放(约占总损失的30%~70%), 增加了河流中溶解氮磷污染物总量, 加剧水体污染, 进而威胁人类健康。Ma等[21]研究也发现大量氮投入种养系统后会导致部分氮以NH3、N2O和N2等气体形式损失到大气环境中, 以硝酸盐的形式损失到水体中, 且损失量较高[16]

    流域是指由水网所包围的集水区, 是由自然水系所形成的天然区域, 同时也是具有自然-人类复合属性的综合系统。流域上游污染可能通过河流水系转移到中下游; 同时流域的面源污染还具有一定的滞后性, 即通过10~30年的污染物累积影响水质[22]。此外, 不同形态污染物之间也会发生一定程度的转化。因此, 流域尺度的研究具有整体性、系统性和预测性, 这也是种养一体化养分管理研究所要关注的重点。

    种养系统引起的养分损失是导致水体环境问题的重要来源, 因此流域尺度种养系统的养分管理研究对于环境和绿色发展极其重要。Gurung等[23]采用污染物负荷(pollutant loading, PLOAD)模型对Mulberry和Catoma两个流域污染物的评估发现, 总氮和总磷均超过了美国环境保护署的河流氮磷阈值。对五大湖的流域研究结果显示: 农田硝酸盐损失到地表水导致流域地表水的富营养化[24], 1901至2011年间, St. Lawrence流域净氮磷输入量分别增加4.5倍和3.8倍[25]。1978—2017年间, 中国农业所面临的生态环境风险逐年加剧[26], 这主要与流域种养系统养分盈余与环境排放增加有关[27]。1990—2012年, 长江上游人为氮输入量一直呈上升趋势, 且最主要来源为化肥氮施用和畜禽粪尿氮输入[28]。2012年, 海河流域农业总磷排放的78%来自畜禽养殖业[29]。目前, 流域尺度养分管理研究主要包括3个方面: 养分流动、空间布局优化以及基于遥感和地理信息系统等的模型研究[30]。流域尺度养分管理及其优化调控不仅能够从源头和过程对养分循环进行定量分析, 还可以针对污染进行阻控和优化。以流域为对象的研究, 不仅能够弥补大尺度研究精度低和缺少对自然因素驱动力分析的缺点, 也消除了农田和县域等小尺度研究均一化程度高和难以大面积实现种养系统总体优化的问题。

    长江流域是我国经济快速发展和人口密集的流域之一, 同时也是重要的农业主生产区。2019年, 长江流域畜禽和作物产品产量占全国比例分别为42%和32%[31]。高强度的农业活动加之无配套的减排技术, 导致长江流域农牧业养分损失较为严重。且近些年来, 随着长江流域控制农业面源污染政策的相继出台, 使长江流域的绿色发展成为国家战略需求。因此, 以长江流域为例, 探讨如何在流域尺度上开展种养一体化养分管理研究, 对推动农业绿色发展具有重要的意义。

    1980—2012年间, 长江流域氮肥施用强度从1.4 t(N)∙hm−2∙a−1增加到4 t(N)∙hm−2∙a−1, 增幅高达186%, 氮肥是长江流域人为氮输入量的主要来源(41%~56%)[32]。近年来, 长江流域养分输入量略有减少, 这与化肥零增长、化肥减施、有机肥替代、规模化养殖场环境保护等政策等有关。2007—2017年间畜禽粪便氮素还田率从50%左右上升至70%以上[33]。从空间上来看, 长江中下游是农业非点源养分负荷热点地区, 具有较高的污染风险[26], 其总磷排放量高于上游地区, 四川省最大, 占长江流域总量的11%[34]

    本部分技术列单的减排参数,在检索时主要考虑了适用在长江流域大面积种植或养殖的优势产业技术, 如水稻、蔬菜、油菜、生猪等。表1汇总了适用于长江流域主要粮食作物的相关养分管理技术, 包括: 科学施肥、优化耕作、合理施用添加剂、优化灌溉等。通过以上技术, 可以在实现作物增产的同时, 降低养分的环境排放。如: 测土配方施肥技术可减少肥料施用量6%~88%, 而作物增产2%~50%[35-41]。添加脲酶抑制剂与单施化肥相比, 可减少41%~47%的氮损失[48]。秸秆还田可以通过改良土壤结构, 提高作物产量[56], 同时减少土壤N2O排放和硝酸盐淋洗。粮食作物轮作可以改善农田生产条件和土壤理化特性[57], 间作措施可以通过充分利用光能和不同土层养分、水分, 从而提高产量并减少氮肥投入量和养分损失[43,46]。对于经济作物来说, 高成本和劳动密集型的措施常被应用, 如: 生物炭添加可以减少土壤中7%~90%的硝酸盐淋洗[49]。茶园是长江中下游大面积种植的经济作物, 一般可通过施用茶树专用肥、土壤改良剂和水肥一体化的方法减少化肥投入同时提高产量[41]。通过多种单项技术的综合应用形成了整套技术模式, 例如, 江苏省兴化市水稻(Oryza sativa)全产业链绿色发展模式, 水稻单产增加26%, 减少氮肥投入31%; 四川丹棱县的柑橘(Citrus reticulata)全产业链的技术集成模式, 使柑橘增产3%~15%, 并减少温室气体排放12%~35%, 同时提高了当地农民的经济收益[58]

