东北黑土区典型县域农牧系统养分流动特征分析

王一莹, 张畅, 袁静超, 刘剑钊, 王乃卉, 梁尧, 范围, 任军, 蔡红光

王一莹, 张畅, 袁静超, 刘剑钊, 王乃卉, 梁尧, 范围, 任军, 蔡红光. 东北黑土区典型县域农牧系统养分流动特征分析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1609−1625. DOI: 10.12357/cjea.20220938
引用本文: 王一莹, 张畅, 袁静超, 刘剑钊, 王乃卉, 梁尧, 范围, 任军, 蔡红光. 东北黑土区典型县域农牧系统养分流动特征分析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1609−1625. DOI: 10.12357/cjea.20220938
WANG Y Y, ZHANG C, YUAN J C, LIU J Z, WANG N H, LIANG Y, FAN W, REN J, CAI H G. Nutrient flow characteristics analysis of typical county in crop-livestock systems in black soil region in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1609−1625. DOI: 10.12357/cjea.20220938
Citation: WANG Y Y, ZHANG C, YUAN J C, LIU J Z, WANG N H, LIANG Y, FAN W, REN J, CAI H G. Nutrient flow characteristics analysis of typical county in crop-livestock systems in black soil region in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1609−1625. DOI: 10.12357/cjea.20220938
王一莹, 张畅, 袁静超, 刘剑钊, 王乃卉, 梁尧, 范围, 任军, 蔡红光. 东北黑土区典型县域农牧系统养分流动特征分析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1609−1625. CSTR: 32371.14.cjea.20220938
引用本文: 王一莹, 张畅, 袁静超, 刘剑钊, 王乃卉, 梁尧, 范围, 任军, 蔡红光. 东北黑土区典型县域农牧系统养分流动特征分析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1609−1625. CSTR: 32371.14.cjea.20220938
WANG Y Y, ZHANG C, YUAN J C, LIU J Z, WANG N H, LIANG Y, FAN W, REN J, CAI H G. Nutrient flow characteristics analysis of typical county in crop-livestock systems in black soil region in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1609−1625. CSTR: 32371.14.cjea.20220938
Citation: WANG Y Y, ZHANG C, YUAN J C, LIU J Z, WANG N H, LIANG Y, FAN W, REN J, CAI H G. Nutrient flow characteristics analysis of typical county in crop-livestock systems in black soil region in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1609−1625. CSTR: 32371.14.cjea.20220938

东北黑土区典型县域农牧系统养分流动特征分析

基金项目: 吉林省重大科技专项课题(20220302001NC)和吉林省农业科技创新工程项目(CXGC2021ZD001)资助
详细信息
    作者简介:

    王一莹, 研究方向为养分资源管理。E-mail: wangyiying9771@163.com

    通讯作者:

    蔡红光, 研究方向为土壤培肥与养分资源管理。E-mail: caihongguang1981@163.com

  • 中图分类号: S19; S158.5

Nutrient flow characteristics analysis of typical county in crop-livestock systems in black soil region in Northeast China

Funds: This study was supported by the Major Science and Technology Special Project of Jilin (20220302001NC) and the Agricultural Science and Technology Innovation Project of Jilin (CXGC2021ZD001).
More Information
  • 摘要:

    在保障粮食安全的前提下, 东北黑土区作物和畜牧生产的耦合促进了农业绿色发展。本研究选择位于东北黑土区的吉林省农安县为研究区域, 以农牧系统为研究边界, 通过实地调研、统计数据和文献, 结合食物链养分流动模型(NUFER: NUtrient flows in Food chains, Environment and Resources use)定量分析1990—2020年农牧系统氮磷养分流动、利用效率和环境损失, 探究气候和社会经济因素对氮磷排放的驱动作用, 并设置平衡施肥(减少化肥施用)和有机肥替代(提升有机物料替代)两种情景评估该县减排潜力。结果表明, 相对于1990年, 2020年农安县农牧体系氮磷输入量分别下降45%和23%, 其中化肥施用是最大的输入项。作物和农牧系统养分利用率波动增加, 而畜禽系统养分利用率下降并逐渐趋于稳定。农牧体系氮磷损失量较1990年分别减少41%和增加29%。农田氨挥发、径流侵蚀和畜禽粪便直排为主要排放途径。通过平衡施肥和有机替代, 土壤氮磷积累处于较低水平, 至2030年农安县化学氮肥有80%的减施潜力, 化学磷肥有85%的减施潜力, 且氮磷养分环境排放均减少67%, 作物和农牧系统养分利用率均增长50%以上。综上, 农安县农牧体系未来可通过增加秸秆和粪便还田量提升化肥减施潜力。东北黑土区应继续深化化肥零增长政策, 推行有机废弃物资源化利用, 实现农牧系统协同优化发展。

