滴灌模式对西辽河平原灌区春玉米不同粒位籽粒淀粉相关酶活性及淀粉积累的影响

张玉芹, 杨恒山, 张瑞富, 李从锋, 张家桦, 杨雨露

张玉芹, 杨恒山, 张瑞富, 李从锋, 张家桦, 杨雨露. 滴灌模式对西辽河平原灌区春玉米不同粒位籽粒淀粉相关酶活性及淀粉积累的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1392−1402. DOI: 10.12357/cjea.20220935
引用本文: 张玉芹, 杨恒山, 张瑞富, 李从锋, 张家桦, 杨雨露. 滴灌模式对西辽河平原灌区春玉米不同粒位籽粒淀粉相关酶活性及淀粉积累的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1392−1402. DOI: 10.12357/cjea.20220935
ZHANG Y Q, YANG H S, ZHANG R F, LI C F, ZHANG J H, YANG Y L. Effects of drip irrigation modes on activities of starch synthesis-related enzymes and accumulation of starch of kernels located in different ear positions of maize in the irrigation area of the Xiliaohe Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1392−1402. DOI: 10.12357/cjea.20220935
Citation: ZHANG Y Q, YANG H S, ZHANG R F, LI C F, ZHANG J H, YANG Y L. Effects of drip irrigation modes on activities of starch synthesis-related enzymes and accumulation of starch of kernels located in different ear positions of maize in the irrigation area of the Xiliaohe Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1392−1402. DOI: 10.12357/cjea.20220935
张玉芹, 杨恒山, 张瑞富, 李从锋, 张家桦, 杨雨露. 滴灌模式对西辽河平原灌区春玉米不同粒位籽粒淀粉相关酶活性及淀粉积累的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1392−1402. CSTR: 32371.14.cjea.20220935
引用本文: 张玉芹, 杨恒山, 张瑞富, 李从锋, 张家桦, 杨雨露. 滴灌模式对西辽河平原灌区春玉米不同粒位籽粒淀粉相关酶活性及淀粉积累的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1392−1402. CSTR: 32371.14.cjea.20220935
ZHANG Y Q, YANG H S, ZHANG R F, LI C F, ZHANG J H, YANG Y L. Effects of drip irrigation modes on activities of starch synthesis-related enzymes and accumulation of starch of kernels located in different ear positions of maize in the irrigation area of the Xiliaohe Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1392−1402. CSTR: 32371.14.cjea.20220935
Citation: ZHANG Y Q, YANG H S, ZHANG R F, LI C F, ZHANG J H, YANG Y L. Effects of drip irrigation modes on activities of starch synthesis-related enzymes and accumulation of starch of kernels located in different ear positions of maize in the irrigation area of the Xiliaohe Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1392−1402. CSTR: 32371.14.cjea.20220935

滴灌模式对西辽河平原灌区春玉米不同粒位籽粒淀粉相关酶活性及淀粉积累的影响

基金项目: 国家自然科学基金项目(31960382, 32160509)资助
详细信息
    作者简介:

    张玉芹, 主要研究方向为作物绿色高产高效栽培。E-mail: zhyq369@126.com

    通讯作者:

    杨恒山, 主要研究方向为作物绿色高产高效栽培。E-mail: yanghengshan2003@aliyun.com

  • 中图分类号: S513

Effects of drip irrigation modes on activities of starch synthesis-related enzymes and accumulation of starch of kernels located in different ear positions of maize in the irrigation area of the Xiliaohe Plain

Funds: This study was supported by the National Natural Science Foundation of China (31960382, 32160509).
More Information
  • 摘要: 为探明西辽河平原灌区不同滴灌模式对春玉米不同粒位籽粒淀粉含量及淀粉合成相关酶活性的影响, 本文以‘农华101’为供试玉米品种, 设膜下滴灌和浅埋滴灌两种滴灌模式, 研究了玉米果穗不同粒位籽粒淀粉积累特征及腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、结合态淀粉合成酶(GBSS)、可溶性淀粉合成酶(SSS)活性变化。结果表明: 2019—2020年浅埋滴灌产量较膜下滴灌玉米产量分别高5.0%和4.7%, 千粒重分别高7.4%和6.9%; 其中浅埋滴灌穗中部百粒重分别提高7.7%和4.1%, 穗上部分别提高10.8%和9.8%。春玉米不同部位籽粒淀粉含量、积累量及淀粉合成相关酶活性均为果穗下部>中部>上部; 两种滴灌模式下淀粉含量与积累量前期差异较小, 生育后期浅埋滴灌果穗中上部淀粉含量与积累量更具优势; AGPase、GBSS和 SSS的活性在灌浆后期表现为浅埋滴灌高于膜下滴灌。浅埋滴灌果穗中上部籽粒淀粉积累达到最大速率的时间较膜下滴灌延后, 淀粉活跃积累期较长, 尤其上部粒位, 达到最大积累速率时间延后5.38 d, 平均积累速率高0.2836 mg·g−1·d−1, 最终淀粉积累量高16.6%。通径和相关分析表明, 达到最大速率的时间、平均积累速率和最大积累速率对淀粉最终积累量影响系数较大, 淀粉合成相关酶活性与淀粉积累速率显著正相关。表明浅埋滴灌下果穗中上部灌浆后期籽粒的淀粉相关酶活性强、淀粉活跃积累期长, 积累达到最大速率的时间延后, 平均积累速率高, 是浅埋滴灌较膜下滴灌粒重增加和产量提高的原因之一。
    Abstract: To explore the effects of drip irrigation modes on starch content and the activities of starch synthesis-related enzymes in spring maize at different grain positions in the irrigation area of the Xiliaohe Plain, the characteristics of starch accumulation and changes in the activities of adenosine diphosphate glucose pyrophosphorylase (AGPase), bound starch synthase (GBSS), and soluble starch synthase (SSS) at different grain positions were studied using ‘Nonghua 101’ as the test variety under mulch and shallow burial drip irrigation in 2019 and 2020. The results showed that the yield of shallow burial drip irrigation increased by 5.0% and 4.7% compared with mulch drip irrigation, and the 1000-grain weight increased by 7.4% and 6.9% from 2019 to 2020, in which grains in the middle ears improved by 7.7% and 4.1%, and in and upper ears by 10.8%, and 9.8%, respectively. The starch content, accumulation amount, and activities of synthesis-related enzymes of kernels located in different positions of spring maize ear were the lower part > the middle part > the upper part; the content and accumulation amount of starch under the two drip irrigation modes had little difference in the early stage, which were more advantageous in the upper part of the ear under shallow drip irrigation in the later growth stage. The activities of AGPase, GBSS, and SSS of shallowly buried drip irrigation were all higher than those of mulch drip irrigation in the late grain filling stage. The time to reach the maximum rate of starch accumulation in the middle and upper grains of the ear of the shallow burial drip irrigation was longer than that of the mulch drip irrigation, in which the active starch accumulation period was also longer, especially in the upper grains. The time to the maximum accumulation rate was delayed by 5.38 days, the average accumulation rate increased by 0.2836 mg·g1·d 1, and the final starch accumulation increased by 16.6%. Path and correlation analysis showed that the time to reach the maximum rate, the average accumulation rate, and the maximum accumulation rate had a great influence on the final starch accumulation. Starch synthesis-related enzymes activities were significantly positively correlated with the starch accumulation rate, which showed that the activity of starch-related enzymes in the kernels located in the middle and upper parts of the ear at the late grain filling stage was strong under shallow drip irrigation. The active accumulation period of starch was also longer, the time for the accumulation to reach the maximum rate was delayed, and the average accumulation rate was high, which was one of the reasons for the increase in grain weight and yield under shallow drip irrigation compared with mulch drip irrigation.
  • 西辽河平原地处世界玉米(Zea mays)生产的“黄金带”, 是我国为数不多的井灌玉米高产区之一[1], 近年来由于降雨量低, 农田灌溉水用量增加, 导致区域地下水位下降明显[2], 发展节水农业、提高灌溉水利用效率是西辽河平原灌区玉米生产发展的必然选择。“十二五”期间随着“节水增粮”高效农业节水工程建设, 膜下滴灌技术得到大面积推广[3], 但随着膜下滴灌种植面积的扩大和种植年限的延长, 残膜污染越来越严重, 已严重影响到了土地的可持续利用[4-5]。残膜量的增加导致各土层产生不同程度的水分阻隔效益[6], 且大量的残膜导致根系下扎困难[7], 生育后期出现一定程度的早衰, 在偏砂型土壤上表现较为明显[8]。浅埋滴灌是本研究团队参与研发的一种新型滴灌技术, 以浅埋覆土(3~5 cm)替代地膜, 在发挥滴灌节水技术优势的同时, 有效避免了残膜污染, 且可降低生产成本投入, 减少地膜使用成本750元·hm−2[9], 该技术2021年列入全国农业主推技术, 在内蒙古及其周边地区推广面积超过2×106 hm2