    表  1  长江流域主要粮食作物养分管理技术列单
    Table  1.  List of nutrient management technologies of main food crops in the Yangtze River Basin
    技术
    Technology
    增加产量
    Increase of yield
    (%)
    减少化肥用量
    Reduction of fertilizer
    (%)
    减少氨挥发Reduction of ammonia volatilization (%)减少N2O排放
    Reduction of N2O emission (%)
    减少NO3损失Reduction of
    NO3 loss
    (%)
    具体措施
    Specific measure
    参考文献
    Reference
    科学施肥
    Scientific fertilization
    2~506~8818~812724施用绿肥、缓释肥、控释肥及优化施肥等
    Application of green fertilizer, slow-release fertilizer, controlled-release fertilizer, and optimal fertilization, etc
    [35-41]
    优化耕作
    Optimized tillage
    29~5010 ~3612~2640~6440~59轮作、间作、高密度种植等
    Crop rotation, intercropping, high density planting, etc
    [37, 42-46]
    添加剂
    Additive
    5 ~1143+11~2617 ~547~90添加秸秆、生物炭、脲酶抑制剂、硝化抑制剂等
    Addition of straw, biochar, urease inhibitor, nitrification inhibitor, etc
    [35, 46-51]
    优化灌溉
    Optimized
    irrigation
    2~15786~158046 ~90滴灌、间歇灌溉、增加灌水量等
    Drip irrigation, intermittent irrigation, increase of irrigation water, etc
    [46, 52-55]
      +表示增加环境排放。+ means increased environmental pollution.
    下载: 导出CSV 
    | 显示表格

    表2梳理了适用于长江流域畜禽养殖全链条的养分循环与减排技术。在饲喂阶段, 减少日粮蛋白摄入量, 可以有效降低畜禽氮排泄(6%~35%)[68,78]。此外, 不同形式的饲料添加剂可使动物增重1%~5%, 同时减少14%~35%的氮排泄[78-79], 例如: 植物生物制剂和益生元的添加可以减少禽类抗生素的使用, 同时提高家禽体重(2%~5%), 并在一定程度上降低动物死亡率[80]。在圈舍阶段, 应用快速清粪技术、酸化技术、生物过滤器等可以有效减少氨气和臭气等污染气体的排放[61-66]。快速清粪和酸化技术对氨气的减排效果变异较大, 分别是10%~70%[67]和30%~96%[63,68]。生物过滤器技术的氨减排效果在79%以上[62]。在畜禽粪便储藏阶段, 添加覆盖物是减少氨气和甲烷等排放的有效技术措施[68, 81], 减氨效果最高可达96%。不同覆盖材料之间存在较大差异, 硬性覆盖物可以减少粪便储藏环节80%的氨排放, 柔性覆盖的减氨效率为60%[68]。此外, 储藏环节通过加入氯化铁、硫酸等物质可减少73%~96%的氨排放和94%~98%的甲烷排放[68]。堆肥是粪便处理的重要方式之一, 不同堆肥添加剂和辅助堆肥处理可减少堆肥过程中8%~92%的氨排放[74-77], 通过电场辅助堆肥方式可以减少72%的氨排放[74]

    表  2  长江流域畜牧业养分管理与环境减排相关技术列单
    Table  2.  List of related technologies of nutrient management and environmental emission reduction in animal husbandry in the Yangtze River Basin
    技术
    Technology
    减少氨挥发
    Reduction of ammonia volatilization (%)
    减少NO3损失
    Reduction of
    NO3 loss (%)
    具体措施
    Specific measure
    参考文献
    Reference
    饲喂阶段减排技术
    Emission reduction technology during feeding stage
    20~30>50低蛋白饲喂、分阶段饲喂、使用饲料添加剂
    Low protein feeding, phase feeding, use of feed additives
    [59-60]
    圈舍阶段减排技术
    Emission reduction technology during housing stage
    10~7918快速清粪、粪尿分离、酸化
    Rapid removal of excretion, separation of feces and urine, acidification
    [61-67]
    储藏阶段减排技术
    Emission reduction technology during storage stage
    10~9650固液分离、酸化、覆盖、粪便干燥
    Solid-liquid separation, acidification,
    mulching, feces drying
    [68-73]
    处理阶段减排技术
    Emission reduction technology during treatment stage
    8~920堆肥添加剂、电厂辅助堆肥、尾气处理、
    黑水虻堆肥处理
    Compost additive, power plant auxiliary compost, tail gas treatment, black fly compost treatment
    [74-77]
    下载: 导出CSV 
    | 显示表格

    种养一体化技术是指种养系统关键枢纽部位促进养分循环的措施, 包括: 日粮结构调控和有机肥循环施用等(见表3)。通过种养系统废弃物生产新型饲料是实现种养一体化的重要途径, 利用畜禽粪便或餐厨垃圾等饲喂的黑水虻幼虫替代动物饲料, 可减少饲料粮的消费, 并增加畜禽体重9%左右[82]。利用畜牧业废水等生产微藻也可作为替代饲料粮, 但是动物增重效果不显著。另外, 有机肥替代化肥, 不仅可以减少化肥生产环节的环境代价, 还可以进一步改善土壤结构, 提升地力, 从而达到作物增产(6%~8%)和氨减排的效果(35%)[35,85-86]。有机和无机氮肥配施可显著降低蔬菜生产过程中28%~35%的温室气体排放[85]。此外, 有机肥施用技术的改善还可以进一步减少其使用过程中的环境效应, 如: 粪尿条施和注射施用技术可分别减少氨排放0~75%和70%~90%[87]

