水氮调控对棉花生理性状及产量的影响

孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东

孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东. 水氮调控对棉花生理性状及产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1379−1391. DOI: 10.12357/cjea.20230002
引用本文: 孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东. 水氮调控对棉花生理性状及产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1379−1391. DOI: 10.12357/cjea.20230002
MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391. DOI: 10.12357/cjea.20230002
Citation: MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391. DOI: 10.12357/cjea.20230002
孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东. 水氮调控对棉花生理性状及产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1379−1391. CSTR: 32371.14.cjea.20230002
引用本文: 孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东. 水氮调控对棉花生理性状及产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1379−1391. CSTR: 32371.14.cjea.20230002
MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391. CSTR: 32371.14.cjea.20230002
Citation: MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391. CSTR: 32371.14.cjea.20230002

水氮调控对棉花生理性状及产量的影响

基金项目: 河北省重点研发计划项目(20326409D)、河北省自然科学基金项目(C2022204036)、华北作物改良与调控国家重点实验室自主研究课题(NCCIR2020ZZ-18)和河北省现代棉花产业技术体系(HBCT2023070207)资助
详细信息
    作者简介:

    孟妍君, 主要研究方向为棉花生理与栽培, E-mail: mengyanjun2022@163.com

    通讯作者:

    白志英, 主要研究方向为作物抗逆生理, E-mail: zhiyingbai@126.com

    李存东, 主要研究方向为棉花生理与栽培, E-mail: nxylcd@hebau.edu.cn

  • 中图分类号: S562

Effects of water and nitrogen regulation on physiological characteristics and yield of cotton

Funds: This study was supported by the Key R&D Program of Hebei Province (20326409D), the Natural Science Foundation of Hebei Province (C2022204036), the Independent Research Project of the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-18), and Hebei Modern Cotton Industry Technology System (HBCT2023070207).
More Information
  • 摘要: 水分和氮素是影响棉花生长发育和产量的主要因子, 为探究水分和氮素对棉花形态、生理特性以及产量的调控效应, 本研究以‘农大棉36号’为材料, 设置干旱胁迫(W1, 相对含水量为45%±5%)和正常供水(W2, 相对含水量为70%±5%)两个水分条件以及不施氮肥(N0)、低氮[N1, 69 mg(N)∙kg−1]、常规施氮[N2, 138 mg(N)∙kg−1] 3个氮素水平, 分析不同水分和氮肥条件下棉花地上部和根系形态、光合性状、抗氧化酶活性、氮代谢酶活性以及产量的变化。结果表明, 与W2处理相比, W1处理显著抑制了棉花生长, 降低了棉花株高、茎粗、叶面积以及总根长、总根表面积、平均根直径(P<0.05), 显著增加了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性, 降低了相对叶绿素含量(SPAD)、最大光化学效率(Fv/Fm)和光合能力, 从而造成棉花产量下降(P<0.05); 与N2处理相比, N0和N1处理上述指标均显著降低。干旱胁迫下, 常规施氮处理比不施氮肥和低氮处理促进棉花地上和地下生长, 显著提高主茎叶SPAD、净光合速率和Fv/Fm (P<0.05), 增强抗氧化酶(SOD、POD、CAT)和氮代谢酶(GS和NR)活性(P<0.05), 减轻干旱胁迫对棉花生长造成的抑制, 提高棉花产量。在低氮条件下, 正常供水比干旱胁迫处理亦促进棉花的生长, 增强光合作用和氮代谢酶活性, 减缓了低氮胁迫对其产生的不利影响, 提高产量(P<0.05)。因此, 可通过增施氮肥提高干旱胁迫下的棉花产量, 亦可通过适当增加灌水量提高低氮胁迫下的棉花产量, 本研究为明确氮素胁迫和水分胁迫下合理的水肥管理提供了理论依据。
    Abstract: Water and nitrogen are the main factors affecting the growth, development, and yield of cotton. In this study, “Nongda Cotton No. 36” was selected to investigate the effects of water and nitrogen on morphology, physiological characteristics, and yield of cotton. Two water conditions were set: drought stress (W1, relative water content was 45%±5%) and normal water supply (W2, relative water content was 70%±5%), and three nitrogen levels: no nitrogen (N0), low nitrogen [N1, 69 mg(N)∙kg1], and normal nitrogen fertilizers [N2, 138 mg(N)∙kg1]. Changes in aboveground and root morphology, photosynthetic characteristics, antioxidant enzyme activity, nitrogen metabolism enzyme activity, and cotton yield were analyzed under different water and nitrogen fertilizer conditions. The results showed that compared with the W2 treatments, the W1 treatments significantly inhibited cotton growth and decreased plant height, stem diameter, leaf area, total root length, total root surface area, and average root diameter (P<0.05). The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly enhanced, the relative chlorophyll content (SPAD) and maximum photochemical efficiency (Fv/Fm) were decreased, and the photosynthetic capacity was weakened, resulting in a decrease in cotton yield (P<0.05). Compared with the N2 treatments, the N0 and N1 treatments significantly reduced plant height, stem diameter, leaf area, total root length, total root surface area, and average root diameter of cotton (P<0.05). The activities of SOD, POD, CAT, glutamine synthetase (GS), nitrate reductase (NR), SPAD, and Fv/Fm in cotton were significantly decreased under the N0 and N1 treatments, and the photosynthetic capacity of cotton was weakened. Thus, the cotton yield decreased (P<0.05). Under drought stress, conventional nitrogen application promoted the growth of the aboveground and underground parts of cotton; significantly increased the SPAD, net photosynthetic rate, and Fv/Fm in main-stem leaves (P<0.05); and enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nitrogen metabolism enzymes (GS and NR) (P<0.05), which alleviated the damage caused by drought stress and increased the cotton yield. Under low-nitrogen conditions, the normal water supply treatment promoted the growth of cotton; enhanced photosynthesis, nitrogen metabolism enzyme activities, and yield (P<0.05); and alleviated the adverse effects of low-nitrogen stress on cotton. Therefore, cotton yield under drought stress can be increased by increasing nitrogen fertilizer, and cotton yield under low-nitrogen stress can be increased by appropriately increasing irrigation water. The results provide a theoretical basis for clarifying rational water and fertilizer management of cotton under nitrogen and water stresses.
  • 水分是限制植物生长发育和产量的主要环境因子之一。干旱胁迫诱使植物体内产生过氧化物反应, 导致细胞中活性氧的产生与消除失去平衡, 形成氧化胁迫, 细胞膜受到损坏, 膜脂过氧化产物丙二醛(MDA)含量增加[1]。植物可在超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)等抗氧化酶的协调作用下, 有效地清除对植物细胞有害的活性氧自由基, 降低MDA含量, 从而减轻植物受到的伤害[2]。光合作用是植物生长发育和植物体内碳素的重要来源, 叶绿素含量是光合作用的基础, 叶绿素荧光参数是探讨光合作用的有效探针[3]。研究发现, 干旱胁迫导致植物叶片气孔关闭, 蒸腾降低, 叶绿素荧光参数下降, 光合能力减弱[3-4]。王允[5]发现, 随着干旱胁迫程度加重, 棉花(Gossypium herbaceum L.)叶片叶绿素含量降低, 生长受到抑制。干旱胁迫可引起植株主根伸长, 侧根变短, 导致株高、茎粗、叶面积下降, 从而降低产量[6-8]

    氮是植物必需的大量矿质元素, 低氮胁迫严重影响植物的抗氧化酶系统, 抑制根系伸长, 降低平均根直径, 影响植物对氮素的吸收效率, 导致生长速度缓慢[9]; 而过量施用氮肥, 导致植株旺长, 生殖器官积累量降低[10]; 适宜增加施氮量可提高POD、CAT活性和叶绿素含量, 增强光合能力, 提高产量[11]。硝酸还原酶(NR)和谷氨酰胺合成酶(GS)是植物中参与氮代谢的关键酶。NR可将植物根系吸收的硝酸盐还原成亚硝酸盐, 然后经亚硝酸还原酶还原成铵离子, 铵离子经过GS途径转化为氨基酸。研究发现, 随着氮肥施用量的增加, 叶片的NR和GS活性增强, 提高了氮代谢能力[12-13]