    Abstract:

    The integration of crop and livestock production promotes agricultural green development and guarantee food security in black soil region in Northeast China. In this study, Nong’an County, Jilin Province, which is located in black soil region in Northeast China, was selected as the study boundary. Quantitative studies for nitrogen and phosphorus flows, utilization efficiency as well as environmental losses in crop-livestock systems from 1990 to 2020 were conducted through field research, statistical data and literature, combined with the NUFER model (NUtrient flows in Food chains, Environment and Resources use). The present study explored the impacts of climate and socio-economic factors on nitrogen and phosphorus emissions. Furthermore, two sets of scenarios of balanced fertilization (reduction of fertilizer application) and organic substitution (increase of organic material substitution) were set up to assess the county’s emission reduction potential. The results showed that, compared to 1990, nitrogen and phosphorus inputs to crop-livestock systems for Nong’an County in 2020 decreased by 45% and 23%, respectively, with chemical fertilizer application as the largest input. The nutrient utilization efficiency of crop system and crop-livestock systems increased fluctuatingly, while nutrient utilization efficiency of livestock system decreased and tended to remain stable. The nitrogen and phosphorus losses of crop-livestock systems decreased by 41% and increased by 29% compared to 1990, respectively. Ammonia volatilization from farmland, runoff and erosion, and livestock manure discharge were the major contributors to nutirent losses. Through balanced fertilization and organic substitution, it is predicted that by 2030, Nong’an County will have the potential to reduce the application of chemical nitrogen fertilizer by 80% and chemical phosphorus fertilizer by 85%, with low levels of soil nitrogen and phosphorus accumulation, and the environmental emissions will be reduced by 67%, the nutrient utilization efficiency of crop system and crop-livestock systems will increase by more than 50%. In conclusion, crop-livestock system of Nong’an County can enhance the potential for fertilizer reduction in the future by increasing the amount of straw and manure returned to the field. The black soil region in Northeast China should continue to deepen the policy of zero growth of chemical fertilizer, and promote the utilization of organic waste to guarantee a synergistically optimized crop-livestock systems.

  • 图  5   1990—2020年农安县农牧系统氮(A)和磷(B)利用效率

    NUEc: 作物氮利用率; NUEa: 畜禽氮利用率; NUEc+a: 农牧系统氮利用率; PUEc: 作物磷利用率; PUEa: 畜禽磷利用率; PUEc+a: 农牧系统磷利用率。实线表示线性回归, 阴影区域表示95%置信区间(n=31)。NUEc: nitrogen use efficiency of crop; NUEa: nitrogen use efficiency of animal; NUEc+a: nitrogen use efficiency of crop-livestock system; PUEc: phosphorus use efficiency of crop; PUEa: phosphorus use efficiency of animal; PUEc+a: phosphorus use efficiency of crop-livestock system. The solid line denotes linear regression, and the shaded area denotes 95% confidence intervals (n=31).

    Figure  5.   Use efficiencies of nitrogen (A) and phosphorus (B) of crop-livestock systems from 1990 to 2020 in Nong’an County

    图  1   研究区吉林省农安县地理位置

    Figure  1.   Geographical location of the study area of Nong’an County, Jilin Province

    图  2   1990—2020年农安县种植业(a)和畜牧业(b)结构变化

    LU表示标准牛当量(折合500 kg奶牛), 不同动物LU折算系数分别为: 奶牛 1, 肉牛 0.8, 猪 0.3, 羊 0.1, 蛋鸡 0.014[21]。LU is livestock unit, which indicates the standard cattle equivalent (one cattle equivalent, which equals 500 kg live weight), and the conversion ratios for dairy cattle, beef cattle, pig, sheep and layer are 1, 0.8, 0.3, 0.1 and 0.014, respectively[21].

    Figure  2.   Changes of crop (a) and livestock (b) production structures from 1990 to 2020 in Nong’an County

    图  3   农安县农牧生产研究边界和养分流动图

    a表示化肥投入, b表示饲料进口, c表示农作物收获, d表示农作物秸秆, e表示食品加工。a indicates fertilizer input; b indicates feed imported; c indicates crop harvested; d indicates crop straw; e indicates food processing.