    表  3  长江流域种养一体化养分循环相关技术列单
    Table  3.  List of related technologies of integrated nutrient cycling of crop-livestock system in the Yangtze River Basin
    技术
    Technology
    产量增加
    Increase of production (%)
    减少氨挥发
    Reduction of ammonia volatilization (%)
    具体措施
    Specific measure
    参考文献
    Reference
    新型饲料
    New type of feed
    −1~921~50黑兵蝇幼虫、微藻、微生物蛋白等替代饲料
    Black soldier fly larvae, microalgae, microbial protein and other alternative feed
    [82-84]
    有机肥替代
    Organic fertilizer replacement
    6~835猪粪、鸡粪、牛粪等有机肥替代
    Pig manure, chicken manure, cow manure and other organic manure replacement
    [35, 85-86]
    粪尿施用优化技术
    Optimization of manure and urine application
    00~91粪尿条施、注射施用、粪尿快速下渗技术、
    粪尿覆盖施用
    Fecal urine strip application, injection application, fecal urine rapid infiltration technology, fecal urine cover application
    [65, 87-90]
    下载: 导出CSV 
    | 显示表格

    本文梳理了种植业和养殖业系统“自上而下”的养分空间优化研究。全球探索性地已开展了基于节水、固碳减排、生物多样性保护等资源环境代价和增产协同实现的种养系统空间优化研究。以节水和产量最大化为目标, 将全球14种主要粮食作物进行再分配, 可减少14%的绿水消耗和12%的蓝水消耗, 同时增加10%的能量产量和19%的蛋白质产量[91]。Johnson等[92]基于全球栅格尺度碳库优化作物系统空间分配, 结果表明: 可以在不影响作物产量的同时减少60亿吨CO2排放。针对欧盟27国的生猪养殖进行了空间优化研究, 当以人均氮外部成本最小化为目标时, 欧盟的生猪迁移将会转移约70 Gg N的氨排放, 但会增加接收区40%以上的氨排放; 当以减少临界氮沉降和实现区域养分循环为目标时, 会使接收地区的猪总数增加5倍, 原地区的猪总数减少35%[93]。该研究结果表明: 对生猪养殖数量的转移会导致氨排放的转移, 对畜禽养殖数量进行空间规划时, 其所产生的环境污染也会随之发生转移, 因此须考虑接收区种养系统的环境承载力。

    国内也开展了基于作物和畜禽养殖空间再分配的研究。对中国黑河流域的作物种植格局的空间优化研究, 利用半分布式水文模型(SWAT)与简化的环境政策综合气候(EPIC)作物模型相结合, 对黑河流域玉米、春小麦、春大麦、油菜花、苜蓿和陆地棉等6种作物进行了空间优化[94], 结果表明: 当以经济水分生产力(毛利率与净灌溉量的比率)最大化为优化目标时, 大麦、油菜和棉花的经济水分生产力均提高10%以上, 同时黑河流域的生态系统服务价值增加14%。2014年以来, 我国先后颁布了生猪养殖的布局调整政策, 长江中下游地区由于水网密集, 为了控制水体污染, 建议“南猪北移”, 研究表明: 该政策虽然可以减少南方高水网密度地区的水体污染, 但是会对新转移区域(如黑龙江和内蒙古地区)天然草地生态多样性产生负面影响, 同时农业源污染也会从南方水体污染向北方大气污染转变[95]。因此, 畜牧业空间优化不仅考虑转出地区的环境污染是否超标, 也需要考虑转入地区的生态环境承载力和污染情况。Bai等[96]对中国猪、牛、羊、家禽等畜禽进行了空间优化研究同时考虑县域的自给率和承载力, 结果表明: 在种养结合和低氨挥发暴露率情景下可以减少80%~90%的氮肥施用和氨暴露率。

    长江流域已“自下而上”地开展了种养系统养分优化管理技术研究, 包括: 优化施肥、优化耕作管理和添加剂施用等作物系统减排技术、“饲喂-圈舍-储藏-施用”全链条不同环节的畜牧业减排技术、以及种养一体化减排技术(如新型饲料、有机肥替代、有机肥施用技术)等。未来还需将技术层面研究通过补贴等政策措施应用于长江流域, 才能完全实现农牧业“自下而上”减排技术的应用效果。“自上而下”地对流域的种养系统养分进行空间优化则需结合空间规划及其相关监督政策实现。基于长江流域种养一体化绿色发展的需要, 未来研究重点应基于农田与区域养分平衡和流域环境阈值的基本理论, 围绕种养一体化的原则, 将“自下而上”的技术探索与“自上而下”的政策指引相结合。一方面, 根据已有的单一技术和综合技术模式(高产高效技术与模式和污染阻控技术与模式)和基于多指标阈值的流域风险分区, 采用分步技术优化的方式, 以达到最小化流域种养系统资源环境代价。另一方面, 基于农田和区域养分平衡以及流域的环境阈值, 对流域种养系统进行进一步的空间优化, 进而将流域种养系统资源环境代价限制在各地阈值之内。

  • 表  1   长江流域主要粮食作物养分管理技术列单

    Table  1   List of nutrient management technologies of main food crops in the Yangtze River Basin

    技术
    Technology
    增加产量
    Increase of yield
    (%)
    减少化肥用量
    Reduction of fertilizer
    (%)
    减少氨挥发Reduction of ammonia volatilization (%)减少N2O排放
    Reduction of N2O emission (%)
    减少NO3损失Reduction of
    NO3 loss
    (%)
    具体措施
    Specific measure
    参考文献
    Reference
    科学施肥
    Scientific fertilization
    2~506~8818~812724施用绿肥、缓释肥、控释肥及优化施肥等
    Application of green fertilizer, slow-release fertilizer, controlled-release fertilizer, and optimal fertilization, etc
    [35-41]
    优化耕作
    Optimized tillage
    29~5010 ~3612~2640~6440~59轮作、间作、高密度种植等
    Crop rotation, intercropping, high density planting, etc
    [37, 42-46]
    添加剂
    Additive
    5 ~1143+11~2617 ~547~90添加秸秆、生物炭、脲酶抑制剂、硝化抑制剂等
    Addition of straw, biochar, urease inhibitor, nitrification inhibitor, etc
    [35, 46-51]
    优化灌溉
    Optimized
    irrigation
    2~15786~158046 ~90滴灌、间歇灌溉、增加灌水量等
    Drip irrigation, intermittent irrigation, increase of irrigation water, etc
    [46, 52-55]
      +表示增加环境排放。+ means increased environmental pollution.
    下载: 导出CSV