    水分和氮肥均是影响植物生长发育的关键因子, 水分和肥料之间可产生耦合效应, 实现以肥调水和以水促肥[14]。相关研究表明, 干旱胁迫下, 棉花株高、叶面积和单株棉花产量随着施氮量的增加而增加[15]。干旱胁迫下NR活性受到抑制, 适量增加施氮量可提高植株中的抗氧化酶活性及氮代谢酶活性, 促进生长发育, 提高产量[16]; 在低氮胁迫下, 增加灌水量亦可提高植株中的光合能力, 增加单粒重和单粒株数, 从而提高了产量[17]

    棉花是我国重要的经济作物之一, 在世界经济发展过程中亦具有重要作用。但目前农业用水资源短缺、氮肥施用过量以及随之带来的土壤酸化等生态环境问题, 严重阻碍了棉花高产、优质、减施水肥等目标的实现。目前国内外学者对水分和氮素单一因素对棉花的影响进行了大量研究, 但是二者对棉花生长发育的耦合调控效应报道较少。因此, 本研究以‘农大棉36号’为材料, 研究水分和氮素调控下棉花地上部和根系形态、叶片光合性状、抗氧化酶活性、氮代谢酶活性以及产量的变化, 为棉花的合理灌溉和施氮提供理论依据。

    材料采用‘农大棉36号’(冀中棉区高产、转基因抗虫品种), 由河北农业大学培育。

    试验于2021—2022年在河北农业大学科研大楼智能气候室进行, 室内昼夜温度为28 ℃/25 ℃, 14 h/10 h昼夜循环, 相对湿度45%~50%, 光强300 μmol·mol−1。利用直径为22 cm、高50 cm的PVC圆桶进行盆栽试验, 每个容器装土15.5 kg。土壤选用深层土, 其中有机质含量为3.68 g∙kg−1、碱解氮20.14 mg∙kg−1、有效磷8.80 mg∙kg−1、速效钾139.17 mg∙kg−1、全氮0.28 g∙kg−1, pH 8.07。土壤风干后过20目筛。在每个容器中施加磷70 mg(P)·kg−1和钾14 mg(K)·kg−1, 分别使用过磷酸钙和氯化钾作为磷和钾的来源, 所有肥料均被磨碎并过20目筛。磷肥和钾肥作为基肥施入。

    利用盆栽控水方法模拟干旱胁迫。设置两个水分处理(干旱, 相对含水量为45%±5%, W1; 正常供水, 相对含水量[18]为70%±5%, W2)及3个氮素水平[0 mg(N)·kg−1(N0); 低氮, 69 mg(N)·kg−1 (N1); 常规施氮[9], 138 mg(N)·kg−1 (N2)], 共6个处理, 即干旱不施氮肥(W1N0)、干旱低氮(W1N1)、干旱常规施氮(W1N2)、正常供水不施氮肥(W2N0)、正常供水低氮(W2N1)以及正常供水常规施氮(W2N2), 每个处理12次重复, 供试氮肥为尿素。

    播种棉花之前, 不同氮素处理所需的肥料作为基肥施入, 后期不再施肥。待棉花长至4叶一心时进行干旱处理并直至成熟收获。每隔1周浇水1次, 浇水前进行称重, 以确定浇水量, 并及时补水到设定土壤含水量。

    在干旱处理0 d、15 d、30 d、45 d、60 d、75 d和90 d时选取3株长势均匀的棉花进行地上形态和生理指标测定, 根系形态和产量在收获后进行测定分析。

    株高: 利用直尺测量棉花子叶节到生长点的高度; 茎粗: 利用游标卡尺测量子叶节上1 cm的茎直径; 叶面积: 利用直尺测量全株叶片长度和宽度, 采用长宽系数法(叶面积=0.75×最大长度×最大宽度)计算全株叶面积; 根系形态测定: 于棉花收获后, 将根系冲洗干净后, 无重叠摆放于含1 cm深水的亚克力透明盒中, 采用爱普生扫描仪(EPSON-V700, 日本)对根系进行扫描(600 dpi)。用WinRHIZO软件分析(WinRHIZOREG2009, 加拿大)根系图片, 获取根长、根表面积和根直径。

    相对叶绿素含量采用SPAD-502叶绿素计测定棉花主茎倒四叶的相对叶绿素含量(SPAD值)。利用LI-6800便携式光合仪测定系统对棉花主茎倒四叶进行测定, 设置光强为300 μmol·m−2·s−1, CO2浓度为400 μmol·mol−1, 于上午9:00—11:00测定净光合速率。叶绿素荧光参数采用PAM-2500便携式叶绿素荧光仪测定。

    测定棉花主茎倒四叶的各指标。SOD活力测定采用WST-1法; POD活力测定采用愈创木酚法[19]; CAT活力测定采用钼酸铵法; MDA含量测定采用TBA法[20]; 谷氨酰胺合成酶活性测定参照Zhang等[21]的方法, 以单位µmol·g−1(FW)·h−1表示; 硝酸还原酶(NR)活性测定参照刘洁等[22]的方法, 以单位µmol·g−1(FW)·h−1表示。

    吐絮后, 收集植株中的所有棉铃, 记录籽棉重量。

    采用Microsoft Excel 2010进行数据统计和整理, 采用DPS 9.50软件进行双因素分析, 用LSD法比较处理间在P<0.05水平的差异显著性。采用GraphPad Prism 8.0进行作图分析。

    株高、茎粗以及叶面积是反映植株生长发育的形态指标。由图1可知, 株高和茎粗均随棉花生长呈现逐渐增长的变化趋势。干旱对棉花株高与茎粗的影响显著, 不同氮肥水平间差异显著, 总体变化趋势为N2>N1>N0, 但二者交互作用对株高与茎粗均无显著影响。

    图  1  水分和氮素对棉花株高(A)、茎粗(B)以及叶面积(C)的影响
    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表达P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means signifi-cant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    Figure  1.  Effects of water and nitrogen regulation on plant height (A), stem diameter (B) and leaf area (C) of cotton

    图1A可知, W1处理显著降低了棉花的株高; 株高随着施氮量的增加而升高。干旱处理15 d、30 d, W1与W2处理间株高无显著差异, N2处理显著高于N0处理。处理60~90 d, W1与W2处理间株高差异显著, W1处理显著降低了棉花株高; 不同氮肥之间差异显著, N0和N1处理均显著降低了棉花株高。处理90 d, W2N2处理棉花株高最高, 为55.97 cm, 比W1N2处理显著提高17.51%; W2N1比W1N1处理显著提高18.10%, W2N0比W1N0处理显著提高26.14%。而W1N0处理株高最低, 为33.93 cm, 分别比W1N1、W1N2处理显著降低18.89%、28.76%, 表明干旱和低氮胁迫显著降低了棉花株高, 干旱胁迫下增施氮肥、低氮下增加灌水量可以促进棉花株高增加。

    图1B可知, W1、N0和N1处理显著降低棉花的茎粗。处理后15 d和30 d, 各处理间茎粗并未出现显著差异。处理45 d, 在水分处理一致时, W1N0显著低于W1N2处理; 氮素处理一致时, W1N0显著低于W2N0处理。处理75 d、90 d, W1处理下的茎粗明显低于W2处理, 不同氮肥处理间差异显著, 表现为N2>N1>N0。处理90 d, W2N2处理的茎粗最粗, 为7.36 cm, 比W1N2处理显著增加6.98%; 而W1N0的茎粗最低, 为6.09 cm, 分别比W1N1和W1N2显著降低6.60%和11.48%。

    图1C可知, 不同处理下棉花叶面积均呈现先增后降的趋势, 干旱对叶面积影响极显著, 不同氮肥水平对叶面积影响显著, 但二者交互作用对叶面积影响并不显著。处理60 d后, W1处理的叶面积开始下降; 处理75 d后, W2处理叶面积开始下降。处理15 d, N0处理的叶面积显著低于N2处理, W1N0显著低于W2N0。处理30 d, W2N2处理的叶面积显著高于N0和N1处理; W1处理下, 各氮肥水平间差异显著, 即N2>N1>N0; 与W2相比, W1处理显著抑制叶面积增加。处理45 d、60 d、75 d, 各氮素之间差异不显著, W1与W2之间差异显著。处理90 d, W1处理叶面积显著低于W2处理, N0与N2之间差异显著; W2N2处理的叶面积最大, 为1014.13 cm2, 比W1N2处理显著增加42.16%; W2N1比W1N1处理显著提高45.32%, W2N0比W1N0处理显著提高45.34%; 而W1N0处理的叶面积最小, 为575.38 cm2, 分别比W1N1、W1N2处理显著降低8.94%、19.34%。由此可知, 干旱和低氮胁迫显著降低了棉花叶面积, 但干旱下增加氮肥、低氮下增加灌水量却促进了棉花叶面积的增加。