    研究表明, 浅埋滴灌产量显著高于膜下滴灌[8], 籽粒重是玉米产量的重要构成因素, 其充实度直接关系到产量的高低[10]。淀粉作为玉米籽粒的主要成分, 占粒重的70%, 其含量直接影响籽粒充实度[11], 玉米籽粒灌浆过程, 就是淀粉合成和积累的过程[12], 淀粉的合成需要多种酶的参与, 主要有腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、结合态淀粉合成酶(GBSS)、可溶性淀粉合成酶(SSS), 且对淀粉的合成与代谢起关键性作用[13-14]。对3个灌水量两种滴灌模式下籽粒淀粉积累研究表明, 在传统灌水量60%时, 浅埋滴灌下春玉米籽粒灌浆后期淀粉合成相关酶(AGPase、GBSS、SSS酶)活性强、淀粉活跃积累期延长, 淀粉积累能力增强, 千粒重增加[15]。玉米籽粒发育存在粒位效应 [16], 下部籽粒灌浆速率高, 上部籽粒灌浆速率低、灌浆期长、粒重小、后期脱水快[17], 这与灌浆期光合同化物在果穗籽粒中的分配有关, 顶部弱势粒分配到的同化物低于果穗中下部强势粒[18], 不当的栽培措施或逆境胁迫会影响同化物供应, 加剧玉米强、弱势粒之间的差异[19-20], 浅埋滴灌由于地表无膜覆盖, 土壤水、热变化规律与膜下滴灌差别较大, 生育后期同化物供应差异显著[8], 两种不同滴灌模式下不同粒位籽粒淀粉相关酶活性及淀粉积累必然存在差异。本文设置浅埋滴灌与膜下滴灌两种滴灌模式, 在前期研究得出的适宜灌水量2160 m3·hm−2(传统灌量60%)下[15], 研究两种滴灌模式对春玉米果穗不同粒位籽粒淀粉积累及淀粉合成相关酶活性的影响, 明确不同粒位籽粒粒重形成的生理机制, 以期为西辽河平原灌区玉米节水高产栽培调控提供理论依据。

    试验于2019年和2020年在通辽市科尔沁区内蒙古民族大学科技园区进行, 试验地土壤为灰色草甸中壤土, 是当地主要的土壤类型。2019年和2020年0~20 cm土壤表层养分含量分别为有机质20.27 g·kg−1和20.35 g·kg−1、碱解氮51.13 mg·kg−1和52.9 mg·kg−1、全氮0.83 g·kg−1和0.75 g·kg−1、有效磷6.25 mg·kg−1和6.03 mg·kg−1、速效钾77.85 mg·kg−1和81.05 mg·kg−1

    试验设膜下滴灌(MDI)和浅埋滴灌(SBDI) 2种滴灌模式, 灌水定额为2160 m3·hm−2 (传统灌量60%, 为课题组前期研究得出的适宜灌水量), 在玉米出苗—拔节期、拔节—大喇叭口期、大喇叭口—吐丝期、吐丝—乳熟期和乳熟—收获期滴灌量分别为220 m3·hm−2、430 m3·hm−2、430 m3·hm−2、650 m3·hm−2和430 m3·hm−2。供试品种为‘农华101’, 大小垄(小垄行距40 cm, 大垄行距80 cm)种植, 各处理采用播种-施肥-铺带-覆膜一体机播种, 滴灌管铺于小垄中间, 浅埋滴灌播种时抬起覆膜装置, 种植密度为7.5 万株·hm−2。2个处理均底施磷酸二铵150 kg·hm−2, 硫酸钾90 kg·hm−2; 追施尿素525 kg·hm−2, 分别在拔节期、大喇叭口期、吐丝期按3∶6∶1比例结合滴灌进行。小区面积120 m2 (6 m×20 m), 3次重复。各处理2019年5月1日播种, 10月1日收获, 2020年5月3日播种, 10月2日收获。

    各小区选择同日吐丝且健壮一致的植株120株进行标记。吐丝后20~55 d (2019年8月12日至16日, 2020年8月10日至9月14日), 每隔7 d每小区取5个果穗, 果穗上部、中部和下部各取籽粒200粒。其中100粒进行105 ℃杀青, 然后放入烘箱85 ℃烘干后称重(百粒重); 另外100粒放入液氮中冷冻, 采用淀粉合成酶试剂盒(上海索桥生物科技有限公司)分别测定AGPase、GBSS、SSS酶活性; 采用酸水解-DNS法[21]测定籽粒中总淀粉含量, 计算籽粒淀粉积累量。参照朱庆森等[22]方法用Richards方程[23]拟合籽粒淀粉积累动态:

    $$ W=A/(1+B{\rm{e}}^{-kt})^{1/N} $$ (1)

    对方程求导, 得到籽粒淀粉积累速率(G):

    $$ G =AkB{\rm {e}}^{-kt}/N(1+B{\rm {e}}^{-kt})^{(N+1)/N} $$ (2)

    式中: W为淀粉积累量, A为最大积累量, t为吐丝后的时间(d), BkN为方程参数。

    从淀粉最大积累量(A)的5% (t1)到95% (t2)定义为活跃灌浆期(D):

    $$ D=2(N+2)/k $$ (3)

    活跃积累期内淀粉增加的重量除以活跃积累期为淀粉平均积累速率(Gmean)。

    各小区均在吐丝期和成熟期取样, 同行内取连续3株, 3次重复, 所取样品按器官分离, 105 ℃下杀青30 min, 于80 ℃烘干至恒质量后测定干物质积累量。

    $$ \begin{split} &\qquad 干物质转运量=吐丝期干物质积累量-成熟期\\ &干物质积累量 \end{split} $$ (4)
    $$ \begin{split} &\qquad 干物质转运对籽粒的贡献率=干物质转运量/\\ & 籽粒质量\times 100\text{%} \end{split} $$ (5)

    成熟期每小区取24 m2样方, 调查样方内有效穗数, 测定籽粒产量, 并取样测定籽粒含水率, 按含水率为14%折算成产量。同时, 各小区均取样10穗进行室内考种, 测定穗行数、行粒数和千粒质量。