    表  2   长江流域畜牧业养分管理与环境减排相关技术列单

    Table  2   List of related technologies of nutrient management and environmental emission reduction in animal husbandry in the Yangtze River Basin

    技术
    Technology
    减少氨挥发
    Reduction of ammonia volatilization (%)
    减少NO3损失
    Reduction of
    NO3 loss (%)
    具体措施
    Specific measure
    参考文献
    Reference
    饲喂阶段减排技术
    Emission reduction technology during feeding stage
    20~30>50低蛋白饲喂、分阶段饲喂、使用饲料添加剂
    Low protein feeding, phase feeding, use of feed additives
    [59-60]
    圈舍阶段减排技术
    Emission reduction technology during housing stage
    10~7918快速清粪、粪尿分离、酸化
    Rapid removal of excretion, separation of feces and urine, acidification
    [61-67]
    储藏阶段减排技术
    Emission reduction technology during storage stage
    10~9650固液分离、酸化、覆盖、粪便干燥
    Solid-liquid separation, acidification,
    mulching, feces drying
    [68-73]
    处理阶段减排技术
    Emission reduction technology during treatment stage
    8~920堆肥添加剂、电厂辅助堆肥、尾气处理、
    黑水虻堆肥处理
    Compost additive, power plant auxiliary compost, tail gas treatment, black fly compost treatment
    [74-77]
    下载: 导出CSV

    表  3   长江流域种养一体化养分循环相关技术列单

    Table  3   List of related technologies of integrated nutrient cycling of crop-livestock system in the Yangtze River Basin

    技术
    Technology
    产量增加
    Increase of production (%)
    减少氨挥发
    Reduction of ammonia volatilization (%)
    具体措施
    Specific measure
    参考文献
    Reference
    新型饲料
    New type of feed
    −1~921~50黑兵蝇幼虫、微藻、微生物蛋白等替代饲料
    Black soldier fly larvae, microalgae, microbial protein and other alternative feed
    [82-84]
    有机肥替代
    Organic fertilizer replacement
    6~835猪粪、鸡粪、牛粪等有机肥替代
    Pig manure, chicken manure, cow manure and other organic manure replacement
    [35, 85-86]
    粪尿施用优化技术
    Optimization of manure and urine application
    00~91粪尿条施、注射施用、粪尿快速下渗技术、
    粪尿覆盖施用
    Fecal urine strip application, injection application, fecal urine rapid infiltration technology, fecal urine cover application
    [65, 87-90]
    下载: 导出CSV
  • [1]

    JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041−3046 doi: 10.1073/pnas.0813417106

    [2]

    GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570

    [3]

    UWIZEYE A, DE BOER I J M, OPIO C I, et al. Nitrogen emissions along global livestock supply chains[J]. Nature Food, 2020, 1(7): 437−446 doi: 10.1038/s43016-020-0113-y

    [4]

    ZHANG X, ZHANG Y, SHI P, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770: 144674 doi: 10.1016/j.scitotenv.2020.144674

    [5] 刘亮, 沈珺, 张静, 等. 基于污水处理成本核算谈长江经济带城镇污水处理费调整[J]. 城镇供水, 2021(6): 62−65, 91 doi: 10.3969/j.issn.1002-8420.2021.06.018

    LIU L, SHEN J, ZHANG J, et al. Adjustment of urban sewage treatment fee in Yangtze River Economic Belt based on sewage treatment cost accounting[J]. City and Town Water Supply, 2021(6): 62−65, 91 doi: 10.3969/j.issn.1002-8420.2021.06.018

    [6] 于法稳. 新时代农业绿色发展动因、核心及对策研究[J]. 中国农村经济, 2018(5): 19−34

    YU F W. An analysis of the reasons, core and countermeasures of agricultural green development in the new era[J]. Chinese Rural Economy, 2018(5): 19−34

    [7]

    CHEN X J, STROKAL M, KROEZE C, et al. Modeling the contribution of crops to nitrogen pollution in the Yangtze River[J]. Environmental Science & Technology, 2020, 54(19): 11929−11939

    [8]

    GUO C Y, BAI Z H, SHI X J, et al. Challenges and strategies for agricultural green development in the Yangtze River Basin[J]. Journal of Integrative Environmental Sciences, 2021, 18(1): 37−54 doi: 10.1080/1943815X.2021.1883674

    [9] 赖敏, 王伟力, 郭灵辉. 长江中下游城市群农业面源污染氮排放评价及调控[J]. 中国农业资源与区划, 2016, 37(8): 1−11 doi: 10.7621/cjarrp.1005-9121.20160801

    LAI M, WANG W L, GUO L H. Assessment and control of nitrogen emission from agricultural non-point source in the urban agglomeration in the Middle-Lower Yangtze River Belt[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 1−11 doi: 10.7621/cjarrp.1005-9121.20160801

    [10]

    DONG L, LIN L, TANG X Q, et al. Distribution characteristics and spatial differences of phosphorus in the main stream of the urban river stretches of the middle and lower reaches of the Yangtze River[J]. Water, 2020, 12(3): 910 doi: 10.3390/w12030910