    根系是棉花吸收水分养分的重要器官。如图2所示, 水分和氮素对棉花总根长、总根表面积以及根平均直径均产生了显著影响, 但二者交互作用却无显著影响。分析图2A可知, 与N2相比, N0和N1处理显著降低了棉花总根长(W2N1除外); 与W2相比, W1处理抑制了棉花总根长的伸长(N2水平下两处理差异不显著), W1N0比W2N0显著降低24.93%, W1N1比W2N1显著降低16.56%, W1N2比W2N2降低12.20%。W1处理下, W1N2总根长最长, 比W1N1显著增加20.91%, 比W1N0显著增加74.45%。由图2B可知, 与N2相比, N0处理显著降低了棉花总根表面积; W1N0的总根表面积比W2N0显著降低21.32%, W1N1比W2N1显著降低13.16%, W1N2比W2N2降低8.24%。W1处理下, W1N2总根表面积最大, 比W1N1显著增加15.57%, 比W1N0显著增加62.91%, W1N1比W1N0显著增加40.96%。分析图2C可知, 与N2相比, N0处理显著降低了棉花平均根直径; 与W2相比, W1处理显著降低了平均根直径, W1N0比W2N0显著降低23.53%, W1N1比W2N1显著降低16.67%, W1N2比W2N2显著降低13.16%。由此可知, 干旱以及低氮处理均降低了棉花的总根长、总根表面积以及平均根直径; 在干旱胁迫下, 棉花的总根长、总根表面积以及平均根直径随着施氮量的增加而增加; 在低氮胁迫下, 棉花的总根长、总根表面积以及平均根直径随着灌水量的增加而增大, 表明在干旱胁迫下增施氮肥有助于改善棉花根系形态, 在低氮环境下常规灌溉亦能改善棉花根系形态。

    图  2  水分和氮素调控对棉花总根长(A)、总根表面积(B)以及平均根直径(C)的影响
    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    Figure  2.  Effects of water and nitrogen regulation on total root length (A), total root surface area (B) and average root diameter (C) of cotton

    表1可知, 水分、氮素和二者交互作用均对SPAD产生显著抑制效应。随着处理时间延长, 各处理棉花SPAD均呈先升后降趋势。其中W1处理在处理15 d后开始下降, W2处理在处理30 d后开始下降。处理15~90 d, 与W2处理相比, W1处理显著降低棉花SPAD; 与N2相比, N1、N0处理显著降低, 且N0抑制作用大于N1。处理90 d, W2N2处理的SPAD最大, 比W1N2处理显著增加20.51%; W2N1比W1N1处理显著提高40.20%, W2N0比W1N0处理显著提高39.84%; 而W1N0处理的SPAD最小, 分别比W1N1、W1N2处理显著降低22.90%、41.53%。由此可知, 干旱和低氮胁迫显著降低了棉花SPAD, 但干旱下增加氮肥、低氮下增加灌水量均促进了棉花SPAD的增加。

    表  1  水分和氮素调控对棉花相对叶绿素含量(SPAD)的影响
    Table  1.  Effects of water and nitrogen regulation on relative chlorophyll content (SPAD) of cotton
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N042.33±0.50a42.97±0.85e41.20±0.26d35.63±0.75e30.87±0.68e25.73±1.37e20.33±1.25d
    W2N043.07±0.95a46.00±0.46cd43.67±0.59c40.70±0.85c35.87±0.85d32.47±1.86d28.43±0.68c
    W1N142.57±0.74a45.10±0.26d42.30±1.01cd38.67±0.38d34.93±0.32d31.23±1.23d26.37±0.87c
    W2N143.00±1.15a47.53±0.95b50.77±0.57b45.60±0.46b42.40±0.60b40.53±1.19b36.97±1.16b
    W1N243.10±0.70a46.63±0.65bc49.27±1.04b44.27±0.95b40.67±0.50c37.77±0.99c34.77±0.81b
    W2N242.90±1.11a49.33±0.93a55.27±0.95a50.53±0.86a47.43±0.47a44.67±1.20a41.90±1.41a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsns****ns*
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    表2可知, 水分和氮素处理显著影响了棉花净光合速率, 且二者交互作用亦影响显著。随处理时间的延长, W1处理下净光合速率呈下降趋势; W2处理下净光合速率呈先增后降的趋势, 0~15 d增加, 30 d开始下降。处理15 d、30 d、60 d、75 d, 与W2处理相比, W1处理显著降低了棉花光合速率; 与N0相比, N1和N2在大部分时间显著促进了棉花净光合速率的增高。处理90 d, W2N2处理的净光合速率最高, 比W1N2处理显著增加11.99%; W2N1处理比W1N1处理显著增加6.06%, W2N0比W1N0处理显著提高17.97%; 而W1N0净光合速率最低, 分别比W1N1、W1N2处理显著降低14.21%、18.09%。表明干旱和低氮胁迫抑制棉花净光合速率, 但干旱下增施氮肥、低氮下增加灌水量均可促进棉花光合作用增强。

    表  2  水分和氮素调控对棉花净光合速率的影响
    Table  2.  Effects of water and nitrogen regulation on net photosynthetic rate of cotton
    µmol·m−2·s−1 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N011.65±0.66a11.04±0.20d10.31±0.19d9.99±0.47c8.94±0.36d8.21±0.18d7.79±0.15c
    W2N011.61±0.70a11.73±0.21c11.06±0.14c10.65±0.37bc9.88±0.14c9.54±0.52c9.19±0.04b
    W1N111.90±0.15a11.42±0.40cd10.97±0.26c10.50±0.45bc9.73±0.08c9.43±0.19c9.08±0.11b
    W2N111.99±0.29a12.37±0.36b11.96±0.20b11.17±0.17b10.58±0.30b10.14±0.08b9.63±0.50b
    W1N212.09±0.40a11.79±0.33c11.30±0.33c10.96±0.40b10.37±0.37b10.04±0.07b9.51±0.39b
    W2N212.13±0.19a13.51±0.46a13.10±0.40a12.51±0.26a11.87±0.21a11.20±0.25a10.65±0.22a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nns**ns*nsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    表3可知, 水分和氮素以及二者交互作用均对光能转换效率(Fv/Fm)产生显著影响。随处理时间延长, W2N2处理呈现先增长后下降的趋势, 其余处理Fv/Fm均呈下降趋势。处理15 d, 除W2N2处理外, 其他处理的Fv/Fm开始下降; 处理30 d, W2N2处理的Fv/Fm开始下降。处理15~75 d, 与W1相比, W2处理显著增加了Fv/Fm; 各氮素水平之间亦出现显著差异, 表现为N2>N1>N0。处理90 d, W2N2处理的Fv/Fm最高, 比W1N2处理显著增加22.00%; W2N1处理比W1N1处理显著增加2.08%, W2N0比W1N0处理显著提高6.67%; 而W1N0处理的Fv/Fm最低, 分别比W1N1和W1N2处理显著降低6.25%和10.00%。表明干旱和低氮胁迫抑制Fv/Fm, 但干旱下增施氮肥、低氮下增加灌水量均可提高棉花PSⅡ反应中心的光能转换效率。