    Figure  3.   Research boundary and nutrient flow of crop-livestock systems in Nong’an County

    4   1990年和2020年农安县农牧体系氮(N)和磷(P)养分流动特征及年际差异

    4.   Changes of nitrogen (N) and phosphorus (P) flows of crop-livestock systems of 1990 and 2020 in Nong’an County

    图  6   1990—2020年农安县农牧系统氮(A)和磷(B)环境损失

    NH3-c: 农田氨挥发; N2O-c: 农田氧化亚氮损失; R&E-c: 农田径流和侵蚀过程中的养分损失(氮或磷); L-c: 农田淋溶过程中的养分损失(氮或磷); DeN-c: 农田反硝化过程中的氮素损失; NH3-a: 畜禽养殖业氨挥发; Disch/stack-a: 畜禽养殖业水体直排或堆置过程中的养分损失(氮或磷); PLc: 每生产1 kg作物产品的养分(氮或磷)损失; PLa: 每生产1 kg动物产品的养分(氮或磷)损失; PLc+a: 每生产1 kg农牧产品(作物产品+畜禽产品)的养分(氮或磷)损失; 实线表示线性回归, 阴影区域表示95%置信区间(n=31)。NH3-c: NH3 emissions from farmland; N2O-c: N2O losses from farmland; R&E-c: nutrient (nitrogen or phosphorus) losses via runoff and erosion from farmland; L-c: nutrient (nitrogen or phosphorus) losses via leaching from farmland; DeN-c: nitrogen losses via denitrification from farmland; NH3-a: NH3 emissions from livestock production; Disch/stack-a: nutrient (nitrogen or phosphorus) losses via manure discharge or stacking from livestock production; PLc: nutrient (nitrogen or phosphorus) losses per unit crop product production; PLa: nutrient (nitrogen or phosphorus) losses per unit livestock product production; PLc+a: nutrient (nitrogen or phosphorus) losses per unit crop and livestock product production. The solid line denotes linear regression, and the shaded region denotes 95% confidence intervals (n=31).

    Figure  6.   Environmental losses of nitrogen (A) and phosphorus (B) of crop-livestock systems from 1990 to 2020 in Nong’an County

    图  7   农安县农牧体系氮磷排放强度与气候和社会经济因素的关系

    PLc: 每生产1 kg作物产品的养分(氮或磷)损失; PLa: 每生产1 kg动物产品的养分(氮或磷)损失; PLc+a: 每生产1 kg农牧产品(作物产品+畜禽产品)的养分(氮或磷)损失; 实线表示线性回归, 阴影区域表示95%置信区间(n=31)。PLc: nutrient (nitrogen or phosphorus) losses per unit crop product production; PLa: nutrient (nitrogen or phosphorus) losses per unit livestock product production; PLc+a: nutrient (nitrogen or phosphorus) losses per unit crop and livestock product production. The solid line denotes linear regression and the shaded region denotes 95% confidence intervals (n=31).

    Figure  7.   Nitrogen and phosphorus losses per unit product production from crop-livestock systems in relation to climatic and socioeconomic factors in Nong’an County

    图  8   2020年和2030年不同情景下农安县农牧体系养分平衡、环境损失及利用效率

    2020年和2030年为基准年份; S1-N60、S2-N70、S3-N80为2020年情景中化肥氮减施60%、70%、80%; S4-N70、S5-N80、S6-N90为2030年情景中化肥氮减施70%、80%、90%; S1-P75、S2-P80、S3-P85为2020年情景中化肥磷减施75%、80%、85%; S4-P80、S5-P85、S6-P90为2030年情景中化肥磷减施80%、85%、90%。NH3-c: 农田氨挥发; N2O-c: 农田氧化亚氮损失; R&E-c: 农田径流和侵蚀过程中的养分损失(氮或磷); L-c: 农田淋溶过程中的养分损失(氮或磷); DeN-c: 农田反硝化过程中的氮素损失; NH3-a: 畜禽养殖业氨挥发; Disch/stack-a: 畜禽养殖业水体直排或堆置过程中的养分损失(氮或磷)。2020 and 2030 are base years; S1-N60, S2-N70 and S3-N80 are scenarios of 60%, 70% and 80% reduction in the application of chemical nitrogen fertilizer in 2020, respectively; S4-N70, S5-N80 and S6-N90 are scenarios of 70%, 80% and 90% reduction in the application of chemical nitrogen fertilizer in 2030, respectively; S1-P75, S2-P80 and S3-P85 are scenarios of 75%, 80% and 85% reduction in the application of chemical phosphorus fertilizer in 2020, respectively; S4-P80, S5-P85 and S6-P90 are scenarios of 80%, 85% and 90% reduction in the application of chemical phosphorus fertilizer in 2030, respectively. NH3-c: NH3 emissions from farmland; N2O-c: N2O losses from farmland; R&E-c: nutrient (nitrogen or phosphorus) losses via runoff and erosion from farmland; L-c: nutrient (nitrogen or phosphorus) losses via leaching from farmland; DeN-c: nitrogen losses via denitrification from farmland; NH3-a: NH3 emissions from livestock production; Disch/stack-a: nutrient (nitrogen or phosphorus) losses via manure discharge or stacking from livestock production.