    [11]

    CHEN X J, STROKAL M, KROEZE C, et al. Seasonality in river export of nitrogen: a modelling approach for the Yangtze River[J]. Science of the Total Environment, 2019, 671: 1282−1292 doi: 10.1016/j.scitotenv.2019.03.323

    [12] 续衍雪, 吴熙, 路瑞, 等. 长江经济带总磷污染状况与对策建议[J]. 中国环境管理, 2018, 10(1): 70−74 doi: 10.16868/j.cnki.1674-6252.2018.01.070

    XU Y X, WU X, LU R, et al. Total phosphorus pollution, countermeasures and suggestions of the Yangtze River economic belt[J]. Chinese Journal of Environmental Management, 2018, 10(1): 70−74 doi: 10.16868/j.cnki.1674-6252.2018.01.070

    [13] 张传真. 基于耕地分布的畜禽养殖管理研究[D]. 杭州: 浙江大学, 2019

    ZHANG C Z. Livestock management on the basis of cropland distribution[D]. Hangzhou: Zhejiang University, 2019

    [14]

    BAI Z H, MA W Q, MA L, et al. China’s livestock transition: driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): eaar8534 doi: 10.1126/sciadv.aar8534

    [15]

    JIN S Q, ZHANG B, WU B, et al. Decoupling livestock and crop production at the household level in China[J]. Nature Sustainability, 2021, 4(1): 48−55

    [16]

    JIN X P, BAI Z H, OENEMA O, et al. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture[J]. Environmental Science & Technology, 2020, 54(19): 11894−11904

    [17]

    GAO B, WANG L, CAI Z C, et al. Spatio-temporal dynamics of nitrogen use efficiencies in the Chinese food system, 1990—2017[J]. The Science of the Total Environment, 2020, 717: 134861 doi: 10.1016/j.scitotenv.2019.134861

    [18]

    ZHANG C Z, LIU S, WU S X, et al. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China[J]. Resources, Conservation and Recycling, 2019, 144: 65−73 doi: 10.1016/j.resconrec.2019.01.011

    [19]

    YAN B J, SHI W J, YAN J J, et al. Spatial distribution of livestock and poultry farm based on livestock manure nitrogen load on farmland and suitability evaluation[J]. Computers and Electronics in Agriculture, 2017, 139: 180−186 doi: 10.1016/j.compag.2017.05.013

    [20]

    STROKAL M, MA L, BAI Z H, et al. Alarming nutrient pollution of Chinese Rivers as a result of agricultural transitions[J]. Environmental Research Letters, 2016, 11(2): 024014 doi: 10.1088/1748-9326/11/2/024014

    [21]

    MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4): 1279−1289 doi: 10.2134/jeq2009.0403

    [22] 胡敏鹏. 流域非点源氮污染的滞后效应定量研究[D]. 杭州: 浙江大学, 2019

    HU M P. Quantitative study on lag effect of watershed non-point source nitrogen pollution[D]. Hangzhou: Zhejiang University, 2019

    [23]

    GURUNG D P, GITHINJI L J M, ANKUMAH R O. Assessing the nitrogen and phosphorus loading in the Alabama (USA) River Basin using PLOAD model[J]. Air, Soil and Water Research, 2013, 6: ASWR.S10548 doi: 10.4137/ASWR.S10548

    [24]

    RIXON S, LEVISON J, BINNS A, et al. Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin[J]. The Science of the Total Environment, 2020, 714: 136328 doi: 10.1016/j.scitotenv.2019.136328

    [25]

    GOYETTE J O, BENNETT E M, HOWARTH R W, et al. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export[J]. Global Biogeochemical Cycles, 2016, 30(7): 1000−1014 doi: 10.1002/2016GB005384

    [26]

    ZOU L L, WANG Y S, LIU Y S. Spatial-temporal evolution of agricultural ecological risks in China in recent 40 years[J]. Environmental Science and Pollution Research, 2022, 29(3): 3686−3701 doi: 10.1007/s11356-021-15927-7

    [27]

    DENG C N, LIU L S, PENG D Z, et al. Net anthropogenic nitrogen and phosphorus inputs in the Yangtze River economic belt: spatiotemporal dynamics, attribution analysis, and diversity management[J]. Journal of Hydrology, 2021, 597: 126221 doi: 10.1016/j.jhydrol.2021.126221

    [28]

    WANG A, TANG L H, YANG D W, et al. Spatio-temporal variation of net anthropogenic nitrogen inputs in the Upper Yangtze River Basin from 1990 to 2012[J]. Science China Earth Sciences, 2016, 59(11): 2189−2201 doi: 10.1007/s11430-016-0014-6

    [29]

    ZHAO Z Q, QIN W, BAI Z H, et al. Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China[J]. Agricultural Water Management, 2019, 212: 262−272 doi: 10.1016/j.agwat.2018.09.002

    [30]

    GAO Y, JIA J J, LU Y, et al. Progress in watershed geography in the Yangtze River Basin and the affiliated ecological security perspective in the past 20 years, China[J]. Journal of Geographical Sciences, 2020, 30(6): 867−880 doi: 10.1007/s11442-020-1759-y

    [31] 长江经济带发展统计监测协调领导小组办公室. 长江经济带发展统计年鉴—2020[M]. 北京: 中国统计出版社, 2020

    Office of Leading Group for Statistics, Monitoring and Coordination of Yangtze River Economic Belt Development. Statistical Yearbook of Yangtze River Economic Belt—2020[M]. Beijing: China Statistics Press, 2020

    [32]