    表  3  水分和氮素调控对棉花PSⅡ反应中心光能转换效率(Fv/Fm)的影响
    Table  3.  Effects of water and nitrogen regulation on light energy conversion efficiency of PSⅡ reaction center (Fv/Fm) of cotton
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N00.78±0.01a0.72±0.003e0.66±0.003e0.55±0.003e0.48±0.007d0.48±0.007d0.45±0.013d
    W2N00.79±0.012a0.75±0.005cd0.69±0.003c0.59±0.004cd0.52±0.011c0.52±0.011c0.48±0.004c
    W1N10.79±0.014a0.73±0.003de0.69±0.003d0.58±0.014d0.52±0.012c0.52±0.012c0.48±0.007bc
    W2N10.79±0.014a0.76±0.003b0.71±0.003b0.62±0.013b0.54±0.001b0.54±0.001b0.49±0.003bc
    W1N20.79±0.008a0.74±0.014bc0.70±0.002b0.61±0.009bc0.53±0.005bc0.53±0.005bc0.50±0.007b
    W2N20.79±0.008a0.80±0.006a0.75±0.009a0.67±0.006a0.64±0.008a0.64±0.008a0.61±0.011a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nns**********
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    表4可知, 水分和氮素对棉花SOD活性均产生了显著影响, 但二者的交互作用并不显著。随着处理时间的延长, 棉花叶片的SOD活性呈现先升后降的趋势, 处理30 d出现最大值。处理15~75 d, 各处理差异显著, 且规律基本一致, 即W1处理的SOD活性高于W2处理, N2>N1>N0。处理90 d, W1N2处理的SOD活性最高, 比W2N2处理显著增加7.36%; W1N1处理比W2N1处理增加6.63%, W1N0比W2N0处理提高5.89%。W2N0处理的SOD活性最低, 分别比W2N1、W2N2处理降低7.38%、13.83%。由此得知, 干旱胁迫可导致棉花SOD活性增加, 用来清除棉花体内多余活性氧, 促使棉花适应干旱胁迫。

    表  4  水分和氮素调控对棉花超氧化物歧化酶(SOD)活性的影响
    Table  4.  Effects of water and nitrogen regulation on superoxide dismutase (SOD) activity of cotton
    U·g−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N0 503.84±25.56a 704.81±10.82c 867.84±30.86bc 811.62±19.32c 737.84±11.16c 686.54±21.64c 644.38±27.19c
    W2N0 510.86±36.29a 645.78±26.02d 808.11±48.36d 749.08±12.35d 699.89±21.39d 642.27±12.35d 608.54±14.81c
    W1N1 523.51±34.79a 756.81±22.80b 916.32±8.52ab 863.62±14.96b 801.78±11.99b 756.11±21.12b 700.59±14.35b
    W2N1 527.03±35.96a 702.00±17.26c 862.22±22.21c 812.32±12.71c 746.97±12.88c 706.92±27.51c 657.03±27.51bc
    W1N2 547.41±11.99a 801.08±17.26a 957.08±19.32a 926.16±13.55a 872.76±21.08a 818.65±19.13a 758.22±37.02a
    W2N2 548.81±36.66a 754.00±14.04b 910.70±15.20abc 881.89±24.43b 829.89±25.33b 763.14±26.91b 706.22±16.86b
    水分 Water (W) ns ** ** ** ** ** **
    施氮 Nitrogen application (N) ns ** ** ** ** ** **
    水分×氮肥 W×N ns ns ns ns ns ns ns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    表5可知, 水分和氮素均对棉花POD活性产生了显著影响, 但二者交互作用并不显著。随着处理时间的延长, POD活性与SOD变化趋势基本一致, 均呈现先增加后下降的趋势, 处理30 d出现最大值。处理45 d、60 d, N0处理的POD活性显著低于N2处理。处理75 d, 各处理间存在显著差异。处理90 d, W1N2处理的POD活性最高, 比W2N2处理增加7.24%; W1N1处理比W2N1处理增加11.21%, W1N0比W2N0处理显著提高14.34%。W2N0处理的POD活性最低, 分别比W2N1、W2N2处理降低10.09%、22.67%; 表明干旱胁迫下, 棉花提高POD活性以缓解干旱造成的损伤。

    表  5  水分和氮素调控对棉花过氧化物酶(POD)活性的影响
    Table  5.  Effects of water and nitrogen regulation on peroxidase (POD) activity of cotton
    U·mg−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N0297.45±18.73a407.41±13.26cd536.46±28.69c493.06±27.94c401.04±30.12b357.64±18.13c318.29±18.24c
    W2N0300.93±20.12a375.58±19.12d483.22±17.82d435.76±35.87d343.17±22.12c299.77±16.41d278.36±22.39d
    W1N1309.61±20.12a446.18±18.13b573.50±25.42bc534.72±22.77abc438.08±25.42b402.78±19.33b344.33±22.59bc
    W2N1312.50±15.62a418.40±15.14bc543.98±33.14bc503.47±15.91bc406.25±27.29b350.69±21.05c309.61±21.43cd
    W1N2314.81±32.26a484.95±24.82a626.16±19.12a568.87±19.12a506.37±28.07a451.39±26.95a386.00±15.66a
    W2N2318.29±12.56a451.39±16.56ab583.91±15.17b541.67±19.1ab444.44±21.12b408.56±11.82b359.95±26.12ab
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    表6可知, 水分和氮素均对棉花CAT活性产生了显著影响, 但二者交互作用并不显著。随着处理时间的延长, 各处理CAT活性呈现先增后降的趋势, 处理45 d出现最高值。处理15 d、30 d, N0显著低于N2处理。处理45 d, W1处理的CAT活性显著高于W2处理; 各氮素之间差异显著, 表现为N2>N1>N0。处理60 d, W1处理下N2显著高于N1和N0处理; W2处理下, N2显著高于N0处理。处理90 d, W1N2处理CAT活性最高, 比W2N2处理显著增加13.34%; W1N1处理比W2N1处理提高13.94%, W1N0比W2N0处理提高12.41%。W2N0处理CAT活性最低, 分别比W2N1和W2N2处理降低9.53%和19.39%。

    表  6  干旱胁迫和氮素调控对棉花过氧化氢酶(CAT)活性的影响
    Table  6.  Effects of water and nitrogen regulation on catalase (CAT) activity of cotton
    U·mg−1(protein) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N056.08±7.43a72.58±4.71bc82.95±8.25bc93.79±2.27d87.66±3.74bc78.94±5.35bc70.46±4.26d
    W2N057.97±6.74a65.75±5.10c74.94±6.16c84.13±4.90e77.53±6.01c67.40±7.15c62.68±5.21d
    W1N160.56±7.15a78.71±4.26ab89.08±6.74b100.15±1.47bc95.44±3.24b85.31±5.89b78.94±6.10bc
    W2N1 60.09±12.86a73.05±5.31bc81.77±3.56bc91.67±5.31cd86.72±4.02bc76.11±2.48b69.28±3.74cd
    W1N264.57±3.56a86.01±2.68a100.15±3.63a110.99±4.64a102.98±8.84a94.02±2.12a88.13±5.35a
    W2N265.98±4.71a80.12±7.63ab90.02±2.16b101.57±3.56b91.20±2.45ab83.89±4.55ab77.76±1.87b
    水分 Water (W)ns***********
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    表7可知, 干旱和氮素均会对棉花MDA含量产生显著影响, 但二者交互作用并不显著。随处理时间延长, MDA含量呈先增后降的趋势, 处理75 d出现最高值。处理15~45 d, 与W1相比, W2处理MDA含量显著降低; 各氮素水平间表现为N0>N1>N2, 处理75 d各氮素处理间差异显著。处理90 d, MDA变化趋势与处理75 d一致; W1N0处理MDA含量最高, 比W2N0处理增加9.30%; W1N1处理比W2N1处理增加7.85%, W1N2比W2N2处理提高8.33%。W2N2处理MDA含量最低, 分别比W2N0、W2N1处理显著降低21.85%、12.03%。表明干旱、零氮以及减氮均可提高棉花叶片的MDA含量, 但干旱下增施氮肥、低氮增加灌水量均降低了棉花叶片的MDA含量, 可缓解干旱以及低氮对棉花造成的氧化损伤。

    表  7  水分和氮素调控对棉花丙二醛(MDA)含量的影响
    Table  7.  Effects of water and nitrogen regulation on malondialdehyde (MDA) content of cotton
    µmol·g−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N028.68±3.33a47.65±1.32a71.91±2.02a82.69±2.40a88.64±3.61a93.46±7.02a90.38±5.20a
    W2N028.24±2.76b42.35±2.65b63.97±2.02b74.23±1.76b81.36±2.08b86.54±5.03ab82.69±5.45ab
    W1N127.35±2.02bc41.03±2.65b61.32±2.02b70.77±1.76b78.18±2.08bc82.31±3.53bc79.23±2.90bc
    W2N126.91±2.02cd37.06±2.29c56.47±0.76c63.85±2.90c72.73±2.08cd76.15±1.15cd73.46±2.40cd
    W1N225.15±2.65d36.62±2.76c54.26±1.32c60.38±2.90c68.64±1.57de73.85±3.05de70.00±4.37de
    W2N224.71±3.33e31.32±3.33d42.35±2.29d53.08±2.31d62.73±2.73e67.31±4.37e64.62±4.62e
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV 
    | 显示表格

