Effects of large-spike type maize on interspecific competition and intercropping advantage in maize–peanut intercropping system
-
摘要: 玉米||花生具有明显间作产量优势, 但间作后期种间竞争是限制其进一步高产的瓶颈, 探明大穗型玉米对玉米||花生种间竞争的协调效应和间作优势的影响, 对其高产、高效生产意义重大。本试验于2020年和2021年在河南科技大学农场开展, 以中穗型玉米品种‘郑单958’与花生品种‘科大黑花001’间作(MZD||P)为对照, 研究了大穗型玉米品种‘MC4520’与花生间作(MMC||P)对作物干物质积累与分配、叶面积指数、种间竞争力指数、光合特性、产量和间作产量优势的影响。结果表明: 与MZD||P相比, MMC||P收获期玉米、花生单株干物质重分别显著提高7.55%~9.68%和16.07%~26.77% (P<0.05), 玉米籽粒和花生荚果干物质积累量分别显著提高9.74%~10.84%和34.56%~38.33% (P<0.05); 促进了干物质向玉米籽粒和花生荚果的分配, 尤其是花生荚果中的分配比例显著提高9.12%~15.93% (P<0.05)。与MZD||P相比, MMC||P中花生叶面积指数提高5.78%~29.58%, 花生相对玉米的种间竞争力指数显著提高24.44%~65.12% (P<0.05), MMC||P中玉米、花生净光合速率分别显著提高8.18%~15.74%和3.15%~18.05% (P<0.05), 且玉米和花生的气孔导度和蒸腾速率均提高, 花生的胞间CO2浓度降低。与MZD||P相比, MMC||P中花生产量显著提高26.39%~51.61% (P<0.05), 间作优势和土地当量比显著提高22.21%~24.08%和13.26%~15.27% (P<0.05)。综上, 在玉米||花生体系中, 选用大穗型玉米与花生间作, 能够有效协调间作后期种间竞争, 增强花生的种间竞争能力, 提高花生产量, 从而提高间作体系产量和土地当量比, 进一步增加间作优势。Abstract: Maize–peanut intercropping (maize||peanut) has a significant advantage in terms of yield. However, interspecific competition between maize and peanut in the later period of coexistence limits further yields increasing. Investigating the coordination effects of large-spike maize on interspecific competition and intercropping advantages in maize||peanut systems can provide a theoretical basis for high yield and efficiency. The experiment was conducted at the experimental farm of Henan University of Science and Technology from 2020 to 2021, with medium-spik maize cultivar ‘Zhengdan 958’ intercropping with peanut (MZD||P) as the control. The effects of large-spike maize cultivar ‘MC4520’ intercropping with peanut (MMC||P) on crop dry matter accumulation and distribution, leaf area index, interspecific competitiveness index, photosynthetic characteristics, yield, and intercropping advantages were studied in a two-year field experiment. The results showed that compared with MZD||P, MMC||P significantly increased the dry matter weight per plant of maize and peanut by 7.55%–9.68% and 16.07%–26.77% (P<0.05), respectively. MMC||P improved dry matter accumulation of maize grains and peanut pods at the harvest stage, which was significantly increased by 9.74%–10.84% and 34.56%–38.33% (P<0.05), respectively. MMC||P promoted the distribution of dry matter to maize grain and peanut pod, in particular for peanut, significantly increased by 9.12%–15.93%. MMC||P increased the leaf area index of peanuts by 5.78%–29.58%, and the interspecific competitiveness index of peanuts relative to maize by 24.44%–65.12% (P<0.05). MMC||P significantly increased the net photosynthetic rate of maize and peanut by 8.18%–15.74% and 3.15%–18.05% (P<0.05), respectively. In addition, the stomatal conductance and transpiration rate of maize and peanuts increased, whereas the intercellular CO2 concentration of peanuts decreased. The yield of peanuts in MMC||P significantly increased by 26.39%–51.61%, and the intercropping advantage and land equivalent ratio improved by 22.21%–24.08% and 13.26%–15.27%, respectively (P<0.05). In conclusion, in maize||peanut systems, large-spike type maize intercropping with peanuts can effectively coordinate interspecific competition at a later period of coexistence, which enhances the interspecific competitiveness of peanuts and improves the yield of peanuts, thus improving the yield and land equivalent ratio of intercropping systems and further enhancing the intercropping advantages.