    Figure  8.   Nutrient balance, losses to the environment and use efficiency of crop-livestock systems in Nong’an County under different scenarios in 2020 and 2030

    图  9   1990—2020年农安县单位播种面积农业源温室气体排放量变化

    Figure  9.   Changes in greenhouse gas (GHG) emissions from agricultural production system per unit sown area from 1990 to 2020 in Nong’an County

    表  1   不同农作物种植户调研数据

    Table  1   Field research data of different crop farms

    项目
    Item
    粮食作物种植户
    Staple crop farms
    经济作物种植户
    Cash crop farms
    样本数 Sample size187122
    耕地面积 Cultivation area (hm2)377 31931 461
    播种面积 Sown area (hm2)373 32931 128
    单位面积产量 Yield per unit area (kg·hm−2)845839 794
    籽粒利用方式
    Grain utilization mode (%)
    饲喂 Feed6822
    废弃 Waste88
    食品 Food1864
    其他 Others66
    秸秆利用方式
    Straw utilization mode (%)
    饲喂 Feed3842
    还田 Return to field4436
    焚烧 Burn00
    其他 Others1822
    施肥量
    Fertilization amount (kg·hm−2)
    基肥 Base fertilizer35~4033~50
    追肥 Top application225~30075~270
    施肥类型
    Fertilizer type
    基肥
    Base fertilizer
    复合肥
    Compound fertilizer
    有机肥+尿素
    Organic fertilizer + urea
    追肥
    Top application
    复合肥+尿素
    Compound fertilizer + urea
    复合肥
    Compound fertilizer
    施用方式
    Application method
    基肥
    Base fertilizer
    深施
    Deep application
    表施
    Broadcast
    追肥
    Top application
    表施+灌水
    Broadcast + irrigation
    深施
    Deep application
    下载: 导出CSV

    表  2   不同畜禽养殖户调研数据

    Table  2   Field research data of different livestock farms

    项目
    Item
    生猪养殖户
    Pig farm
    肉牛养殖户
    Beef cattle farm
    奶牛养殖户
    Dairy cattle farm
    羊养殖户
    Sheep farm
    蛋鸡养殖户
    Layer farm
    样本数 Sample size541011414
    养殖规模 Size (heads)≥500≥100≥100≥500≥10 000
    饲料摄入量(鲜重)
    Feed intake (kg∙head−1∙a−1)
    2543454779375630
    清粪方式
    Cleaning method
    干清粪
    Scraping system
    干清粪
    Scraping system
    干清粪
    Scraping system
    干清粪
    Scraping system
    干清粪
    Scraping system
    粪尿处理方式
    Manure treatment
    厌氧堆肥+处理中心、厌氧堆肥+有机肥厂、沼气池+厌氧池
    Anaerobic composting & treatment center; anaerobic composting + organic fertilizer manufacturing plant; biogas digester + anaerobic tank
    厌氧堆肥+处理中心
    Anaerobic composting + treatment center
    厌氧堆肥+处理中心
    Anaerobic composting + treatment center
    厌氧堆肥+处理中心
    Anaerobic composting + treatment center
    厌氧堆肥+处理中心
    Anaerobic composting + treatment center
    粪尿还田后氨挥发系数[22]
    NH3 emission coefficient after manure applied to field (%)[22]
    2525252525
    粪尿储藏阶段氨挥发系数[22]
    NH3 emission coefficient during storage (%)[22]
    2919192412
    粪尿年产生量
    Manure production
    (kg∙head−1∙a−1)
    氮 Nitrogen4.930.070.07.10.55
    磷 Phosphorus1.74.812.91.00.25
    粪尿利用情况
    Manure utilization
    (%)
    还田
    Applied to field
    4958584952
    直排 Discharge3128283641
    下载: 导出CSV