    谷氨酰胺合成酶活性(GS)和硝酸还原酶活性(NR)是参与植物体内氮代谢的关键酶, 其活性反映了植物对氮素的吸收状况。如图3A所示, 水分和氮素对棉花GS活性均产生了显著影响, 但二者交互作用对GS活性影响并不显著。GS活性随处理时间的延长呈先增后降的趋势, 处理45 d出现最高值。处理15 d, 与N0相比, N2处理显著升高了GS活性。处理30 d、45 d、75 d, W1处理的GS活性低于W2处理, N0处理的GS活性显著低于N2处理。处理90 d, W2N2处理的GS活性最高, 为13.59 µmol·g−1(FW)·h−1, 比W1N2处理增加30.42%; W2N1比W1N1处理提高14.63%, W2N0比W1N0处理提高63.77%。而W1N0处理的GS活性最低, 为5.30 µmol·g−1(FW)·h−1, 分别比W1N1、W1N2处理显著降低44.21%、49.14%。由此可知, 干旱和低氮胁迫处理降低了棉花GS活性, 但干旱下GS活性随着施氮量的增加而提高, 低氮胁迫下GS活性随着灌水量的增加而提高。

    图  3  水分和氮素调控对棉花谷氨酰胺合成酶活性(A)和硝酸还原酶活性(B)的影响
    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    Figure  3.  Effects of water and nitrogen regulation on activities of glutamine synthetase (GS, A) and nitrate reductase (NR, B) in cotton

    图3B所示, 水分和氮素对棉花NR活性均产生了显著影响, 但二者交互作用对NR活性影响并不显著。各处理的NR活性随着棉花生育时期进行呈现先增后降的趋势, 处理60 d出现峰值。处理15~45 d, 水分对NR活性未产生显著影响, N0与N2之间差异显著。处理60~90 d, W1处理NR活性显著低于W2处理; N0和N1处理NR活性显著低于N2处理。处理90 d, W2N2处理的NR活性最高, 为1.01 µmol·g−1(FW)·h−1, 比W1N2处理显著增加12.22%; W2N1比W1N1处理显著提高16.00%, W2N0比W1N0处理显著提高31.25%。而W1N0处理的NR活性最低, 为0.48 µmol·g−1(FW)·h−1, 分别比W1N1、W1N2处理显著降低36.00%、46.67%。因此, 干旱和低氮胁迫处理降低了棉花NR活性; 但干旱下增施氮肥、低氮下增加灌水量促进了NR活性增强。

    图4可知, 水分和氮素对棉花产量产生了显著影响, 且二者交互作用对产量亦有显著影响。不同处理下, W2N2产量最高, 为34.42 g∙株−1, W1N0最低, 为11.00 g∙株−1。W2处理下, 不同氮肥处理之间差异显著, 与W2N0相比, W2N1与W2N2分别增加44.32%、133.99%。W1处理下, 不同氮肥处理之间差异显著, 与W1N0相比, W1N1与W1N2分别增加38.73%、111.64%, 表明增施氮肥提高了干旱胁迫下的棉花产量。W2N0比W1N0增加33.73%, W2N1比W1N1增加39.12%, W2N2比W1N2增加47.85%, 表明增加灌水量提高了低氮胁迫下的棉花产量。由此可知, W1、N0和N1处理显著抑制了棉花产量, 干旱胁迫下棉花产量随着施氮量的增加而增加, 低氮胁迫下棉花产量随着灌水量的增加而增加。

    图  4  水分和氮素调控对棉花籽棉产量的影响
    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    Figure  4.  Effects of water and nitrogen regulation on cotton seed yield

    水分是影响植物生长的重要环境因素之一, 不合理的水分管理对植物产生不利影响。研究发现, 干旱胁迫导致棉花、番茄(Solanum lycopersicum L.)和马铃薯(Solanum tuberosum L.)株高、茎粗及叶面积指数下降, 且随着干旱程度的加深愈加明显[5, 23-24]。适度干旱可促进根系伸长, 但严重干旱则抑制根系的生长[24-25]。氮素作为棉花生长发育必不可少的营养元素之一, 直接影响了其生长发育和产量形成。低氮胁迫可造成棉花总根长变短, 总根表面积变小以及平均根直径变细[9]。杜红霞等[16]研究了水、氮调控对夏玉米(Zea mays L.)根系特性的影响, 发现水分对根表面积分布的影响大于氮素。何佩云等[17]研究表明, 干旱胁迫下高氮处理对苦荞[Fagopyrum tataricum (L.) Gaertn.]株高具有促进作用; 而干旱胁迫下低氮处理对苦荞根系长度以及根表面积具有促进作用。刘海光[15]研究发现, 干旱胁迫下, 棉花株高、叶面积下降, 但随着施氮量的增加而增加。本研究结果显示, 干旱以及低氮处理均降低了棉花的总根长、总根表面积以及平均根直径, 影响了根系和地上部发育; 而干旱胁迫下增施适量氮肥、低氮胁迫下增加适宜灌水量均促进了棉花根系发育, 从而促进棉花的株高、茎粗和叶面积增加, 这与何佩云等[17]的干旱胁迫下高氮处理对株高具有促进作用的研究结果相同, 而与干旱胁迫下低氮处理对苦荞根系长度以及根表面积具有促进作用的结论并不一致, 这可能与物种对水分和氮素的适应性紧密相关, 还有待于进一步深入研究。

    光合作用是植物生长中必不可少的生理活动和产量形成的基础。氮素和水分不足均可造成光合作用减弱。研究发现, 干旱胁迫下, 棉花叶片相对叶绿素含量(SPAD)、净光合速率和最大光化学效率(Fv/Fm)降低 [26], 但干旱胁迫下适量增施氮肥却增高了棉花主茎叶的叶绿素含量和花铃期的净光合速率, 缓解了干旱胁迫对光合作用的抑制作用[27-28]。本研究表明, 干旱胁迫降低了棉花SPAD、净光合速率和Fv/Fm, 但增施氮肥促进了光合作用; 低氮胁迫亦降低了棉花SPAD、净光合速率及Fv/Fm, 但随着灌水量增大, 光合作用增强, 表明水分和氮素以及二者交互作用均对光合性状产生了显著影响。这是由于干旱胁迫下增加施氮量以及低氮胁迫下增加灌水量均促进了棉花根系对土壤养分的吸收, 促进了地上部发育, 叶面积增大, 叶绿素含量增加, 从而促进了光合作用, 缓解了干旱和低氮胁迫对棉花造成的损伤。

    植物在遭遇逆境胁迫时, 可通过酶促以及非酶促抗氧化系统清除细胞内过量的活性氧。SOD、POD、CAT是植物体内主要的抗氧化酶, MDA含量是反映植物组织脂质过氧化速率和强度的重要指标[29]。研究发现, 干旱胁迫提高了棉花SOD、POD、CAT活性以及MDA含量[30]。不同水分处理下, SOD、POD、CAT活性均随着施氮量的增加而增强, MDA含量则与之相反[31]。本研究结果显示, 在干旱胁迫下, SOD、POD、CAT活性随着施氮量的增加而提高, MDA含量则随着施氮量的增加而下降, 说明在一定范围内, 常规施氮可以缓解干旱胁迫对棉花造成的氧化损伤。植物在受到干旱胁迫时, 自身通过增加抗氧化酶活性来去除体内多余的活性氧, 缓解干旱胁迫带来的损伤, 但植物在低氮胁迫下抗氧化酶活性下降。在低氮条件下, SOD、POD、CAT活性和MDA含量随着灌水量的增加而降低, 表明增加灌水量亦可缓解低氮胁迫对棉花产生的氧化伤害。此外, 本研究还发现, 水分和氮素对棉花光合性状的影响存在显著互作效应, 但二者交互作用对抗氧化酶活性的影响并不显著, 表明水分和氮素在协同作用中可能存在着相互影响, 这有待于进一步研究。