    CHEN F, HOU L J, LIU M, et al. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River Basin and the relationship with riverine nitrogen export[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(2): 451−465 doi: 10.1002/2015JG003186

    [33]

    ZHU Z P, ZHANG X M, DONG H M, et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China[J]. Nature Food, 2022, 3(2): 161−168 doi: 10.1038/s43016-022-00462-6

    [34]

    LIU D D, BAI L, LI X Y, et al. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China[J]. Resources, Conservation and Recycling, 2022, 176: 105937 doi: 10.1016/j.resconrec.2021.105937

    [35]

    DING W C, XU X P, HE P, et al. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis[J]. Field Crops Research, 2018, 227: 11−18 doi: 10.1016/j.fcr.2018.08.001

    [36]

    YAO Z, ZHANG W S, WANG X B, et al. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China[J]. Journal of Cleaner Production, 2021, 312: 127611 doi: 10.1016/j.jclepro.2021.127611

    [37] 李小坤, 任涛, 鲁剑巍. 长江流域水稻-油菜轮作体系氮肥增产增效综合调控[J]. 华中农业大学学报, 2021, 40(3): 13−20 doi: 10.13300/j.cnki.hnlkxb.2021.03.003

    LI X K, REN T, LU J W. Integrated regulation of nitrogen fertilizer for increasing yield and efficiency of rice-oilseed rape rotation system in the Yangtze River Basin[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 13−20 doi: 10.13300/j.cnki.hnlkxb.2021.03.003

    [38]

    GUO J X, HU X Y, GAO L M, et al. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China[J]. Scientific Reports, 2017, 7(1): 1−10 doi: 10.1038/s41598-016-0028-x

    [39] 郭九信, 孔亚丽, 谢凯柳, 等. 养分管理对直播稻产量和氮肥利用率的影响[J]. 作物学报, 2016, 42(7): 1016−1025 doi: 10.3724/SP.J.1006.2016.01016

    GUO J X, KONG Y L, XIE K L, et al. Effects of nutrient management on yield and nitrogen use efficiency of direct seeding rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1016−1025 doi: 10.3724/SP.J.1006.2016.01016

    [40]

    YANG M, LONG Q A, LI W L, et al. Mapping the environmental cost of a typical Citrus-producing County in China: hotspot and optimization[J]. Sustainability, 2020, 12(5): 1827 doi: 10.3390/su12051827

    [41] 马立锋, 杨向德, 方丽, 等. “沼液肥+茶树专用肥”高效施肥技术模式[J]. 中国茶叶, 2020, 42(5): 48−49 doi: 10.3969/j.issn.1000-3150.2020.05.011

    MA L F, YANG X D, FANG L, et al. A high-efficiency fertilization technology model ‘biogas liquid fertilizer+special fertilizer for tea tree’[J]. China Tea, 2020, 42(5): 48−49 doi: 10.3969/j.issn.1000-3150.2020.05.011

    [42]

    CHAI Q, NEMECEK T, LIANG C, et al. Integrated farming with intercropping increases food production while reducing environmental footprint[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2106382118 doi: 10.1073/pnas.2106382118

    [43]

    LI C J, HOFFLAND E, KUYPER T W, et al. Syndromes of production in intercropping impact yield gains[J]. Nature Plants, 2020, 6(6): 653−660 doi: 10.1038/s41477-020-0680-9

    [44]

    AGNEESSENS L, DE WAELE J, DE NEVE S. Review of alternative management options of vegetable crop residues to reduce nitrate leaching in intensive vegetable rotations[J]. Agronomy, 2014, 4(4): 529−555 doi: 10.3390/agronomy4040529

    [45]

    CAI S Y, PITTELKOW C M, ZHAO X, et al. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits[J]. Journal of Cleaner Production, 2018, 195: 289−300 doi: 10.1016/j.jclepro.2018.05.115

    [46]

    SHA Z P, LIU H J, WANG J X, et al. Improved soil-crop system management aids in NH3 emission mitigation in China[J]. Environmental Pollution (Barking, Essex:1987), 2021, 289: 117844 doi: 10.1016/j.envpol.2021.117844

    [47]

    XIA L L, LAM S K, WOLF B, et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems[J]. Global Change Biology, 2018, 24(12): 5919−5932 doi: 10.1111/gcb.14466

    [48]

    LI T Y, ZHANG W F, YIN J, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global Change Biology, 2018, 24(2): e511−e521 doi: 10.1111/gcb.13918

    [49]

    CUI M, ZENG L H, QIN W, et al. Measures for reducing nitrate leaching in orchards: a review[J]. Environmental Pollution, 2020, 263: 114553 doi: 10.1016/j.envpol.2020.114553

    [50]

    SANZ-COBENA A, SÁNCHEZ-MARTÍN L, GARCÍA-TORRES L, et al. Gaseous emissions of N2O and NO and NO3 leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop[J]. Agriculture, Ecosystems & Environment, 2012, 149: 64−73

    [51]

    YUAN L, CHEN X, JIA J C, et al. Stover mulching and inhibitor application maintain crop yield and decrease fertilizer N input and losses in no-till cropping systems in Northeast China[J]. Agriculture, Ecosystems & Environment, 2021, 312: 107360

    [52]

    CAI D Y, YAN H J, LI L H. Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain[J]. Journal of Integrative Agriculture, 2020, 19(9): 2326−2339 doi: 10.1016/S2095-3119(19)62877-7

    [53]

    FAN Z B, LIN S, ZHANG X M, et al. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production[J]. Agricultural Water Management, 2014, 144: 11−19 doi: 10.1016/j.agwat.2014.05.010

    [54]