    表  3   农安县农牧系统养分环境排放模型与气候和社会经济因素的关系

    Table  3   Relationships between nutrient environmental emissions from crop-livestock systems with climatic and socio-economic factors inNong’an County

    参数
    Parameter
    项目
    Item
    ln(单位农产品总氮排放强度)
    ln(nitrogen losses per unit agricultural product production)
    作物产品
    Crop products
    畜禽产品
    Livestock products
    农牧产品
    Crop and livestock products
    模型1
    Model 1
    模型2
    Model 2
    模型1
    Model 1
    模型2
    Model 2
    模型1
    Model 1
    模型2
    Model 2
    r ln(人均GDP) ln(GDP per capita) −0.27*** −0.06*** −0.28***
    ln(城市化率) ln(urbanization rate) −1.32*** −0.24* −1.59***
    年均温度 Annual average temperature −0.07 −0.13 <0.01 −0.01 −0.05 −0.12*
    累积降雨量 Accumulated rainfall >−0.01*** >−0.01*** >−0.01* >−0.01** >−0.01** >−0.01**
    n 31 31 31 31 31 31
    调整后的R2
    Adj. R-squared
    0.85 0.55 0.66 0.30 0.86 0.61
    参数
    Parameter
    项目
    Item
    ln(单位农产品总磷排放强度)
    ln(phosphorus losses per unit agricultural product production)
    作物产品
    Crop products
    畜禽产品
    Livestock products
    农牧产品
    Crop and livestock products
    模型1
    Model 1
    模型2
    Model 2
    模型1
    Model 1
    模型2
    Model 2
    模型1
    Model 1
    模型2
    Model 2
    r ln(人均GDP) ln(GDP per capita) −0.17*** −0.15*** −0.05
    ln(城市化率) ln(urbanization rate) −0.82** −0.73*** 0.38
    年均温度 Annual average temperature −0.02 −0.06 −0.01 −0.04 −0.02 −0.03
    累积降雨量 Accumulated rainfall >−0.01*** >−0.01*** <0.01* >−0.01* >−0.01** >−0.01***
    n 31 31 31 31 31 31
    调整后的R2
    Adj. R-squared
    0.79 0.56 0.92 0.46 0.28 0.29
      *: P<0.05; **: P<0.01; ***: P<0.001. 模型1不考虑城市化率, 模型2不考虑人均GDP。In Model 1, urbanization rate is removed; in Model 2, GDP per capita is removed.
    下载: 导出CSV
  • [1]

    STROKAL M, JANSSEN A B G, CHEN X P, et al. Green agriculture and blue water in China: reintegrating crop and livestock production for clean water[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(1): 72 doi: 10.15302/J-FASE-2020366

    [2] 傅伯杰. 新时代自然地理学发展的思考[J]. 地理科学进展, 2018, 37(1): 1−7 doi: 10.18306/dlkxjz.2018.01.001

    FU B J. Thoughts on the recent development of physical geography[J]. Progress in Geography, 2018, 37(1): 1−7 doi: 10.18306/dlkxjz.2018.01.001

    [3] 农业农村部办公厅. 农业部关于实施农业绿色发展五大行动的通知[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/nylsfz/xwbd_lsfz/201709/t20170913_5814708.htm

    General Office of the Ministry of Agriculture and Rural Affairs. Circular of the Ministry of Agriculture on the five actions for the implementation of Agriculture Green Development[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/nylsfz/xwbd_lsfz/201709/t20170913_5814708.htm

    [4]

    WANG M R, MA L, STROKAL M, et al. Hotspots for nitrogen and phosphorus losses from food production in China: a county-scale analysis[J]. Environmental Science & Technology, 2018, 52(10): 5782−5791

    [5]

    WANG M R, MA L, STROKAL M, et al. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China[J]. Agricultural Systems, 2018, 163: 58−72 doi: 10.1016/j.agsy.2017.01.001

    [6]

    WIEDEMANN S, MCGAHAN E, MURPHY C, et al. Resource use and environmental impacts from beef production in eastern Australia investigated using life cycle assessment[J]. Animal Production Science, 2016, 56(5): 882−894 doi: 10.1071/AN14687

    [7]

    CHADWICK D, JIA W, TONG Y A, et al. Improving manure nutrient management towards sustainable agricultural intensification in China[J]. Agriculture, Ecosystems & Environment, 2015, 209: 34−46

    [8]

    BAI Z H, FAN X W, JIN X P, et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population[J]. Nature Food, 2022, 3(2): 152−160 doi: 10.1038/s43016-021-00453-z