    GS和NR是氮代谢过程中的关键酶, 对作物氮素吸收具有重要调控作用。相关研究表明, 随着施氮量的增加, 棉花GS和NR活性增强[32]。水氮交互作用下, GS和NR的活性与氮素利用特征和产量存在显著相关性, 水分和氮素对水稻(Oryza sativa L.)生长具有显著的交互调控效应[33]。谈建鑫[34]研究发现, 灌水量和施氮量对NR活性均产生了显著影响, 当灌水量一致条件下, NR活性可随着施氮量的增加而增加; 在施氮量一致条件下, NR活性亦随着灌水量的增加而增强。本研究表明, 在施氮量一致条件下, 干旱胁迫可导致GS活性和NR活性下降; 在水分一致条件下, GS活性和NR活性亦随着施氮量的增加而增加。这表明在一定范围内, 干旱胁迫下增施氮量可促进GS和NR活性提高, 促进了氮素的吸收转化, 水分和氮素对棉花氮素吸收同样具有调控效应。

    水分和氮素是影响作物产量的关键因素, 二者可产生耦合效应以促进作物生长发育[17]。相关研究表明, 干旱条件下棉花皮棉产量显著降低[35]。氮肥对棉花产量以及产量构成具有显著影响, 增加施氮量可以提高棉花产量以及单铃重[36]; 增施氮肥亦可显著提高棉花单位面积成铃数和产量; 但过度施入氮肥, 可导致棉花贪青晚熟以及僵铃脱落增加[37-38]。何佩云等[17]研究发现, 干旱胁迫降低了苦荞产量, 而增施氮肥提高了苦荞产量。王艳哲等[39]研究表明, 在干旱胁迫下小麦(Triticum aestivum L.)产量可随施氮量的增大而增加。本研究结果表明, 水分和氮素以及二者交互作用对棉花产量产生了显著影响; 干旱胁迫以及低氮处理均降低了棉花籽棉产量, 而在干旱条件下棉花籽棉产量却随着施氮量的增大而增加, 这是由于增施氮肥可调节土壤水分, 促进根系发育, 增强根系吸水能力, 提高棉花叶面积及叶绿素含量, 增强光合作用, 使干物质积累增加, 从而促进产量提高。在低氮条件下, 增加灌水量促进了养分运输, 促进了氮素的转化, 增强了氮代谢能力, 扩大了“源”, 对低氮条件下棉花产量具有促进作用, 实现了以肥调水、以水促肥的调控效应[17]。因此, 本研究对明确氮素胁迫和水分胁迫下合理的水肥管理具有重要意义。

    本研究从棉花植株形态(地上部、地下部)、光合特性、抗氧化酶活性、氮代谢酶活性以及产量等指标研究了水分与氮素调控对棉花生长、生理特性以及产量的影响。结果表明, 干旱与低氮胁迫抑制了棉花的生长发育, 降低了产量。干旱胁迫下, 常规施氮处理可促进棉花地上和地下生长, 提高了净光合速率和最大光化学效率(Fv/Fm), 增强了抗氧化酶(SOD、POD、CAT)活性和氮代谢酶(GS和NR)活性, 缓解了干旱胁迫对其造成的伤害, 提高了棉花产量。低氮条件下, 正常供水处理亦促进了棉花的生长, 增强其光合作用和氮代谢酶活性, 减缓了低氮胁迫对其产生的不利影响, 从而提高棉花产量。因而可通过增施氮肥提高干旱胁迫下的棉花产量, 亦可通过适当增加灌水量提高低氮胁迫下的棉花产量, 这为氮素胁迫和水分胁迫下合理的水肥管理提供了理论依据。

  • 图  1   水分和氮素对棉花株高(A)、茎粗(B)以及叶面积(C)的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表达P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means signifi-cant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  1.   Effects of water and nitrogen regulation on plant height (A), stem diameter (B) and leaf area (C) of cotton

    图  2   水分和氮素调控对棉花总根长(A)、总根表面积(B)以及平均根直径(C)的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  2.   Effects of water and nitrogen regulation on total root length (A), total root surface area (B) and average root diameter (C) of cotton

    图  3   水分和氮素调控对棉花谷氨酰胺合成酶活性(A)和硝酸还原酶活性(B)的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  3.   Effects of water and nitrogen regulation on activities of glutamine synthetase (GS, A) and nitrate reductase (NR, B) in cotton

    图  4   水分和氮素调控对棉花籽棉产量的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  4.   Effects of water and nitrogen regulation on cotton seed yield

    表  1   水分和氮素调控对棉花相对叶绿素含量(SPAD)的影响

    Table  1   Effects of water and nitrogen regulation on relative chlorophyll content (SPAD) of cotton

    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N042.33±0.50a42.97±0.85e41.20±0.26d35.63±0.75e30.87±0.68e25.73±1.37e20.33±1.25d
    W2N043.07±0.95a46.00±0.46cd43.67±0.59c40.70±0.85c35.87±0.85d32.47±1.86d28.43±0.68c
    W1N142.57±0.74a45.10±0.26d42.30±1.01cd38.67±0.38d34.93±0.32d31.23±1.23d26.37±0.87c
    W2N143.00±1.15a47.53±0.95b50.77±0.57b45.60±0.46b42.40±0.60b40.53±1.19b36.97±1.16b
    W1N243.10±0.70a46.63±0.65bc49.27±1.04b44.27±0.95b40.67±0.50c37.77±0.99c34.77±0.81b
    W2N242.90±1.11a49.33±0.93a55.27±0.95a50.53±0.86a47.43±0.47a44.67±1.20a41.90±1.41a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsns****ns*
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  2   水分和氮素调控对棉花净光合速率的影响

    Table  2   Effects of water and nitrogen regulation on net photosynthetic rate of cotton

    µmol·m−2·s−1 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N011.65±0.66a11.04±0.20d10.31±0.19d9.99±0.47c8.94±0.36d8.21±0.18d7.79±0.15c
    W2N011.61±0.70a11.73±0.21c11.06±0.14c10.65±0.37bc9.88±0.14c9.54±0.52c9.19±0.04b
    W1N111.90±0.15a11.42±0.40cd10.97±0.26c10.50±0.45bc9.73±0.08c9.43±0.19c9.08±0.11b
    W2N111.99±0.29a12.37±0.36b11.96±0.20b11.17±0.17b10.58±0.30b10.14±0.08b9.63±0.50b
    W1N212.09±0.40a11.79±0.33c11.30±0.33c10.96±0.40b10.37±0.37b10.04±0.07b9.51±0.39b
    W2N212.13±0.19a13.51±0.46a13.10±0.40a12.51±0.26a11.87±0.21a11.20±0.25a10.65±0.22a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nns**ns*nsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  3   水分和氮素调控对棉花PSⅡ反应中心光能转换效率(Fv/Fm)的影响

    Table  3   Effects of water and nitrogen regulation on light energy conversion efficiency of PSⅡ reaction center (Fv/Fm) of cotton

    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N00.78±0.01a0.72±0.003e0.66±0.003e0.55±0.003e0.48±0.007d0.48±0.007d0.45±0.013d
    W2N00.79±0.012a0.75±0.005cd0.69±0.003c0.59±0.004cd0.52±0.011c0.52±0.011c0.48±0.004c
    W1N10.79±0.014a0.73±0.003de0.69±0.003d0.58±0.014d0.52±0.012c0.52±0.012c0.48±0.007bc
    W2N10.79±0.014a0.76±0.003b0.71±0.003b0.62±0.013b0.54±0.001b0.54±0.001b0.49±0.003bc
    W1N20.79±0.008a0.74±0.014bc0.70±0.002b0.61±0.009bc0.53±0.005bc0.53±0.005bc0.50±0.007b
    W2N20.79±0.008a0.80±0.006a0.75±0.009a0.67±0.006a0.64±0.008a0.64±0.008a0.61±0.011a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nns**********
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  4   水分和氮素调控对棉花超氧化物歧化酶(SOD)活性的影响

    Table  4   Effects of water and nitrogen regulation on superoxide dismutase (SOD) activity of cotton

    U·g−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N0 503.84±25.56a 704.81±10.82c 867.84±30.86bc 811.62±19.32c 737.84±11.16c 686.54±21.64c 644.38±27.19c
    W2N0 510.86±36.29a 645.78±26.02d 808.11±48.36d 749.08±12.35d 699.89±21.39d 642.27±12.35d 608.54±14.81c
    W1N1 523.51±34.79a 756.81±22.80b 916.32±8.52ab 863.62±14.96b 801.78±11.99b 756.11±21.12b 700.59±14.35b
    W2N1 527.03±35.96a 702.00±17.26c 862.22±22.21c 812.32±12.71c 746.97±12.88c 706.92±27.51c 657.03±27.51bc
    W1N2 547.41±11.99a 801.08±17.26a 957.08±19.32a 926.16±13.55a 872.76±21.08a 818.65±19.13a 758.22±37.02a
    W2N2 548.81±36.66a 754.00±14.04b 910.70±15.20abc 881.89±24.43b 829.89±25.33b 763.14±26.91b 706.22±16.86b
    水分 Water (W) ns ** ** ** ** ** **
    施氮 Nitrogen application (N) ns ** ** ** ** ** **
    水分×氮肥 W×N ns ns ns ns ns ns ns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  5   水分和氮素调控对棉花过氧化物酶(POD)活性的影响