    采用Microsoft Excel 2019进行数据处理和作图, DPS 18.10软件进行通径分析、差异显著性(least significance difference, LSD)分析。

    表1可知, 2019—2020年两种滴灌模式下玉米有效穗数与穗粒数均无显著差异, 二者千粒重和产量差异显著(P<0.05), 浅埋滴灌较膜下滴灌分别平均高7.4%和6.9%, 产量浅埋滴灌较膜下滴灌平均高5.0%和4.7%。

    表  1  不同滴灌模式下春玉米产量及其构成因素
    Table  1.  Yield and its components of spring maize under different drip irrigation modes
    年份
    Year
    处理
    Treatment
    有效穗数
    Effective spike
    (×104 spikes·hm−2)
    穗粒数
    Grains number
    per spike
    千粒重
    1000-grain weight
    (g)
    产量
    Yield
    (t·hm−2)
    2019膜下滴灌 Mulched drip irrigation6.9039±0.0633a478.14±4.2498a388.00±9.4018b12.16±0.1749c
    浅埋滴灌 Shallow burial drip irrigation6.9121±0.0634a474.50±4.2174a416.63±8.1056a12.77±0.3238ab
    2020膜下滴灌 Mulched drip irrigation6.8860±0.0631a491.69±4.3702a395.34±10.6644b12.64±0.3126b
    浅埋滴灌 Shallow burial drip irrigation6.9238±0.0635a489.40±4.3499a422.52±7.9590a13.23±0.1385a
      同一年份数据后不同小写字母表示两处理间差异达P<0.05水平。Different lowercase letters after the data of the same year indicate significant differences between two treatments at P<0.05 level.
    下载: 导出CSV 
    | 显示表格

    表2可知, 两种滴灌模式下吐丝前干物质积累差异不显著, 吐丝—成熟期积累量浅埋滴灌显著增加, 较膜下滴灌分别平均提高5.8%和7.1%。转运量两处理间差异不显著, 转运对籽粒的贡献率浅埋滴灌低于膜下滴灌, 说明浅埋滴灌生育后期物质积累差异取决于籽粒干重积累的强弱。

    表  2  不同滴灌模式下春玉米干物质积累与转运
    Table  2.  Accumulation and transportation of dry matter of spring maize under different drip irrigation modes
    年份
    Year
    处理
    Treatment
    积累量 Accumulation (kg·hm−2)转运量
    Transport amount
    (kg·hm−2)
    转运对籽粒的贡献
    Contribution rate to grain
    (%)
    吐丝期
    Silking stage
    吐丝—成熟期
    Silking−maturity stage
    2019膜下滴灌 Mulched drip irrigation 12 891.90±104.55a14 715.30±278.93b2056.95a16.05
    浅埋滴灌 Shallow burial drip irrigation12 786.72±50.21a15 571.94±308.68a2005.06a14.72
    2020膜下滴灌 Mulched drip irrigation13 103.26±199.91a15 226.47±212.18b1988.17ab15.08
    浅埋滴灌 Shallow burial drip irrigation13 020.91±139.95a16 299.78±131.11a1866.46b13.26
      同一年份数据后不同小写字母表示两处理间差异达P<0.05水平。Different lowercase letters after the data of the same year indicate significant differences between two treatments at P<0.05 level.
    下载: 导出CSV 
    | 显示表格

    图1所示, 两种滴灌模式下果穗不同粒位籽粒百粒重差异显著, 表现为下部籽粒>中部籽粒>上部籽粒, 二者穗下部籽粒百粒重差异不显著, 穗中部和穗上部均为浅埋滴灌显著高于膜下滴灌, 其中, 穗中部浅埋滴灌2年较膜下滴灌分别平均高7.7%和4.1%, 穗上部分别平均高10.8%和9.8%。

    图  1  不同滴灌模式下春玉米果穗不同粒位百粒重
    不同小写字母表示同一粒位不同处理间差异显著(P<0.05)。MDI: 膜下滴灌; SBDI: 浅埋滴灌。Different lowercase letters above the column of the same ear positions indicate significant differences at P<0.05 level between two treatments. MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.
    Figure  1.  100-grain weight of kernels located in different ear positions of spring maize under different drip irrigation modes

    图2可知, 籽粒淀粉含量吐丝后20~34 d浅埋滴灌低于膜下滴灌, 随生育进程, 二者差异逐渐减小, 吐丝后48~55 d浅埋滴灌高于膜下滴灌; 籽粒淀粉积累速率浅埋滴灌与膜下滴灌整体表现为随生育进程先升高后降低, 吐丝后41~55 d浅埋滴灌高于膜下滴灌。说明浅埋滴灌生育后期淀粉积累速率下降速度较膜下滴灌缓慢, 淀粉含量增加, 这也是浅埋滴灌粒重较高的主要原因之一。

    图  2  不同滴灌模式下春玉米籽粒淀粉含量及其积累速率(2020年)
    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.
    Figure  2.  Grain starch contents and its accumulation rates of spring maize under different drip irrigation modes (2020)

    图3可知, 两种滴灌模式下果穗不同粒位籽粒淀粉含量表现为穗下部>穗中部>穗上部, 且均随生育进程逐渐升高。穗上部、穗中部籽粒吐丝后20 d浅埋滴灌低于膜下滴灌, 吐丝后27~41 d, 两滴灌模式间差异甚微, 吐丝后48~55 d穗上部浅埋滴灌分别较膜下滴灌高12.5%和10.4%, 穗中部分别高6.2%和4.6%; 穗下部籽粒吐丝后20~27 d浅埋滴灌低于膜下滴灌, 随生育进程的推移, 二者差异不显著。这说明浅埋滴灌粒重高可能与穗中、上部籽粒淀粉含量高有关。

    图  3  不同滴灌模式下春玉米果穗不同粒位籽粒淀粉含量(2020年)
    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.
    Figure  3.  Starch contents of kernels located in different ear positions of spring maize under different drip irrigation modes (2020)

    图4可以看出, 春玉米果穗不同粒位籽粒淀粉积累量呈“S”型曲线。吐丝后20 d穗上部、中部、下部籽粒淀粉积累量均无显著差异, 吐丝后48~55 d穗上部籽粒淀粉积累量浅埋滴灌分别较膜下滴灌高22.2%和22.3%, 穗中部浅埋滴灌较膜下滴灌分别高10.8%和8.9%, 这说明灌浆后期浅埋滴灌穗上部和中部较膜下滴灌具有较强的淀粉合成与积累能力。

    图  4  不同滴灌模式下春玉米果穗不同粒位籽粒淀粉积累量(2020年)
    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.
    Figure  4.  Starch accumulations of kernels located in different ear positions of spring maize under different drip irrigation modes (2020)

    利用Richard方程对春玉米果穗不同粒位籽粒淀粉积累量与取样天数进行拟合, 可模拟出两种滴灌模式下果穗不同粒位籽粒淀粉积累动态(R2=0.9928~0.9999), 计算得到活跃积累期、最大积累速率、平均积累速率、达到最大速率的时间相关参数。由表3可知, 两种滴灌模式下果穗籽粒最终淀粉积累量、最大积累速率、平均积累速率均表现为下部籽粒>中部籽粒>上部籽粒, 不同粒位籽粒最大积累速率、平均积累速率、活跃积累期、到达最大积累速率的时间均表现为浅埋滴灌大于膜下滴灌。不同粒位来看, 上部籽粒差异最大, 达到最大积累速率时间较膜下滴灌延后5.38 d, 平均积累速率高0.2837 mg·g−1·d −1; 最终淀粉积累量高16.6%, 中部籽粒差异次之, 下部籽粒差异最小。