    [9]

    HOU Y, MA L, GAO Z L, et al. The driving forces for nitrogen and phosphorus flows in the food chain of China, 1980 to 2010[J]. Journal of Environmental Quality, 2013, 42(4): 962−971 doi: 10.2134/jeq2012.0489

    [10]

    BAI Z H, MA L, QIN W, et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses[J]. Environmental Science & Technology, 2014, 48(21): 12742−12749

    [11]

    LEIP A, MARCHI G, KOEBLE R, et al. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe[J]. Biogeosciences, 2008, 5(1): 73−94 doi: 10.5194/bg-5-73-2008

    [12]

    ISERMANN K, ISERMANN R. Food production and consumption in Germany: N flows and N emissions[J]. Nutrient Cycling in Agroecosystems, 1998, 52(2): 289−301

    [13]

    MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4): 1279−1289 doi: 10.2134/jeq2009.0403

    [14] 佟丙辛, 张华芳, 高肖贤, 等. 华北平原典型区域农牧系统氮素流动及其环境效应−以河北省为例[J]. 中国农业科学, 2018, 51(3): 442−455 doi: 10.3864/j.issn.0578-1752.2018.03.005

    TONG B X, ZHANG H F, GAO X X, et al. Nitrogen flow and environmental effects of crop-livestock system in typical area of North China Plain — A case study in Hebei Province[J]. Scientia Agricultura Sinica, 2018, 51(3): 442−455 doi: 10.3864/j.issn.0578-1752.2018.03.005

    [15] 张建杰, 郭彩霞, 李莲芬, 等. 农牧交错带农牧系统氮素流动与环境效应−以山西省为例[J]. 中国农业科学, 2018, 51(3): 456−467 doi: 10.3864/j.issn.0578-1752.2018.03.006

    ZHANG J J, GUO C X, LI L F, et al. Nutrient flow and environmental effects on crop-livestock system in farming-pastoral transition zone — A case study in Shanxi Province[J]. Scientia Agricultura Sinica, 2018, 51(3): 456−467 doi: 10.3864/j.issn.0578-1752.2018.03.006

    [16]

    ZHOU J C, JIAO X Q, MA L, et al. Model-based analysis of phosphorus flows in the food chain at county level in China and options for reducing the losses towards green development[J]. Environmental Pollution, 2021, 288: 117768 doi: 10.1016/j.envpol.2021.117768

    [17]

    WU L Q, LIU D H, CHEN X H, et al. Nutrient flows in the crop-livestock system in an emerging county in China[J]. Nutrient Cycling in Agroecosystems, 2021, 120(2): 243−255 doi: 10.1007/s10705-021-10147-4

    [18] 金欣鹏, 马林, 张建杰, 等. 农业绿色发展系统研究思路与定量方法[J]. 中国生态农业学报(中英文), 2020, 28(8): 1127−1140

    JIN X P, MA L, ZHANG J J, et al. Systematic research and quantitative approach for assessing agricultural green development[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1127−1140

    [19] 国家统计局. 第四次全国人口普查公报(第5号)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/200204/t20020404_30324.html

    National Bureau of Statistics. The bulletin for the 4th national population census (No. 5)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/200204/t20020404_30324.html

    [20] 国家统计局. 第七次全国人口普查公报(第5号)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818824.html

    National Bureau of Statistics. The bulletin for the 7th national population census (No. 5)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818824.html

    [21]

    BAI Z H, MA W Q, MA L, et al. China’s livestock transition: driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): eaar8534 doi: 10.1126/sciadv.aar8534

    [22] 马怡斐, 柏兆海, 马林, 等. 栾城城郊型农牧系统养分流动与环境排放时空特征[J]. 中国农业科学, 2018, 51(3): 493−506

    MA Y F, BAI Z H, MA L, et al. Temporal and spatial changes of nutrient flows and losses in the peri-urban crop-livestock system in Luancheng[J]. Scientia Agricultura Sinica, 2018, 51(3): 493−506

    [23]

    MA L, GUO J H, VELTHOF G L, et al. Impacts of urban expansion on nitrogen and phosphorus flows in the food system of Beijing from 1978 to 2008[J]. Global Environmental Change, 2014, 28: 192−204 doi: 10.1016/j.gloenvcha.2014.06.015

    [24]

    MA L, VELTHOF G L, WANG F H, et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005[J]. Science of the Total Environment, 2012, 434: 51−61 doi: 10.1016/j.scitotenv.2012.03.028