    ZHAO Y M, LV H F, QASIM W, et al. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production[J]. Environmental Pollution (Barking, Essex:1987), 2021, 273: 116521 doi: 10.1016/j.envpol.2021.116521

    [55]

    PHOGAT V, SKEWES M A, COX J W, et al. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching[J]. Journal of Hydrology, 2014, 513: 504−516 doi: 10.1016/j.jhydrol.2014.04.008

    [56] 陈昭旭, 高聚林, 于晓芳, 等. 不同耕作及秸秆还田方式对土壤物理特性及产量的影响[J]. 内蒙古农业大学学报(自然科学版), 2022, 43(6): 21−27

    CHEN Z X, GAO J L, YU X F, et al. Effects of different tillage and straw returning methods on soil physical properties and yield[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2022, 43(6): 21−27

    [57] 李雪梅, 李桂林. 浅谈农作物的间作、轮作和套作[J]. 生物学教学, 2009, 34(4): 68−69 doi: 10.3969/j.issn.1004-7549.2009.04.040

    LI X M, LI G L. On intercropping, rotation and intercropping of crops[J]. Biology Teaching, 2009, 34(4): 68−69 doi: 10.3969/j.issn.1004-7549.2009.04.040

    [58] 陈新平, 陈轩敬, 张福锁, 等. 长江经济带农业绿色发展: 挑战与行动[M]. 北京: 科学出版社, 2021

    CHEN X P, CHEN X J, ZHANG F S, et al. Green Agricultural Development in the Yangtze River Economic Belt: Challenges and Actions[M]. Beijing: Science Press, 2021

    [59] 曹玉博, 邢晓旭, 柏兆海, 等. 农牧系统氨挥发减排技术研究进展[J]. 中国农业科学, 2018, 51(3): 566−580 doi: 10.3864/j.issn.0578-1752.2018.03.014

    CAO Y B, XING X X, BAI Z H, et al. Review on ammonia emission mitigation techniques of crop-livestock production system[J]. Scientia Agricultura Sinica, 2018, 51(3): 566−580 doi: 10.3864/j.issn.0578-1752.2018.03.014

    [60]

    LEE C, FEYEREISEN G W, HRISTOV A N, et al. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters[J]. Journal of Environmental Quality, 2014, 43(1): 398−408 doi: 10.2134/jeq2013.03.0083

    [61]

    PARK S H, LEE B R, JUNG K H, et al. Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by 15N-urea flux[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(3): 457−466 doi: 10.5713/ajas.17.0556

    [62]

    SHAH S B, WORKMAN D J, YATES J, et al. Coupled biofilter-heat exchanger prototype for a broiler house[J]. Applied Engineering in Agriculture, 2011, 27(6): 1039−1048 doi: 10.13031/2013.40617

    [63] 刘娟, 柏兆海, 曹玉博, 等. 家畜圈舍粪尿表层酸化对氨气排放的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 677−685

    LIU J, BAI Z H, CAO Y B, et al. Impact of surface acidification of manure on ammonia emission in animal housing[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 677−685

    [64]

    MELSE R W, OGINK N W M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands[J]. Transactions of the ASAE, 2005, 48(6): 2303−2313 doi: 10.13031/2013.20094

    [65]

    NDEGWA P M, HRISTOV A N, AROGO J, et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations[J]. Biosystems Engineering, 2008, 100(4): 453−469 doi: 10.1016/j.biosystemseng.2008.05.010

    [66]

    KROODSMA W, HUIS IN 'T VELD J W H, SCHOLTENS R. Ammonia emission and its reduction from cubicle houses by flushing[J]. Livestock Production Science, 1993, 35(3/4): 293−302

    [67]

    OGINK N W M, KROODSMA W. Reduction of ammonia emission from a cow cubicle house by flushing with water or a formalin solution[J]. Journal of Agricultural Engineering Research, 1996, 63(3): 197−204 doi: 10.1006/jaer.1996.0021

    [68]

    BUCKLEY C, KROL D, LANIGAN G J, et al. An Analysis of the Cost of the Abatement of Ammonia Emissions in Irish Agriculture to 2030[R]. Teagasc, 2020

    [69]

    BICUDO J R, SCHMIDT D R, JACOBSON L D. Using Covers to Minimize Odor and Gas Emissions from Manure Storages[R]. 2004. https://uknowledge.uky.edu/aen_reports/10

    [70]

    HUSTED S, JENSEN L S, JØRGENSEN S S. Reducing ammonia loss from cattle slurry by the use of acidifying additives: the role of the buffer system[J]. Journal of the Science of Food and Agriculture, 1991, 57(3): 335−349 doi: 10.1002/jsfa.2740570305

    [71]

    NAKAUE H S, KOELLIKER J K, PIERSON M L. Studies with clinoptilolite in poultry.Ⅱ. effect of feeding broilers and the direct application of clinoptilolite (zeolite) on clean and reused broiler litter on broiler performance and house environment[J]. Poultry Science, 1981, 60(6): 1221−1228 doi: 10.3382/ps.0601221

    [72]

    SUBAIR S, FYLES J W, O'HALLORAN I P. Ammonia volatilization from liquid hog manure amended with paper products in the laboratory[J]. Journal of Environmental Quality, 1999, 28(1): 202−207

    [73]

    WEBB J, BROOMFIELD M, JONES S, et al. Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review[J]. Science of the Total Environment, 2014, 470/471: 865−875 doi: 10.1016/j.scitotenv.2013.09.091

    [74]