    表  3  不同滴灌模式下春玉米果穗不同粒位籽粒淀粉积累参数(2020年)
    Table  3.  Starch accumulation parameters of kernels located in different ear positions of spring maize under different drip irrigation modes (2020)
    穗位
    Spike position
    处理
    Treatment
    最终淀粉积累量
    Final starch accumulation
    (mg·grain−1)
    最大积累速率
    Maximum accumulation rate
    (mg·g−1·d−1)
    平均积累速率
    Average accumulation rate (mg·g−1·d−1)
    活跃积累期
    Active accumulation period
    (d)
    到达最大积累
    速率的时间
    Time to the
    maximum rate
    (d)
    R2
    上部
    Upper
    膜下滴灌
    Mulched drip irrigation
    0.19980.88620.465417.5717.770.9999
    浅埋滴灌
    Shallow burial drip irrigation
    0.23291.54860.749119.9223.150.9991
    中部
    Middle
    膜下滴灌
    Mulched drip irrigation
    0.26251.71880.880817.7920.500.9971
    浅埋滴灌
    Shallow burial drip irrigation
    0.28971.96530.930719.2321.650.9992
    下部
    Basal
    膜下滴灌
    Mulched drip irrigation
    0.30072.14641.041917.8620.380.9928
    浅埋滴灌
    Shallow burial drip irrigation
    0.31202.42521.068118.6720.680.9975
    下载: 导出CSV 
    | 显示表格

    根据Richard方程拟合参数X1 (起始积累势)、X2 (活跃积累期)、X3 (达到最大速率的时间)、X4 (最大积累速率时积累量)、X5 (平均积累速率)、X6 (最大积累速率)、X7 (淀粉总积累量)进行通径分析。由图5可知, X3、X5、X6 3个因素对淀粉最终积累量的直接效应为正值, 促进籽粒淀粉积累, X3对淀粉总积累量的影响系数为1.2637, X5对淀粉积累量的影响系数为1.1181, X6对淀粉总积累量的影响系数为1.1138。这也进一步说明延长籽粒淀粉到达最大积累速率的时间能够有效增加淀粉积累量。

    图  5  不同滴灌模式春玉米果穗不同粒位籽粒淀粉积累参数通径分析
    X1: 起始积累势; X2: 活跃积累期; X3: 达到积累最大速率的时间; X4: 最大积累速率时积累量; X5: 平均积累速率; X6: 最大积累速率; X7: 淀粉总积累量。X1: initial accumulation potential; X2: active accumulation period; X3: time to the maximum rate; X4: accumulation at the maximum accumulation rate; X5: average accumulation rate; X6: maximum accumulation rate; X7: total starch accumulation.
    Figure  5.  Path analysis of grain starch accumulation parameters of kernels of spring maize located in different ear positions under different drip irrigation modes

    果穗不同粒位籽粒AGPase、GBSS和SSS酶活性均随生育进程而增加, 到达峰值后又开始迅速下降, 不同粒位峰值出现的时间不同, 穗上部较穗中部和穗下部有所延迟(图6)。吐丝后20 d果穗上、中、下3部位均表现为浅埋滴灌低于膜下滴灌, 吐丝后48~55 d下部籽粒两处理差异甚微, 上部籽粒和中部籽粒均为浅埋滴灌高于膜下滴灌, 其中, 吐丝后55 d 上部籽粒AGPase、GBSS和SSS酶活性分别高22.9%、42.3%和57.5%, 中部籽粒分别提高9.0%、27.4%和30.7%。穗中部和穗上部籽粒浅埋滴灌下生育后期AGPase酶活性持续时间长, 增加了淀粉合成底物的供应, GBSS活性和SSS酶活性较高, 催化淀粉的合成能力强, 提高了穗中上部籽粒淀粉合成。

    图  6  不同滴灌模式下春玉米不同粒位籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、结合态淀粉合成酶(GBSS)和可溶性淀粉合成酶(SSS)活性变化(2020)
    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.
    Figure  6.  Adenosine diphosphated glucose pyrophosphorylase (AGPase), bound starch synthase (GBSS) and soluble starch synthase (SSS) activities of kernels located in different ear positions of spring maize under different drip irrigation patterns (2020)

    对春玉米籽粒淀粉积累速率与淀粉合成相关酶活性进行相关性分析, 如图7所示。两种滴灌模式下籽粒淀粉积累速率与AGPase、GBSS、SSS活性呈显著正相关(R2=0.7072~0.9608), 这表明提高AGPase、GBSS、SSS活性有利于籽粒淀粉积累、粒重增加, 进而提高产量。

    图  7  不同滴灌模式下春玉米淀粉积累速率与淀粉合成相关酶活性相关性
    MDI: 膜下滴灌; SBDI: 浅埋滴灌。AGPase: 腺苷二磷酸葡萄糖焦磷酸化酶; GBSS: 结合态淀粉合成酶; SSS: 可溶性淀粉合成酶。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation. AGPase: adenosine diphosphated glucose pyrophosphorylase; GBSS: bound starch synthase; SSS: soluble starch synthase.
    Figure  7.  Correlation between starch accumulation rate and enzymes activities related to starch synthesis of spring maize under different drip irrigation patterns

    籽粒重是玉米产量的重要构成因素, 籽粒的充实度直接关系到粒重[24]。果穗的不同粒位籽粒充实度也有所差异, 杨升辉等[25]研究表明, 籽粒单重、平均灌浆速率和最大灌浆速率表现为穗下部>穗中部>穗上部。与上部籽粒相比, 下部籽粒最大灌浆速率、平均灌浆速率、灌浆速率最大值均较高, 灌浆速率达到最大时需要的天数和籽粒活跃灌浆期短[17]。目前关于不同粒位籽粒粒重不同的原因, 在小麦(Triticum aestivum)和水稻(Oryza sativa)上的研究较多, 且主要集中在蛋白质理化性质[26]、同化物供应[27]以及激素含量[28-29]等方面, 籽粒的70%左右为淀粉, 籽粒的充实过程主要是淀粉合成与积累[15], 淀粉在籽粒中的积累对产量有重要影响[30], 不同的栽培模式和环境条件均会对籽粒淀粉的积累造成影响[31-32]。目前, 关于玉米果穗不同粒位籽粒淀粉含量以及淀粉积累特征研究较少。本研究的两种滴灌模式产量差异主要因素是千粒重, 且主要集中在中上部籽粒。课题组前期研究也表明, 两种滴灌模式籽粒干重弱势粒在吐丝后30 d之内浅埋滴灌和膜下滴灌差异较小, 吐丝30 d后随着生育期推移差异逐渐增大, 浅埋滴灌高于膜下滴灌[8]。这与不同粒位籽粒淀粉含量和积累量有关, 本研究中, 两种滴灌模式下籽粒淀粉含量、积累量和积累速率均表现为穗下部>穗中部>穗上部, 两种滴灌模式间不同粒位籽粒淀粉积累前期差异较小, 生育后期果穗中上部籽粒淀粉含量与积累量更具优势。原因可能是膜下滴灌前期能够提高地温, 促进春玉米苗期生长发育, 使生育进程加快, 籽粒淀粉含量和积累量较浅埋滴灌高; 生育后期膜下滴灌相较于浅埋滴灌会出现一定程度的早衰[33-34], 破坏膜系统结构及其功能、阻碍碳的同化[35], 吐丝—成熟期群体光能合成的干物质量下降, 最终导致合成的淀粉也较少。申丽霞等[36]研究表明, 地膜覆盖能使玉米生育期较不覆膜处理缩短 8~12 d, 而杨欢等[37]研究也表明, 高温使籽粒淀粉持续时间缩短, 最终降低成熟籽粒淀粉含量。春玉米中上部籽粒, 尤其是上部籽粒, 相较于穗下部籽粒灌浆速率低、灌浆期长、后期脱水快[17], 生育后期两种滴灌模式下淀粉积累的差异较大, 浅埋滴灌籽粒淀粉积累达到最大速率的时间延后, 淀粉活跃积累期较长, 最终淀粉积累量高。这可能是浅埋滴灌生育后期延衰, 穗位叶的蔗糖合成酶、磷酸烯醇丙酮酸羧化酶等碳代谢相关酶活性较强, 玉米穗位叶蔗糖含量、可溶性糖含量较高[38], 促进蔗糖向淀粉的转化能力, 也可能与浅埋滴灌无地膜覆盖, 对土壤水热与玉米生长产生影响, 使玉米生育进程较膜下滴灌延后有关。