    Table  5   Effects of water and nitrogen regulation on peroxidase (POD) activity of cotton

    U·mg−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N0297.45±18.73a407.41±13.26cd536.46±28.69c493.06±27.94c401.04±30.12b357.64±18.13c318.29±18.24c
    W2N0300.93±20.12a375.58±19.12d483.22±17.82d435.76±35.87d343.17±22.12c299.77±16.41d278.36±22.39d
    W1N1309.61±20.12a446.18±18.13b573.50±25.42bc534.72±22.77abc438.08±25.42b402.78±19.33b344.33±22.59bc
    W2N1312.50±15.62a418.40±15.14bc543.98±33.14bc503.47±15.91bc406.25±27.29b350.69±21.05c309.61±21.43cd
    W1N2314.81±32.26a484.95±24.82a626.16±19.12a568.87±19.12a506.37±28.07a451.39±26.95a386.00±15.66a
    W2N2318.29±12.56a451.39±16.56ab583.91±15.17b541.67±19.1ab444.44±21.12b408.56±11.82b359.95±26.12ab
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  6   干旱胁迫和氮素调控对棉花过氧化氢酶(CAT)活性的影响

    Table  6   Effects of water and nitrogen regulation on catalase (CAT) activity of cotton

    U·mg−1(protein) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N056.08±7.43a72.58±4.71bc82.95±8.25bc93.79±2.27d87.66±3.74bc78.94±5.35bc70.46±4.26d
    W2N057.97±6.74a65.75±5.10c74.94±6.16c84.13±4.90e77.53±6.01c67.40±7.15c62.68±5.21d
    W1N160.56±7.15a78.71±4.26ab89.08±6.74b100.15±1.47bc95.44±3.24b85.31±5.89b78.94±6.10bc
    W2N1 60.09±12.86a73.05±5.31bc81.77±3.56bc91.67±5.31cd86.72±4.02bc76.11±2.48b69.28±3.74cd
    W1N264.57±3.56a86.01±2.68a100.15±3.63a110.99±4.64a102.98±8.84a94.02±2.12a88.13±5.35a
    W2N265.98±4.71a80.12±7.63ab90.02±2.16b101.57±3.56b91.20±2.45ab83.89±4.55ab77.76±1.87b
    水分 Water (W)ns***********
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  7   水分和氮素调控对棉花丙二醛(MDA)含量的影响

    Table  7   Effects of water and nitrogen regulation on malondialdehyde (MDA) content of cotton

    µmol·g−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N028.68±3.33a47.65±1.32a71.91±2.02a82.69±2.40a88.64±3.61a93.46±7.02a90.38±5.20a
    W2N028.24±2.76b42.35±2.65b63.97±2.02b74.23±1.76b81.36±2.08b86.54±5.03ab82.69±5.45ab
    W1N127.35±2.02bc41.03±2.65b61.32±2.02b70.77±1.76b78.18±2.08bc82.31±3.53bc79.23±2.90bc
    W2N126.91±2.02cd37.06±2.29c56.47±0.76c63.85±2.90c72.73±2.08cd76.15±1.15cd73.46±2.40cd
    W1N225.15±2.65d36.62±2.76c54.26±1.32c60.38±2.90c68.64±1.57de73.85±3.05de70.00±4.37de
    W2N224.71±3.33e31.32±3.33d42.35±2.29d53.08±2.31d62.73±2.73e67.31±4.37e64.62±4.62e
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV
  • [1] 郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12): 1839−1846 doi: 10.13592/j.cnki.ppj.2018.0437

    GUO Y Y, LIU J, ZHU Y L, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress[J]. Plant Physiology Journal, 2018, 54(12): 1839−1846 doi: 10.13592/j.cnki.ppj.2018.0437

    [2]

    ŠESTÁK Z. JONES R L, BOHNERT H J, et al. Annual review of plant physiology and plant molecular, biology. vol. 50, 1999[J]. Biologia Plantarum, 2001, 44(3): 396 doi: 10.1023/A:1012473011461

    [3] 于文颖, 纪瑞鹏, 冯锐, 等. 干旱胁迫对玉米叶片光响应及叶绿素荧光特性的影响[J]. 干旱区资源与环境, 2016, 30(10): 82−87

    YU W Y, JI R P, FENG R, et al. Effect of drought stress on light response and chlorophyll fluorescence of maize leaf[J]. Journal of Arid Land Resources and Environment, 2016, 30(10): 82−87

    [4]

    DUBEY R, PANDEY B K, SAWANT S V, et al. Drought stress inhibits stomatal development to improve water use efficiency in cotton[J]. Acta Physiologiae Plantarum, 2023, 45(2): 30 doi: 10.1007/s11738-022-03511-6

    [5] 王允. 不同生育期水分亏缺对盆栽棉花生长发育的影响[D]. 武汉: 华中农业大学, 2016

    WANG Y. Effects of water deficit at different growing stage on growth and development characteristics of potted cotton[D]. Wuhan: Huazhong Agricultural University, 2016

    [6]

    CRALLE H, EL-HALAWANY S, COTHREN J T, et al. Drought-induced changes in shoot and root growth of young cotton plants[J]. Journal of Cotton Science, 1999, 3(4): 183−187

    [7]

    WANG H M, CHEN Y L, HU W, et al. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf[J]. Plant Physiology and Biochemistry, 2019, 139: 333−341 doi: 10.1016/j.plaphy.2019.03.038

    [8]

    ZHAO W Q, DONG H R, ZHOU Z G, et al. Potassium (K) application alleviates the negative effect of drought on cotton fiber strength by sustaining higher sucrose content and carbohydrates conversion rate[J]. Plant Physiology and Biochemistry, 2020, 157: 105−113 doi: 10.1016/j.plaphy.2020.10.014

    [9]

    ZHU L X, LIU L T, SUN H C, et al. The responses of lateral roots and root hairs to nitrogen stress in cotton based on daily root measurements[J]. Journal of Agronomy and Crop Science, 2022, 208(1): 89−105 doi: 10.1111/jac.12525

    [10] 刘连涛, 李存东, 孙红春, 等. 氮素营养水平对棉花不同部位叶片衰老的生理效应[J]. 植物营养与肥料学报, 2007, 13(5): 910−914 doi: 10.3321/j.issn:1008-505x.2007.05.023

    LIU L T, LI C D, SUN H C, et al. Physiological effects of nitrogen nutrition on the senescence of cotton leaves at different positions[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 910−914 doi: 10.3321/j.issn:1008-505x.2007.05.023

    [11] 段文静, 马彤彤, 张永江, 等. 氮肥中不同硝化抑制剂DCD添加比例对棉花生长发育及产量的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2095−2106 doi: 10.11674/zwyf.20092

    DUAN W J, MA T T, ZHANG Y J, et al. Effects of different nitrification inhibitor DCD addition ratios in nitrogen fertilizer on cotton growth and yield[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2095−2106 doi: 10.11674/zwyf.20092

    [12] 张绪成, 上官周平. 施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响[J]. 应用生态学报, 2007, 18(7): 1447−1452 doi: 10.3321/j.issn:1001-9332.2007.07.007

    ZHANG X C, SHANGGUAN Z P. Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1447−1452 doi: 10.3321/j.issn:1001-9332.2007.07.007

    [13] 王月福, 于振文, 李尚霞, 等. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J]. 作物学报, 2002, 28(6): 743−748 doi: 10.3321/j.issn:0496-3490.2002.06.005

    WANG Y F, YU Z W, LI S X, et al. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat[J]. Acta Agronomica Sinica, 2002, 28(6): 743−748 doi: 10.3321/j.issn:0496-3490.2002.06.005

    [14] 李文娆, 李永竞, 冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应[J]. 生态学报, 2017, 37(20): 6712−6723