    [25] 国家气象信息中心. 中国气象数据网[EB/OL]. [2022-10-31]. http://data.cma.cn/

    National Meteorological Information Centre. China Meteorological Data Network[EB/OL]. [2022-10-31]. http://data.cma.cn/

    [26] 农业部. 农业部关于印发《到2020年化肥使用量零增长行动方案》和《到2020年农药使用量零增长行动方案》的通知[J]. 中华人民共和国农业部公报, 2015(3): 19−27

    Ministry of Agriculture. Circular of the Ministry of Agriculture on printing and distributing the Action to Achieve Zero Growth of Chemical Fertilizer Use by 2020 and the Action to Achieve Zero Growth of Pesticide Use by 2020[J]. Gazette of the Ministry of Agriculture of the People’s Republic of China, 2015(3): 19−27

    [27] 黄少辉, 杨云马, 侯亮, 等. 基于Nufer模型的京津冀农牧系统氮素平衡状况及化学氮肥减施潜力分析[J]. 植物营养与肥料学报, 2021, 27(1): 12−23

    HUANG S H, YANG Y M, HOU L, et al. Nitrogen balance and potential reduction of nitrogen fertilizer input in Beijing-Tianjin-Hebei crop-livestock system based on Nufer model[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 12−23

    [28] 巨晓棠. 理论施氮量的改进及验证−兼论确定作物氮肥推荐量的方法[J]. 土壤学报, 2015, 52(2): 249−261 doi: 10.11766/trxb201410250536

    JU X T. Improvement and validation of theoretical N rate (TNR) — Discussing the methods for N fertilizer recommendation[J]. Acta Pedologica Sinica, 2015, 52(2): 249−261 doi: 10.11766/trxb201410250536

    [29]

    HAAS G, CASPARI B, KÖPKE U. Nutrient cycling in organic farms: stall balance of a suckler cow herd and beef bulls[J]. Nutrient Cycling in Agroecosystems, 2002, 64(3): 225−230 doi: 10.1023/A:1021442806311

    [30]

    ALEXANDRATOS N, BRUINSMA J. World Agriculture Towards 2030/2050: the 2012 Revision[M]. Rome: Food and Agriculture Organization of the United Nations, 2012: 65–71

    [31] 农业部办公厅. 农业部办公厅关于印发《畜禽粪污土地承载力测算技术指南》的通知[J]. 中华人民共和国农业部公报, 2018(2): 58

    General Office of Ministry of Agriculture. Circular of the General Office of the Ministry of Agriculture on printing and distributing the Technical Guidelines for Measuring the Bearing Capacity of Soil Contaminated by Livestock and Poultry Manure[J]. Gazette of the Ministry of Agriculture of the People’s Republic of China, 2018(2): 58

    [32] 张福锁, 崔振岭, 王激清, 等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报, 2007, 42(6): 687−694

    ZHANG F S, CUI Z L, WANG J Q, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 42(6): 687−694

    [33] 柴玲欢, 朱会义. 中国粮食生产区域集中化的演化趋势[J]. 自然资源学报, 2016, 31(6): 908−919

    CHAI L H, ZHU H Y. Evolution trend of regional centralization of grain production in China[J]. Journal of Natural Resources, 2016, 31(6): 908−919

    [34] 徐志宇, 宋振伟, 邓艾兴, 等. 近30年我国主要粮食作物生产的驱动因素及空间格局变化研究[J]. 南京农业大学学报, 2013, 36(1): 79−86 doi: 10.7685/j.issn.1000-2030.2013.01.014

    XU Z Y, SONG Z W, DENG A X, et al. Regional changes of production layout of main grain crops and their actuation factors during 1981−2008 in China[J]. Journal of Nanjing Agricultural University, 2013, 36(1): 79−86 doi: 10.7685/j.issn.1000-2030.2013.01.014

    [35] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021

    National Bureau of Statistic. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021

    [36] 农业部, 国家发展改革委, 科技部, 等. 全国农业可持续发展规划(2015—2030年)[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827900.htm

    Ministry of Agriculture, National Development and Reform Commission, Ministry of Science and Technology of the People’s Republic of China, et al. National Agricultural Sustainable Development Plan (2015−2030)[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827900.htm

    [37] 张晓萌, 王寅, 焉莉, 等. 东北地区农牧系统氮、磷养分流动特征[J]. 中国农业科学, 2018, 51(3): 417−429 doi: 10.3864/j.issn.0578-1752.2018.03.003