    籽粒淀粉的合成过程是一个多种酶参与的过程, 籽粒淀粉积累主要受酶活性及合成底物的影响, 淀粉合成酶起着至关重要的作用[39]。陈江等[40]研究表明, 玉米生育后期淀粉合成相关酶活性受到影响, 则淀粉合成受阻, 籽粒干重下降, 产量降低。玉米籽粒中AGPase是淀粉合成的关键酶和限速酶[41], 玉米果穗顶部籽粒AGPase活性峰值和平均值较低, 故上部籽粒淀粉积累量少, 是其粒重低于中下部籽粒的主要原因[18]。GBSS和SSS对淀粉积累以及粒重有重要作用[42-43], 活性降低, 籽粒淀粉合成受阻, 积累速率下降, 且GBSS活性对籽粒灌浆后期淀粉积累有重要的调节作用[44]。本研究中, 两种滴灌模式下籽粒淀粉积累速率与AGPase、GBSS和SSS酶活性呈显著性正相关, 这也说明AGPase、GBSS和SSS活性高低影响籽粒淀粉积累。穗上部籽粒灌浆期长, AGPase、GBSS和SSS活性峰值较穗中部和穗下部出现晚, 灌浆中后期膜下滴灌受生育进程提前和生育后期早衰的影响, 果穗上部吐丝后48~55 d显著低于浅埋滴灌。研究表明, 花后前期高温会抑制灌浆期间淀粉合成相关酶活性, 降低了籽粒的淀粉含量, 产量下降[45], 通过栽培措施提高玉米果穗顶部籽粒蔗糖-淀粉合成代谢中的关键酶活性, 是促进玉米弱势粒灌浆的一条重要途径[39]。膜下滴灌根系主要分布在表层, 养分吸收范围小[46], 加之覆膜虽减小了土壤蒸发, 但增大了植株蒸腾, 增加叶片水分散失, 导致膜下滴灌生育后期淀粉合成酶较低, 浅埋滴灌有利于根系扎向深处, 贾琼等[47]指出, 浅埋滴灌根系分布较膜下滴灌深10 cm, 深层根系对植株生育后期抗衰作用有较大贡献[48], 这可能是浅埋滴灌生育后期籽粒淀粉合成酶活性较高的另一个原因。

    相较于膜下滴灌, 浅埋滴灌春玉米籽粒产量显著提高, 两年分别提高5.0%和4.7%, 增产的主要原因是千粒重显著增加, 且主要表现在中、上部籽粒粒重增加, 穗中部籽粒百粒重两年分别增加7.7%和4.1%, 穗上部分别增加10.8%和9.8%。浅埋滴灌生育后期果穗中部和上部籽粒灌浆后期淀粉合成相关酶(AGPase、GBSS、SSS)活性高, 籽粒淀粉积累达到最大速率的时间延后, 籽粒淀粉活跃积累期较长, 平均积累速率增加, 籽粒淀粉含量和籽粒淀粉积累量提高, 是粒重增加的主要原因。

  • 图  1   不同滴灌模式下春玉米果穗不同粒位百粒重

    不同小写字母表示同一粒位不同处理间差异显著(P<0.05)。MDI: 膜下滴灌; SBDI: 浅埋滴灌。Different lowercase letters above the column of the same ear positions indicate significant differences at P<0.05 level between two treatments. MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.

    Figure  1.   100-grain weight of kernels located in different ear positions of spring maize under different drip irrigation modes

    图  2   不同滴灌模式下春玉米籽粒淀粉含量及其积累速率(2020年)

    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.

    Figure  2.   Grain starch contents and its accumulation rates of spring maize under different drip irrigation modes (2020)

    图  3   不同滴灌模式下春玉米果穗不同粒位籽粒淀粉含量(2020年)

    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.

    Figure  3.   Starch contents of kernels located in different ear positions of spring maize under different drip irrigation modes (2020)

    图  4   不同滴灌模式下春玉米果穗不同粒位籽粒淀粉积累量(2020年)

    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.

    Figure  4.   Starch accumulations of kernels located in different ear positions of spring maize under different drip irrigation modes (2020)

    图  5   不同滴灌模式春玉米果穗不同粒位籽粒淀粉积累参数通径分析

    X1: 起始积累势; X2: 活跃积累期; X3: 达到积累最大速率的时间; X4: 最大积累速率时积累量; X5: 平均积累速率; X6: 最大积累速率; X7: 淀粉总积累量。X1: initial accumulation potential; X2: active accumulation period; X3: time to the maximum rate; X4: accumulation at the maximum accumulation rate; X5: average accumulation rate; X6: maximum accumulation rate; X7: total starch accumulation.

    Figure  5.   Path analysis of grain starch accumulation parameters of kernels of spring maize located in different ear positions under different drip irrigation modes

    图  6   不同滴灌模式下春玉米不同粒位籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、结合态淀粉合成酶(GBSS)和可溶性淀粉合成酶(SSS)活性变化(2020)

    MDI: 膜下滴灌; SBDI: 浅埋滴灌。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation.

    Figure  6.   Adenosine diphosphated glucose pyrophosphorylase (AGPase), bound starch synthase (GBSS) and soluble starch synthase (SSS) activities of kernels located in different ear positions of spring maize under different drip irrigation patterns (2020)

    图  7   不同滴灌模式下春玉米淀粉积累速率与淀粉合成相关酶活性相关性

    MDI: 膜下滴灌; SBDI: 浅埋滴灌。AGPase: 腺苷二磷酸葡萄糖焦磷酸化酶; GBSS: 结合态淀粉合成酶; SSS: 可溶性淀粉合成酶。MDI: mulched drip irrigation; SBDI: shallow burial drip irrigation. AGPase: adenosine diphosphated glucose pyrophosphorylase; GBSS: bound starch synthase; SSS: soluble starch synthase.