    LI W R, LI Y J, FENG S Z. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica, 2017, 37(20): 6712−6723

    [15] 刘海光. 亏缺灌溉下施氮量对棉花GhNRT基因表达和氮素利用效率的影响[D]. 济南: 山东师范大学, 2021

    LIU H G. Effects of nitrogen rate on GhNRT genes expression and nitrogen use efficiency of cotton under deficit irrigation[D]. Jinan: Shandong Normal University, 2021

    [16] 杜红霞, 冯浩, 吴普特, 等. 水、氮调控对夏玉米根系特性的影响[J]. 干旱地区农业研究, 2013, 31(1): 89−94, 100 doi: 10.3969/j.issn.1000-7601.2013.01.017

    DU H X, FENG H, WU P T, et al. Influence of water and N fertilizer regulation on root growth characteristics of summer maize[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 89−94, 100 doi: 10.3969/j.issn.1000-7601.2013.01.017

    [17] 何佩云, 张余, 周良, 等. 干旱胁迫及氮肥调控对苦荞植株形态、生理特性及产量的影响[J]. 应用与环境生物学报, 2022, 28(1): 128−134

    HE P Y, ZHANG Y, ZHOU L, et al. Effects of drought stress and nitrogen fertilizer regulation on morphology, physiological characteristics, and yield of Fagopyrum tataricum[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 128−134

    [18]

    GAO M, SNIDER J L, BAI H, et al. Drought effects on cotton (Gossypium hirsutum L.) fibre quality and fibre sucrose metabolism during the flowering and boll-formation period[J]. Journal of Agronomy and Crop Science, 2020, 206(3): 309−321 doi: 10.1111/jac.12389

    [19]

    ZHANG N, ZHAO B, ZHANG H J, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)[J]. Journal of Pineal Research, 2013, 54(1): 15−23 doi: 10.1111/j.1600-079X.2012.01015.x

    [20] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002

    CHEN J X, WANG X F. Experimental Instruction of Plant Physiology[M]. Guangzhou: South China University of Technology Press, 2002

    [21]

    ZHANG C F, PENG S B, PENG X X, et al. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots[J]. Plant Science, 1997, 125(2): 163−170 doi: 10.1016/S0168-9452(97)00075-7

    [22] 刘洁, 王省芬, 张桂寅, 等. 棉花叶片硝酸还原酶活性的测定方法[J]. 河北农业大学学报, 2010, 33(4): 1−4 doi: 10.3969/j.issn.1000-1573.2010.04.001

    LIU J, WANG X F, ZHANG G Y, et al. Determination method of nitrate reductase activity in cotton leaves[J]. Journal of Agricultural University of Hebei, 2010, 33(4): 1−4 doi: 10.3969/j.issn.1000-1573.2010.04.001

    [23]

    ZHANG S H, XU X F, SUN Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336−347 doi: 10.1016/S2095-3119(17)61758-1

    [24] 刘朝霞. 土壤干旱胁迫对番茄根系生长、气孔特性及保护酶活性的影响[D]. 南京: 南京信息工程大学, 2016

    LIU Z X. Effects of soil drought stress on root growth, stomatal characteristics and antioxidant enzyme of tomato crops[D]. Nanjing: Nanjing University of Information Science & Technology, 2016

    [25]

    MI G, CHEN F, YUAN L, et al. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems[J]. Advances in Agronomy, 2016, 139: 73−97

    [26]

    LI C Y, KONG X Q, LUO Z, et al. Exogenous application of acetic acid improves the survival rate of cotton by increasing abscisic acid and jasmonic acid contents under drought stress[J]. Acta Physiologiae Plantarum, 2021, 43(2): 1−10

    [27] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81−91 doi: 10.11674/zwyf.2015.0109

    LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81−91 doi: 10.11674/zwyf.2015.0109

    [28] 丁红, 成波, 张冠初, 等. 施用氮肥对干旱胁迫下花生生理特性的影响[J]. 花生学报, 2021, 50(2): 64−68, 72 doi: 10.14001/j.issn.1002-4093.2021.02.011

    DING H, CHENG B, ZHANG G C, et al. Effects of nitrogen fertilizer application on physiological characteristics of peanut leaves under drought stress[J]. Journal of Peanut Science, 2021, 50(2): 64−68, 72 doi: 10.14001/j.issn.1002-4093.2021.02.011

    [29]

    LI J P, LIU J, ZHU T T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735 doi: 10.3390/ijms20071735

    [30]

    ZHOU Z G, OOSTERHUIS D M. Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions[J]. American Journal of Plant Sciences, 2012, 3(6): 721−730 doi: 10.4236/ajps.2012.36087

    [31]

    ZHANG L X, LI S X, ZHANG H, et al. Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes[J]. Journal of Agronomy and Crop Science, 2007, 193(6): 387−397 doi: 10.1111/j.1439-037X.2007.00276.x

    [32] 李鹏程. 棉花氮经济利用及其高效机理研究[D]. 北京: 中国农业科学院, 2015

    LI P C. Study on nitrogen economic use and its high-efficiency mechanism in cotton (Gossypium hirsutum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015

    [33] 孙永健, 孙园园, 李旭毅, 等. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J]. 作物学报, 2009, 35(11): 2055−2063

    SUN Y J, SUN Y Y, LI X Y, et al. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction[J]. Acta Agronomica Sinica, 2009, 35(11): 2055−2063

    [34] 谈建鑫. 水氮互作对复播油葵生长发育和水氮利用效率的影响[D]. 石河子: 石河子大学, 2015

    TAN J X. Effects of water and nitrogen fertilization on growth and development, water and nitrogen use efficiency of drip no-till cropping oil sunflower[D]. Shihezi: Shihezi University, 2015

    [35]

    HU W, ZHANG J P, YAN K, et al. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.)[J]. Physiologia Plantarum, 2021, 173(4): 2041−2054 doi: 10.1111/ppl.13550

    [36]

    DONG H Z, LI W J, ENEJI A E, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field[J]. Field Crops Research, 2012, 126: 137−144 doi: 10.1016/j.fcr.2011.10.005

    [37] 宋兴虎, Tufail Ahmed Wagan, Biangkham Souliyanonh, 等. 氮肥用量及其后效对棉花产量和生物质累积动态的影响[J]. 棉花学报, 2018, 30(2): 145−154 doi: 10.11963/1002-7807.sxhygz.20180315

    SONG X H, WAGAN T A, SOULIYANONH B, et al. Nitrogen fertilizer and its residual effect on cotton yield and biomass accumulation[J]. Cotton Science, 2018, 30(2): 145−154 doi: 10.11963/1002-7807.sxhygz.20180315

    [38]

    STAMATIADIS S, TSADILAS C, SAMARAS V, et al. Nitrogen uptake and N-use efficiency of mediterranean cotton under varied deficit irrigation and N fertilization[J]. European Journal of Agronomy, 2016, 73: 144−151 doi: 10.1016/j.eja.2015.11.013

    [39] 王艳哲, 刘秀位, 孙宏勇, 等. 水氮调控对冬小麦根冠比和水分利用效率的影响研究[J]. 中国生态农业学报, 2013, 21(3): 282−289

    WANG Y Z, LIU X W, SUN H Y, et al. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282−289

  • 期刊类型引用(4)

    1. 张紫淇,杨丽莉,何新林,李小龙. 滴灌水盐氮调控对棉田水肥盐运移及棉花产量的影响. 干旱区研究. 2024(05): 876-893 . 百度学术
    2. 汪思佳,王春霞,张景瑞,杨跃发. 减氮条件下基于AquaCrop模型的北疆膜下滴灌棉花水氮制度优化. 水土保持学报. 2024(03): 314-324+334 . 百度学术
    3. 孙绘健,罗静,杜珊珊,姚青青,王东力,何忠盛. 花铃期不同干旱水平对南疆棉花品种生育进程、产量及纤维品质的影响. 中国棉花. 2024(12): 20-27 . 百度学术
    4. 肖键,洪明,于秋月,陆元春,张新乐. 灌水定额和周期对北疆制种棉花生长、产量及种子质量的影响. 新疆农业大学学报. 2023(06): 446-452 . 百度学术

    其他类型引用(9)

图(4)  /  表(7)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  163
  • PDF下载量:  94
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-01-01
  • 录用日期:  2023-03-26
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-09-18

目录

/

返回文章
返回