    ZHANG X M, WANG Y, YAN L, et al. Characteristics of nitrogen and phosphorus nutrient flow in farming and animal husbandry system in northeast China[J]. Scientia Agricultura Sinica, 2018, 51(3): 417−429 doi: 10.3864/j.issn.0578-1752.2018.03.003

    [38]

    CHEN B H, REN C C, WANG C, et al. Driving forces of nitrogen use efficiency in Chinese croplands on county scale[J]. Environmental Pollution, 2023, 316: 120610 doi: 10.1016/j.envpol.2022.120610

    [39]

    Sustainable Development Solutions Network (SDSN) and Institute for European Environmental Policy (IEEP). The 2019 Europe Sustainable Development Report[R]. Paris and Brussels: SDSN and IEEP, 2019

    [40] 马林, 柏兆海, 王选, 等. 中国农牧系统养分管理研究的意义与重点[J]. 中国农业科学, 2018, 51(3): 406−416

    MA L, BAI Z H, WANG X, et al. Significance and research priority of nutrient management in soil-crop-animal production system in China[J]. Scientia Agricultura Sinica, 2018, 51(3): 406−416

    [41] 魏莎, 柏兆海, 吴迪梅, 等. 都市圈“土壤-饲料-动物”系统养分流动与环境效应−以北京市为例[J]. 中国农业科学, 2018, 51(3): 430−441

    WEI S, BAI Z H, WU D M, et al. Nutrient flow and environmental effects of “soil-feed-livestock” system in metropolis: a case study in Beijing[J]. Scientia Agricultura Sinica, 2018, 51(3): 430−441

    [42]

    GAO B, HUANG W, WANG L, et al. Driving forces of nitrogen flows and nitrogen use efficiency of food systems in seven Chinese cities, 1990 to 2015[J]. Science of the Total Environment, 2019, 676: 144−154 doi: 10.1016/j.scitotenv.2019.04.136

    [43]

    JIN X P, ZHANG N N, ZHAO Z Q, et al. Nitrogen budgets of contrasting crop-livestock systems in China[J]. Environmental Pollution, 2021, 288: 117633 doi: 10.1016/j.envpol.2021.117633

    [44]

    ZHAN X Y, ADALIBIEKE W, CUI X Q, et al. Improved estimates of ammonia emissions from global croplands[J]. Environmental Science & Technology, 2021, 55(2): 1329−1338

    [45] 农业农村部, 国家发展改革委. 农业农村减排固碳实施方案[EB/OL]. [2022-10-20]. http://www.moa.gov.cn/govpublic/KJJYS/202206/P020220630331656855638.pdf

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Development and Reform Commission. Implementation plan for emission reduction & carbon sequestration in agriculture/rural areas[EB/OL]. [2022-10-20]. http://www.moa.gov.cn/govpublic/KJJYS/202206/P020220630331656855638.pdf

    [46] 中国科学院. 东北黑土地白皮书(2020)[EB/OL]. [2022-10-25]. https://www.cas.cn/yw/202107/W020210714418584895253.pdf

    Chinese Academy of Sciences. White Paper on Black Soil Region in Northeast China (2020)[EB/OL]. [2022-10-25]. https://www.cas.cn/yw/202107/W020210714418584895253.pdf

    [47]

    CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486−489 doi: 10.1038/nature13609

    [48]

    MA L, BAI Z H, MA W Q, et al. Exploring future food provision scenarios for China[J]. Environmental Science & Technology, 2019, 53(3): 1385−1393

    [49] 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133−3139 doi: 10.3864/j.issn.0578-1752.2008.10.029

    XU M G, LI D C, LI J M, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133−3139 doi: 10.3864/j.issn.0578-1752.2008.10.029

    [50] 李燕青. 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016

    LI Y Q. Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016

    [51]

    EGHBALL B, GINTING D, GILLEY J E. Residual effects of manure and compost applications on corn production and soil properties[J]. Agronomy Journal, 2004, 96(2): 442−447 doi: 10.2134/agronj2004.4420

    [52] 李书田, 刘荣乐, 陕红. 我国主要畜禽粪便养分含量及变化分析[J]. 农业环境科学学报, 2009, 28(1): 179−184

    LI S T, LIU R L, SHAN H. Nutrient contents in main animal manures in China[J]. Journal of Agro-Environment Science, 2009, 28(1): 179−184

图(10)  /  表(3)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  223
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 录用日期:  2023-02-06
  • 网络出版日期:  2023-03-22
  • 刊出日期:  2024-10-09

目录

    /

    返回文章
    返回