    Figure  7.   Correlation between starch accumulation rate and enzymes activities related to starch synthesis of spring maize under different drip irrigation patterns

    表  1   不同滴灌模式下春玉米产量及其构成因素

    Table  1   Yield and its components of spring maize under different drip irrigation modes

    年份
    Year
    处理
    Treatment
    有效穗数
    Effective spike
    (×104 spikes·hm−2)
    穗粒数
    Grains number
    per spike
    千粒重
    1000-grain weight
    (g)
    产量
    Yield
    (t·hm−2)
    2019膜下滴灌 Mulched drip irrigation6.9039±0.0633a478.14±4.2498a388.00±9.4018b12.16±0.1749c
    浅埋滴灌 Shallow burial drip irrigation6.9121±0.0634a474.50±4.2174a416.63±8.1056a12.77±0.3238ab
    2020膜下滴灌 Mulched drip irrigation6.8860±0.0631a491.69±4.3702a395.34±10.6644b12.64±0.3126b
    浅埋滴灌 Shallow burial drip irrigation6.9238±0.0635a489.40±4.3499a422.52±7.9590a13.23±0.1385a
      同一年份数据后不同小写字母表示两处理间差异达P<0.05水平。Different lowercase letters after the data of the same year indicate significant differences between two treatments at P<0.05 level.
    下载: 导出CSV

    表  2   不同滴灌模式下春玉米干物质积累与转运

    Table  2   Accumulation and transportation of dry matter of spring maize under different drip irrigation modes

    年份
    Year
    处理
    Treatment
    积累量 Accumulation (kg·hm−2)转运量
    Transport amount
    (kg·hm−2)
    转运对籽粒的贡献
    Contribution rate to grain
    (%)
    吐丝期
    Silking stage
    吐丝—成熟期
    Silking−maturity stage
    2019膜下滴灌 Mulched drip irrigation 12 891.90±104.55a14 715.30±278.93b2056.95a16.05
    浅埋滴灌 Shallow burial drip irrigation12 786.72±50.21a15 571.94±308.68a2005.06a14.72
    2020膜下滴灌 Mulched drip irrigation13 103.26±199.91a15 226.47±212.18b1988.17ab15.08
    浅埋滴灌 Shallow burial drip irrigation13 020.91±139.95a16 299.78±131.11a1866.46b13.26
      同一年份数据后不同小写字母表示两处理间差异达P<0.05水平。Different lowercase letters after the data of the same year indicate significant differences between two treatments at P<0.05 level.
    下载: 导出CSV

    表  3   不同滴灌模式下春玉米果穗不同粒位籽粒淀粉积累参数(2020年)

    Table  3   Starch accumulation parameters of kernels located in different ear positions of spring maize under different drip irrigation modes (2020)

    穗位
    Spike position
    处理
    Treatment
    最终淀粉积累量
    Final starch accumulation
    (mg·grain−1)
    最大积累速率
    Maximum accumulation rate
    (mg·g−1·d−1)
    平均积累速率
    Average accumulation rate (mg·g−1·d−1)
    活跃积累期
    Active accumulation period
    (d)
    到达最大积累
    速率的时间
    Time to the
    maximum rate
    (d)
    R2
    上部
    Upper
    膜下滴灌
    Mulched drip irrigation
    0.19980.88620.465417.5717.770.9999
    浅埋滴灌
    Shallow burial drip irrigation
    0.23291.54860.749119.9223.150.9991
    中部
    Middle
    膜下滴灌
    Mulched drip irrigation
    0.26251.71880.880817.7920.500.9971
    浅埋滴灌
    Shallow burial drip irrigation
    0.28971.96530.930719.2321.650.9992
    下部
    Basal
    膜下滴灌
    Mulched drip irrigation
    0.30072.14641.041917.8620.380.9928
    浅埋滴灌
    Shallow burial drip irrigation
    0.31202.42521.068118.6720.680.9975
    下载: 导出CSV
  • [1] 张玉芹, 杨恒山, 高聚林, 等. 超高产春玉米的根系特征[J]. 作物学报, 2011, 37(4): 735−743 doi: 10.3724/SP.J.1006.2011.00735

    ZHANG Y Q, YANG H S, GAO J L, et al. Root characteristics of super high-yield spring maize[J]. Acta Agronomica Sinica, 2011, 37(4): 735−743 doi: 10.3724/SP.J.1006.2011.00735

    [2] 白晓慧. 通辽市2005年~2010年地下水位变化分析[J]. 内蒙古科技与经济, 2016(16): 65−66 doi: 10.3969/j.issn.1007-6921.2016.16.031

    BAI X H. Analysis of groundwater level change in Tongliao City from 2005 to 2010[J]. Inner Mongolia Science Technology & Economy, 2016(16): 65−66 doi: 10.3969/j.issn.1007-6921.2016.16.031

    [3] 戚迎龙, 史海滨, 李瑞平, 等. 膜下滴灌水氮耦合对玉米光合特性的影响[J]. 节水灌溉, 2017(1): 50−52, 58 doi: 10.3969/j.issn.1007-4929.2017.01.013

    QI Y L, SHI H B, LI R P, et al. The effects of water and nitrogen coupling on photosynthetic characteristics under mulched drip irrigation[J]. Water Saving Irrigation, 2017(1): 50−52, 58 doi: 10.3969/j.issn.1007-4929.2017.01.013

    [4] 林涛, 汤秋香, 郝卫平, 等. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响[J]. 农业工程学报, 2019, 35(19): 117−125 doi: 10.11975/j.issn.1002-6819.2019.19.014

    LIN T, TANG Q X, HAO W P, et al. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 117−125 doi: 10.11975/j.issn.1002-6819.2019.19.014

    [5] 杜利, 李援农, 陈朋朋, 等. 不同残膜量对土壤环境及玉米生长发育的影响[J]. 节水灌溉, 2018(7): 4−9, 14 doi: 10.3969/j.issn.1007-4929.2018.07.002

    DU L, LI Y N, CHEN P P, et al. Effects of different residual film on the growth and soil environment of maize[J]. Water Saving Irrigation, 2018(7): 4−9, 14 doi: 10.3969/j.issn.1007-4929.2018.07.002

    [6] 邹小阳, 牛文全, 刘晶晶, 等. 残膜对土壤和作物的潜在风险研究进展[J]. 灌溉排水学报, 2017, 36(7): 47−54 doi: 10.13522/j.cnki.ggps.2017.07.009

    ZOU X Y, NIU W Q, LIU J J, et al. Potential risks of plastic film residuals on soils and crops: a review[J]. Journal of Irrigation and Drainage, 2017, 36(7): 47−54 doi: 10.13522/j.cnki.ggps.2017.07.009

    [7] 林涛, 汤秋香, 郝卫平, 等. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响[J]. 农业工程学报, 2019, 35(19): 117–125

    LIN T, TANG Q X, HAO W P, et al. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 117–125

    [8] 杨恒山, 薛新伟, 张瑞富, 等. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响[J]. 农业工程学报, 2019, 35(21): 69−77 doi: 10.11975/j.issn.1002-6819.2019.21.009

    YANG H S, XUE X W, ZHANG R F, et al. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 69−77 doi: 10.11975/j.issn.1002-6819.2019.21.009

    [9] 赵明, 李从锋, 钟大森, 等. 我国多类型水肥一体化技术进展[J]. 作物杂志, 2020, 194(1): 199−200

    ZHAO M, LI C F, ZHONG D S, et al. Progress of integrated technology of multi-type water and fertilizer in China[[J]. Crops, 2020, 194(1): 199−200

    [10] 柏延文, 杨永红, 朱亚利, 等. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868−1879

    BAI Y W, YANG Y H, ZHU Y L, et al. Effect of planting density on light interception within canopy and grain yield of different plant types of maize[J]. Acta Agronomica Sinica, 2019, 45(12): 1868−1879

    [11]

    EMES M J, BOWSHER C G, HEDLEY C, et al. Starch synthesis and carbon partitioning in developing endosperm[J]. Journal of Experimental Botany, 2003, 54(382): 569−575 doi: 10.1093/jxb/erg089