-
间作在我国农业生产中具有十分重要的地位, 能够通过作物之间的合理搭配形成时空差, 集约互补利用光、热、水、肥等资源, 提高作物产量[1-3]。玉米(Zea mays L.)||花生(Arachis hypogaea L.)是一种典型禾豆间作模式, 具有明显地上、地下种间作用, 间作产量优势突出[4-5], 对缓解黄淮海乃至全国粮油争地矛盾具有重要作用[6]。已有研究表明: 玉米||花生高矮相间, 能够改善群体结构和冠层光分布, 增强玉米对于强光、花生对于弱光的利用效率, 提高作物对于光能分层、立体的高效利用[7]; 同时, 玉米||花生中玉米根系分泌的植物铁载体能够提高土壤中铁的有效性, 改善花生铁营养, 促进其共生固氮, 花生固定的氮又被与其间作的玉米吸收, 存在明显的地下种间铁、氮利用互惠效应[8-9], 具有高产、高效、稳产和可持续性特点[10]。
但在玉米||花生共生后期, 玉米处于种间竞争优势, 花生受玉米遮荫影响处于种间竞争劣势, 其干物质积累及产量明显降低[7,11], 这成为限制玉米||花生进一步高产的瓶颈。已有研究表明, 作物的干物质积累和产量形成主要取决于冠层对于光能的截获与利用效率[12-13], 而间作体系中的冠层构型与品种类型密切相关, 其决定着作物对光的拦截和吸收能力[14]。李美等[15]研究认为, 在玉米||花生中, 花生处于光照劣势, 间作后期玉米遮荫会导致花生光合产物减少、干物质积累量下降, 从而导致间作花生单株果数、出仁率和百仁重均显著降低, 此外还会导致花生植株高度增加, 叶面积相对减少, 尤其是间作后期早衰现象严重, 叶绿素相对含量下降显著[16]。在玉米||大豆中选择合适的品种类型, 适宜降低优势作物玉米的竞争能力, 提高劣势作物大豆的竞争能力, 显著增加间作产量优势[8,17]。那么, 在玉米||花生体系中, 能否通过选用大穗型玉米与花生间作, 发挥大穗型玉米个体生产潜力, 相比中穗型玉米降低种植密度, 协调其种间竞争, 提高花生的种间竞争能力, 增加间作产量优势呢? 为此, 本试验以中穗型玉米‘郑单958’与花生间作为对照, 在各自适宜种植密度下, 研究了大穗型玉米‘MC4520’与花生间作对作物干物质积累与分配、叶面积指数、种间竞争力指数、光合特性和间作产量优势的调控效应, 为玉米||花生高产、高效提供理论依据和实践指导。
1. 材料与方法
1.1 试验地概况
本试验于2020年和2021年在河南科技大学农场(33°35′~35°05′N, 111°8′~112°59′E)进行。试验地地处温带, 属于半湿润、半干旱大陆性季风气候, 年平均气温为15.0 ℃, 年平均降水量为586.5 mm, 年平均日照时数为1880 h, 全年降雨较为集中。中壤黄潮土, 0~20 cm耕层土壤理化性质为: 容重1.35 g·cm−3, pH 7.56, 有机质10.72 g·kg−1, 速效磷11.62 mg·kg−1, 速效钾223.8 mg·kg−1 , 碱解氮79.86 mg·kg−1, 有效铁5.98 mg·kg−1。排灌条件良好。
1.2 试验设计
本试验以玉米‘郑单958’ ‘MC4520’和花生‘科大黑花001’为供试品种, 随机区组试验。‘郑单958’为中穗型玉米, 适宜种植密度为6.7万~7.5万株·hm−2; ‘MC4520’为大穗型玉米, 适宜种植密度为5.2万~6.0万株·hm−2。分别设单作玉米、单作花生和玉米||花生3种种植模式, 共5个处理, 每个处理重复3次, 小区面积60 m2 (6 m×10 m), 东西行向种植。单作体系中, 大穗型玉米‘MC4520’的行距和株距分别为60 cm和30 cm; 中穗型玉米‘郑单958’的行距和株距分别为60 cm和25 cm; 花生单粒播种, 行距和株距分别为30 cm和15 cm。玉米||花生行比采用2∶4模式, 即2行玉米间作4行花生(图1), 每个小区内包含3个带宽, 即每个小区有6行玉米、12行花生; 玉米采用宽窄行种植, 宽行、窄行行距分别为160 cm和40 cm, 大穗型玉米‘MC4520’的株距为25 cm; 中穗型玉米‘郑单958’的株距为20 cm; 4行花生播种在宽行中, 单粒播种, 行距和株距同单作, 分别为30 cm和15 cm; 玉米与花生的行距为35 cm。各处理均一次性基施磷肥磷酸二铵180 kg(P2O5)·hm−2, 氮肥尿素90 kg(N)·hm−2。在玉米小喇叭口期于玉米行追施氮肥尿素90 kg(N)·hm−2。2020年6月17日播种, 9月30日收获; 2021年6月11日播种, 9月30日收获。玉米、花生均同期播种、收获。其他管理同大田生产。