    CAO Y B, WANG X, ZHANG X Y, et al. The effects of electric field assisted composting on ammonia and nitrous oxide emissions varied with different electrolytes[J]. Bioresource Technology, 2022, 344: 126194 doi: 10.1016/j.biortech.2021.126194

    [75]

    BAUTISTA J M, KIM H, AHN D H, et al. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite[J]. Korean Journal of Chemical Engineering, 2011, 28: 189−194 doi: 10.1007/s11814-010-0312-6

    [76]

    CAO Y B, WANG X, BAI Z H, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626−635 doi: 10.1016/j.jclepro.2019.06.288

    [77]

    ZHU F X, HONG C L, WANG W P, et al. A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation[J]. Journal of Cleaner Production, 2020, 270: 122373 doi: 10.1016/j.jclepro.2020.122373

    [78]

    LU L, LIAO X D, LUO X G. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry[J]. Journal of Integrative Agriculture, 2017, 16(12): 2815−2833 doi: 10.1016/S2095-3119(17)61701-5

    [79]

    DIAZ-SANCHEZ S, D'SOUZA D, BISWAS D, et al. Botanical alternatives to antibiotics for use in organic poultry production[J]. Poultry Science, 2015, 94(6): 1419−1430 doi: 10.3382/ps/pev014

    [80]

    GADDE U, KIM W H, OH S T, et al. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review[J]. Animal Health Research Reviews, 2017, 18(1): 26−45 doi: 10.1017/S1466252316000207

    [81]

    ZHANG N N, BAI Z H, WINIWARTER W, et al. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China[J]. Environmental Science & Technology, 2019, 53(20): 11840−11848

    [82]

    ALTMANN B A, WIGGER R, CIULU M, et al. The effect of insect or microalga alternative protein feeds on broiler meat quality[J]. Journal of the Science of Food and Agriculture, 2020, 100(11): 4292−4302 doi: 10.1002/jsfa.10473

    [83]

    NAHM K H. Influences of fermentable carbohydrates on shifting nitrogen excretion and reducing ammonia emission of pigs[J]. Critical Reviews in Environmental Science and Technology, 2003, 33(2): 165−186 doi: 10.1080/10643380390814523

    [84]

    REZAEI J, ROUZBEHAN Y, FAZAELI H, et al. Effects of substituting amaranth silage for corn silage on intake, growth performance, diet digestibility, microbial protein, nitrogen retention and ruminal fermentation in fattening lambs[J]. Animal Feed Science and Technology, 2014, 192: 29−38 doi: 10.1016/j.anifeedsci.2014.03.005

    [85]

    LIU B, WANG X Z, MA L, et al. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis[J]. Environmental Pollution, 2021, 269: 116143 doi: 10.1016/j.envpol.2020.116143

    [86]

    HUANG S, LV W S, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis[J]. Field Crops Research, 2016, 192: 118−125 doi: 10.1016/j.fcr.2016.04.023

    [87]

    WEBB J, PAIN B, BITTMAN S, et al. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—a review[J]. Agriculture, Ecosystems & Environment, 2010, 137(1/2): 39−46

    [88]

    FROST J P. Effect of spreading method, application rate and dilution on ammonia volatilization from cattle slurry[J]. Grass and Forage Science, 1994, 49(4): 391−400 doi: 10.1111/j.1365-2494.1994.tb02015.x

    [89]

    MORKEN J, SAKSHAUG S. Direct Ground Injection of livestock waste slurry to avoid ammonia emission[J]. Nutrient Cycling in Agroecosystems, 1998, 51(1): 59−63 doi: 10.1023/A:1009756927750

    [90]

    SOMMER S G, OLESEN J E. Effects of dry matter content and temperature on ammonia loss from surface-applied cattle slurry[J]. Journal of Environmental Quality, 1991, 20(3): 679−683

    [91]

    DAVIS K F, RULLI M C, SEVESO A, et al. Increased food production and reduced water use through optimized crop distribution[J]. Nature Geoscience, 2017, 10(12): 919−924 doi: 10.1038/s41561-017-0004-5

    [92]

    JOHNSON J A, RUNGE C F, SENAUER B, et al. Global agriculture and carbon trade-offs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): 12342−12347 doi: 10.1073/pnas.1412835111

    [93]

    VAN GRINSVEN H J M, VAN DAM J D, LESSCHEN J P, et al. Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union[J]. Regional Environmental Change, 2018, 18(8): 2403−2415 doi: 10.1007/s10113-018-1335-5

    [94]

    LIU Q, NIU J, WOOD J D, et al. Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River Basin, Northwest China[J]. Agricultural Water Management, 2022, 264: 107479 doi: 10.1016/j.agwat.2022.107479

    [95]

    BAI Z H, JIN S Q, WU Y, et al. China’s pig relocation in balance[J]. Nature Sustainability, 2019, 2(10): 888 doi: 10.1038/s41893-019-0391-2

    [96]

    BAI Z H, FAN X W, JIN X P, et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population[J]. Nature Food, 2022, 3(2): 152−160 doi: 10.1038/s43016-021-00453-z

  • 期刊类型引用(2)

    1. 杨颂祺,张楠楠,柏兆海,王选,马林. 京津冀农牧业氮素环境排放特征和脆弱风险评价. 中国生态农业学报(中英文). 2024(06): 1043-1053 . 本站查看
    2. 黄书苑,傅一敏,章语嫣,杨建州. 长江流域水-能源-粮食-森林系统耦合协调发展研究. 中国生态农业学报(中英文). 2024(07): 1193-1205 . 本站查看

    其他类型引用(0)

表(3)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  125
  • PDF下载量:  72
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-03-11
  • 录用日期:  2023-05-07
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2023-08-09

目录

/

返回文章
返回