    [12] 张智猛, 戴良香, 胡昌浩, 等. 玉米灌浆期水分差异供应对籽粒淀粉积累及其酶活性的影响[J]. 植物生态学报, 2005, 29(4): 636−643 doi: 10.3321/j.issn:1005-264X.2005.04.016

    ZHANG Z M, DAI L X, HU C H, et al. Effects of different water treatments on starch accumulation and related enzyme activity in grain of maize during grain-filling period[J]. Acta Phytoecologica Sinica, 2005, 29(4): 636−643 doi: 10.3321/j.issn:1005-264X.2005.04.016

    [13]

    ZHAO B H, ZHANG W J, WANG Z Q, et al. Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relationships with the filling rate and cooking quality[J]. Agricultural Sciences in China, 2005, 4(1): 26−33

    [14]

    KEELING P L, BANISADR R, BARONE L, et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain[J]. Functional Plant Biology, 1994, 21(6): 807 doi: 10.1071/PP9940807

    [15] 张家桦, 杨恒山, 张玉芹, 等. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332−1345 doi: 10.3864/j.issn.0578-1752.2022.07.006

    ZHANG J H, YANG H S, ZHANG Y Q, et al. Effects of different drip irrigation modes on starch accumulation and activities of starch synthesis-related enzyme of spring maize grain in northeast China[J]. Scientia Agricultura Sinica, 2022, 55(7): 1332−1345 doi: 10.3864/j.issn.0578-1752.2022.07.006

    [16]

    WANG J T, KANG S Z, DU T S, et al. Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production[J]. Agricultural Water Management, 2019, 213: 128−134 doi: 10.1016/j.agwat.2018.09.014

    [17] 朱亚利, 王晨光, 杨梅, 等. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507−519 doi: 10.3724/SP.J.1006.2021.03024

    ZHU Y L, WANG C G, YANG M, et al. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density[J]. Acta Agronomica Sinica, 2021, 47(3): 507−519 doi: 10.3724/SP.J.1006.2021.03024

    [18] 徐云姬, 顾道健, 秦昊, 等. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化[J]. 作物学报, 2015, 41(2): 297−307 doi: 10.3724/SP.J.1006.2015.00297

    XU Y J, GU D J, QIN H, et al. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling[J]. Acta Agronomica Sinica, 2015, 41(2): 297−307 doi: 10.3724/SP.J.1006.2015.00297

    [19]

    ZHAI L C, WANG Z B, SONG S J, et al. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity[J]. Agricultural Water Management, 2021, 245: 106600 doi: 10.1016/j.agwat.2020.106600

    [20]

    SHEN S, ZHANG L, LIANG X G, et al. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion[J]. Journal of Experimental Botany, 2018, 69(7): 1599−1613 doi: 10.1093/jxb/ery013

    [21] 何照范. 粮油籽粒品质及其分析技术[M]. 北京: 农业出版社, 1985

    HE Z F. Grain Quality of Grain and Oil and Its Analysis Technology[M]. Beijing: Agricultural Press, 1985

    [22] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析[J]. 作物学报, 1988, 14(3): 182−193 doi: 10.3321/j.issn:0496-3490.1988.03.002

    ZHU Q S, CAO X Z, LUO Y Q. Growth analysis on the process of grain filling in rice[J]. Acta Agronomica Sinica, 1988, 14(3): 182−193 doi: 10.3321/j.issn:0496-3490.1988.03.002

    [23]

    RICHARDS F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10(2): 290−301 doi: 10.1093/jxb/10.2.290

    [24] 左振朋, 田凤龙, 姜朋, 等. 六个不同产量玉米品种籽粒淀粉积累及相关酶活性的比较[J]. 作物学报, 2011, 37(3): 529−536 doi: 10.3724/SP.J.1006.2011.00529

    ZUO Z P, TIAN F L, JIANG P, et al. Comparison of kernel starch accumulation and related enzyme activities among six maize cultivars of different yield types[J]. Acta Agronomica Sinica, 2011, 37(3): 529−536 doi: 10.3724/SP.J.1006.2011.00529

    [25] 杨升辉, 杨恒山, 李洪杰, 等. 不同氮肥运筹下春玉米子粒灌浆特性的分析[J]. 玉米科学, 2014, 22(1): 91−95, 102 doi: 10.3969/j.issn.1005-0906.2014.01.016

    YANG S H, YANG H S, LI H J, et al. Analysis on kernel filling characteristics for spring maize in different nitrogen fertilizer strategies[J]. Journal of Maize Sciences, 2014, 22(1): 91−95, 102 doi: 10.3969/j.issn.1005-0906.2014.01.016

    [26] 代美瑶, 巩艳菲, 李芳, 等. 小麦籽粒不同部位蛋白质理化特性研究进展[J]. 中国粮油学报, 2019, 34(7): 132−138 doi: 10.3969/j.issn.1003-0174.2019.07.023

    DAI M Y, GONG Y F, LI F, et al. A review on the physicochemical properties of the different fractions of wheat kernel[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(7): 132−138 doi: 10.3969/j.issn.1003-0174.2019.07.023

    [27]

    WANG Y R. Effectiveness of supplied nitrogen at the primordial panicle stage on rice characteristics and yields[J]. International Rice Research Newsletter, 1981, 6: 23−24

    [28] 杨卫兵, 王振林, 尹燕枰, 等. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响[J]. 中国农业科学, 2011, 44(13): 2673−2682 doi: 10.3864/j.issn.0578-1752.2011.13.005

    YANG W B, WANG Z L, YIN Y P, et al. Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains[J]. Scientia Agricultura Sinica, 2011, 44(13): 2673−2682 doi: 10.3864/j.issn.0578-1752.2011.13.005

    [29]

    JIN D M, WANG W J, LAN S Y, et al. Dynamic status of endogenous IAA, ABA and GA levels in superior and inferior spikelets of heavy panicle hybrid rice during grain filling[J]. Journal of Plant Physiology and Molecular Biology, 2002, 28(3): 215−220

    [30] 孙庆泉, 吴元奇, 胡昌浩, 等. 不同产量潜力玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性[J]. 作物学报, 2005, 31(5): 612−618 doi: 10.3321/j.issn:0496-3490.2005.05.015

    SUN Q Q, WU Y Q, HU C H, et al. Physiological activities and multiplication of end osperm cell at filling stage of kernels with different yield potential in maize[J]. Acta Agronomica Sinica, 2005, 31(5): 612−618 doi: 10.3321/j.issn:0496-3490.2005.05.015

    [31] 张吉旺, 董树亭, 王空军, 等. 大田遮阴对夏玉米淀粉合成关键酶活性的影响[J]. 作物学报, 2008, 34(8): 1470−1474 doi: 10.3724/SP.J.1006.2008.01470

    ZHANG J W, DONG S T, WANG K J, et al. Effects of shading in field on key enzymes involved in starch synthesis of summer maize[J]. Acta Agronomica Sinica, 2008, 34(8): 1470−1474 doi: 10.3724/SP.J.1006.2008.01470

    [32] 张智猛, 戴良香, 胡昌浩, 等. 氮素对玉米淀粉累积及相关酶活性的影响[J]. 作物学报, 2005, 31(7): 956−962 doi: 10.3321/j.issn:0496-3490.2005.07.024

    ZHANG Z M, DAI L X, HU C H, et al. Effect of nitrogen on starch accumulation and related enzyme activities maize (Zea mays)[J]. Acta Agronomica Sinica, 2005, 31(7): 956−962 doi: 10.3321/j.issn:0496-3490.2005.07.024