1.3 测定项目与方法
1.3.1 干物质
于2020年玉米出苗后96 d和2021年玉米出苗后39 d、53 d、81 d和101 d, 在各小区选取具有代表性的玉米2株、花生4株, 每个处理重复3次。清洗后将玉米分为茎、叶、苞叶、穗轴和籽粒5部分, 花生分为茎、叶和荚果3部分, 分别装袋放入烘箱中, 105 ℃杀青30 min后, 75 ℃烘干至恒重、称重。
1.3.2 叶面积指数
于2021年玉米出苗后39 d、53 d、81 d和101 d, 在各小区选取具有代表性的玉米2株、花生4株, 每个处理重复3次, 根据比叶重法测定叶面积[18], 计算其叶面积指数。
1.3.3 SPAD值
于2021年玉米出苗后39 d、55 d和93 d, 使用SPAD-502型叶绿素仪, 在各小区选取具有代表性的玉米、花生功能叶(玉米穗位叶、花生主茎倒数第3叶)各15片, 测定SPAD值, 每个处理重复3次。
1.3.4 光合速率-光照强度响应曲线和气体交换参数
于2021年玉米出苗后69 d和86 d, 使用LI-6400XT型光合仪, 选择晴天的9:00—11:00, 在各小区选取具有代表性的玉米穗位叶、花生主茎倒数第3叶, 测定其光合速率-光强响应曲线和气体交换参数, 每个处理重复3次。
1.3.5 产量
于收获期各小区选取具有代表性的2 m双行植株, 每个处理重复3次, 调查其产量性状, 风干后称量玉米籽粒重和花生荚果重, 间作玉米、间作花生按所占面积计算实际产量。
1.3.6 竞争力指数
竞争力指数是衡量间作作物种间竞争关系的重要指标[4,19], 采用下式计算:
$$ A_{{\rm{p}}}=Y_{{\rm{IP}}}/(Y_{{\rm{SP}}}\times F_{{\rm{p}}})-Y_{{\rm{IM}}}/(Y_{{\rm{SM}}}\times F_{{\rm{m}}}) $$ (1) $$ F_{{\rm{m}}}=M/(M+P) $$ (2) $$ F_{{\rm{p}}}=P/(P+M) $$ (3) 式中: Ap为间作花生的竞争力指数, AP>0表明花生相对玉米的竞争能力强, AP<0表明花生相对玉米的竞争能力弱; YIM和YIP分别表示间作玉米和间作花生的生物产量; YSM和YSP分别表示单作玉米和单作花生的生物产量; Fm和Fp分别表示玉米和花生的种植密度相对比例; M为间作玉米与单作玉米种植密度之比; P为间作花生与单作花生种植密度之比。
1.3.7 土地当量比和间作优势
土地当量比(LER)是衡量间作优势的重要指标[20], 采用下式计算:
$$ {\rm{LER}}=(Y_{{\rm{im}}}/Y_{{\rm{sm}}})+(Y_{{\rm{ip}}}/Y_{{\rm{sp}}}) $$ (4) $$ 间作优势({\rm{kg}}\cdot {\rm{hm}}^{-2})=(Y_{{\rm{im}}}+Y_{{\rm{ip}}})-(Y_{{\rm{sm}}}\times F_{{\rm{m}}}+Y_{{\rm{sp}}}\times F_{{\rm{p}}}) $$ (5) 式中: Yim和Yip分别为间作玉米和间作花生的产量; Ysm和Ysp分别为单作玉米和单作花生的产量; LER>1表示具有间作优势, LER<1表示不具间作优势。
1.4 数据统计分析
使用Excel软件进行比较、分析和制图, 使用SPSS软件进行方差分析, 利用LSD方法进行多重比较。
2. 结果与分析
2.1 大穗型玉米对玉米||花生叶面积指数的影响
如图2所示, 在间作体系中, 大穗型玉米IM-MC各生育期叶面积指数均明显低于中穗型玉米IM-ZD, 在玉米出苗后39 d、53 d、81 d和101 d分别降低16.97%、13.77%、17.28%和16.62%, 均达差异显著水平(P<0.05); 而与大穗型玉米间作的花生IP-MC的叶面积指数则明显高于与中穗型玉米间作的花生IP-ZD, 在玉米出苗后39 d、53 d、81 d和101 d分别提高6.04%、29.58%、16.16%和5.78%, 且在苗后53 d和81 d达差异显著水平(P<0.05)。这表明采用大穗型玉米与花生间作的MMC||P能够降低玉米的叶面积指数, 提高花生的叶面积指数。
图 2 玉米穗型对玉米||花生叶面积指数的影响SM-ZD: 单作中穗型玉米品种‘郑单 958’; SM-MC: 单作大穗型玉米品种‘MC4520’; IM-ZD: 间作中穗型玉米品种‘郑单 958’; IM-MC: 间作大穗型玉米品种‘MC4520’; SP: 单作花生; IP-ZD: 与中穗型玉米品种‘郑单 958’间作的花生; IP-MC: 与大穗型玉米品种‘MC4520’间作的花生。不同小写字母表示同一时间处理间P<0.05水平差异显著。SM-ZD: sole-cropped maize medium-spike cultivar ‘Zhengdan 958’; SM-MC: sole-cropped maize large-spike cultivar ‘MC4520’; IM-ZD: intercropped maize medium-spike cultivar ‘Zhengdan 958’; IM-MC: intercropped maize large-spike cultivar ‘MC4520’; SP: sole-cropped peanut; IP-ZD: intercropped peanut with maize mdeium-spike cultivar ‘Zhengdan 958’; IP-MC: intercropped peanut with maize large-spike cultivar ‘MC4520’. Different lowercase letters indicate significant differences among treatments at P<0.05 level in the same days after seedlings.Figure 2. Effects of spike types of maize on crop leaf area index in maize||peanut2.2 大穗型玉米对玉米||花生SPAD值的影响
如图3所示, 在间作体系中, 玉米和花生的SPAD值随生育期均呈现先升高后降低的趋势。其中IM-MC的SPAD值显著高于IM-ZD, 在玉米出苗后39 d、55 d和93 d分别提高5.79%、9.42%和9.54% (P<0.05)。 与IP-ZD相比, IP-MC的SPAD值在玉米出苗后39 d、55 d和93 d分别提高4.43%、4.37%和3.64%, 除出苗后93 d外均达差异显著水平(P<0.05)。这表明MMC||P能够提高玉米和花生的SPAD值。
图 3 玉米穗型对玉米||花生SPAD值的影响处理具体说明见图2。不同小写字母表示同一时间处理间在P<0.05水平差异显著。The description of each treatment is shown in the Fig. 2. Different lowercase letters indicate significant differences among treatments at P<0.05 level in the same days after seedlings.Figure 3. Effects of spike types of maize on SPAD value of maize||peanut2.3 大穗型玉米对玉米||花生光合-光强响应曲线的影响