    [33] 杜社妮, 白岗栓. 玉米地膜覆盖的土壤环境效应[J]. 干旱地区农业研究, 2007, 25(5): 56−59

    DU S N, BAI G S. Studies on effects of plastic film mulching on soil environment of maize field[J]. Agricultural Research in the Arid Areas, 2007, 25(5): 56−59

    [34] 孙仕军, 杨金鑫, 万博, 等. 不同滴灌方式对辽西半干旱区春玉米生长及产量的影响[J]. 沈阳农业大学学报, 2021, 52(1): 32−39

    SUN S J, YANG J X, WAN B, et al. Effects of different drip irrigation methods on the growth and yield of spring maize in semi-arid areas of western Liaoning[J]. Journal of Shenyang Agricultural University, 2021, 52(1): 32−39

    [35]

    EDREIRA J, MATER L I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: kernel growth, water relations and assimilate availability for grain filling[J]. Field Crops Research, 2014, 166: 162−172 doi: 10.1016/j.fcr.2014.06.018

    [36] 申丽霞, 兰印超, 李若帆. 不同降解膜覆盖对土壤水热与玉米生长的影响[J]. 干旱地区农业研究, 2018, 36(1): 200−206 doi: 10.7606/j.issn.1000-7601.2018.01.30

    SHEN L X, LAN Y C, LI R F. Effects of different degradable films on soil moisture, temperature and growth of maize[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 200−206 doi: 10.7606/j.issn.1000-7601.2018.01.30

    [37] 杨欢, 沈鑫, 丁梦秋, 等. 结实期高温胁迫对糯玉米子粒发育和内源激素含量的影响[J]. 玉米科学, 2017, 25(2): 55−60, 67 doi: 10.13597/j.cnki.maize.science.20170210

    YANG H, SHEN X, DING M Q, et al. Effects of high temperature after pollination on grain development and endogenous hormone contents of waxy maize[J]. Journal of Maize Sciences, 2017, 25(2): 55−60, 67 doi: 10.13597/j.cnki.maize.science.20170210

    [38] 张家桦. 不同滴灌方式对春玉米光合特性、碳氮代谢及水氮效率的影响[D]. 通辽: 内蒙古民族大学, 2022: 9–16

    ZHANG J H. Effects of different drip irrigation modes on photosynthetic characteristics, carbon and nitrogen metabolism and water and nitrogen efficiency of spring maize[D]. Tongliao: Inner Mongolia Minzu University, 2022: 9–16

    [39]

    OU-LEE T M, SETTER T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch[J]. Plant Physiology, 1985, 79(3): 852−855 doi: 10.1104/pp.79.3.852

    [40] 陈江, 王燕, 黄斌全, 等. 不同类型玉米籽粒淀粉积累、相关酶活及基因表达差异分析[J]. 核农学报, 2012, 26(2): 217−230

    CHEN J, WANG Y, HUANG B Q, et al. Analysis of starch accumulation, corresponding enzyme activity and gene expression among different types of corns[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(2): 217−230

    [41] 王龙飞, 杨倩, 李广浩, 等. 吐丝后不同阶段干旱胁迫对糯玉米子粒产量和淀粉品质的影响[J]. 玉米科学, 2021, 29(1): 69−76 doi: 10.13597/j.cnki.maize.science.20210111

    WANG L F, YANG Q, LI G H, et al. Effect of drought stress at different post-silking stages on grain yield and starch quality of waxy maize[J]. Journal of Maize Sciences, 2021, 29(1): 69−76 doi: 10.13597/j.cnki.maize.science.20210111

    [42]

    SINGLETARY G W, BANISADR R, KEELING P L. Influence of gene dosage on carbohydrate synthesis and enzymatic activities in endosperm of starch-deficient mutants of maize[J]. Plant Physiology, 1997, 113(1): 293−304 doi: 10.1104/pp.113.1.293

    [43] 张海艳, 董树亭, 高荣岐, 等. 玉米籽粒淀粉积累及相关酶活性分析[J]. 中国农业科学, 2008, 41(7): 2174−2181 doi: 10.3864/j.issn.0578-1752.2008.07.041

    ZHANG H Y, DONG S T, GAO R Q, et al. Starch accumulation and enzymes activities associated with starch synthesis in maize kernels[J]. Scientia Agricultura Sinica, 2008, 41(7): 2174−2181 doi: 10.3864/j.issn.0578-1752.2008.07.041

    [44] 王晓燕, 董树亭, 高荣岐, 等. 不同类型玉米胚乳细胞增殖动态及其与粒重的关系[J]. 华北农学报, 2006, 21(2): 23−26

    WANG X Y, DONG S T, GAO R Q, et al. Endosperm cell proliferating and its relation to grain weight in different types of maize[J]. Acta Agriculturae Boreali-Sinica, 2006, 21(2): 23−26

    [45] 赵丽晓, 张萍, 王若男, 等. 花后前期高温对玉米强弱势籽粒生长发育的影响[J]. 作物学报, 2014, 40(10): 1839−1845 doi: 10.3724/SP.J.1006.2014.01839

    ZHAO L X, ZHANG P, WANG R N, et al. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels[J]. Acta Agronomica Sinica, 2014, 40(10): 1839−1845 doi: 10.3724/SP.J.1006.2014.01839

    [46] 马金平, 王福星, 张岱, 等. 覆膜对玉米根系分布特性的影响[J]. 农业与技术, 2018, 38(4): 21−22

    MA J P, WANG F X, ZHANG D, et al. Effect of plastic film mulching on root distribution characteristics of maize[J]. Agriculture and Technology, 2018, 38(4): 21−22

    [47] 贾琼, 史海滨, 李瑞平, 等. 西辽河平原覆膜和浅埋对滴灌玉米生长的影响[J]. 水土保持学报, 2021, 35(3): 296−303, 311 doi: 10.13870/j.cnki.stbcxb.2021.03.041

    JIA Q, SHI H B, LI R P, et al. Effects of mulched and soil covered drip irrigation on growth of maize in West Liaohe Plain[J]. Journal of Soil and Water Conservation, 2021, 35(3): 296−303, 311 doi: 10.13870/j.cnki.stbcxb.2021.03.041

    [48] 张寅, 鄂继芳, 孙明海. 秸秆覆盖对沟灌夏玉米根系分布及产量影响[J]. 灌溉排水学报, 2021, 40(4): 16−21 doi: 10.13522/j.cnki.ggps.2020423

    ZHANG Y, E J F, SUN M H. The effect of straw mulching coupled with furrow irrigation on root distribution and yield of summer maize[J]. Journal of Irrigation and Drainage, 2021, 40(4): 16−21 doi: 10.13522/j.cnki.ggps.2020423

  • 期刊类型引用(3)

    1. 张帆,张靓,杨奇,王东,王伟. 配方施肥对玉米的水分利用率及产量影响. 基层农技推广. 2025(03): 35-40 . 百度学术
    2. 戴明,冯鹏羽,郭海滨,魏雅冬,贾森. 氮肥运筹对东北寒区春玉米氮素吸收、利用及淀粉合成的影响. 江苏农业科学. 2024(07): 101-109 . 百度学术
    3. 曾涛,陆秀娟,潘虹,李祥栋,魏心元,石明,宋碧. 基于Richards方程的薏苡不同部位籽粒灌浆性能和品质的差异及其相关性研究. 西南农业学报. 2024(08): 1743-1751 . 百度学术

    其他类型引用(1)

图(7)  /  表(3)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  153
  • PDF下载量:  54
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2023-03-16
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2023-09-18

目录

/

返回文章
返回