如图4所示, 随着光照强度的增加, 玉米和花生的净光合速率均表现为不断升高至光饱和后趋于平稳的趋势。在间作体系中, 与IM-ZD相比, IM-MC的光补偿点降低, 光饱和点提高, 在光照强度低于300 μmol·m−2·s−1时, IM-MC的净光合速率低于IM-ZD, 但随光照强度升高差异逐渐减小并反超, 在光照强度高于1200 μmol·m−2·s−1时, IM-MC的净光合速率已明显高于IM-ZD, 其最大净光合速率在玉米出苗后69 d和86 d分别提高10.85%和10.10%。与IP-ZD相比, IP-MC的光补偿点降低, 光饱和点及净光合速率提高, 其最大净光合速率在玉米出苗后69 d和86 d分别提高13.68%和2.12%。这表明MMC||P能够降低玉米、花生的光补偿点, 提高其光饱和点及净光合速率, 增强玉米对于强光、花生对于弱光的利用。
图 4 玉米穗型对玉米||花生光合-光强响应曲线的影响处理具体说明见图2。图A和C为2021年玉米出苗后69 d; 图B和D为2021年玉米出苗后86 d。Pmax: 最大净光合速率。The description of each treatment is shown in the Fig. 2. Fig. A and C show curves of 69 days after maize emergence in 2021. Fig. B and D show curves of 86 days after maize emergence in 2021. Pmax: maximum net photosynthetic rate.Figure 4. Effects of spike types of maize on photosynthesis-light intensity response curves of maize||peanut2.4 大穗型玉米对玉米||花生气体交换参数的影响
如表1所示, 在间作体系中, 与IM-ZD相比, IM-MC提高了其净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr), 在玉米出苗后69 d和86 d, 其Pn、Gs、Ci和Tr分别提高8.18%~15.74%、19.83%~32.74%、4.05%~56.39%和17.97%~21.22%, 均达差异显著水平(P<0.05)。与IP-ZD相比, IP-MC的Pn、Gs和Tr均有所提高, 在玉米出苗后69 d和86 d分别提高3.15%~18.05%、19.89%~59.31%和9.92%~38.40%, IP-MC的Ci降低, 幅度为0.41%~18.30%, 除出苗后69 d的Ci外, 其他均达差异显著水平(P<0.05)。与MZD||P相比, MMC||P显著提高了玉米、花生的Pn、Gs和Tr, 降低了花生的Ci, 增强了玉米、花生的光合能力。这表明MMC||P能提高玉米、花生的净光合速率, 改善气体交换参数。
表 1 玉米穗型对玉米||花生气体交换参数的影响Table 1. Effects of spike types of maize on gas exchange parameters in maize||peanut作物
Crop玉米出苗后天数
Days after maize emergence (d)处理
Treatment净光合速率
Pn (μmol·m−2·s−1)气孔导度
Gs (mol·m−2·s−1)胞间CO2浓度
Ci (μmol·mol−1)蒸腾速率
Tr (mmol·m−2·s−1)玉米
Maize69 SM-ZD 27.52±0.42c 0.19±0.02c 104.86±4.12d 6.85±0.10c IM-ZD 29.26±0.74b 0.22±0.01b 124.00±1.96b 7.11±0.11b SM-MC 27.67±0.60c 0.19±0.01c 118.08±3.21c 5.26±0.25d IM-MC 33.87±0.54a 0.27±0.02a 129.03±1.88a 8.39±0.31a 86 SM-ZD 22.44±0.23d 0.12±0.00c 62.21±1.82d 1.85±0.14d IM-ZD 27.17±0.60b 0.16±0.02b 82.17±2.11c 2.30±0.09b SM-MC 22.97±0.27c 0.13±0.01c 95.32±4.30b 2.13±0.03c IM-MC 29.39±0.39a 0.21±0.02a 128.51±2.97a 2.79±0.18a 花生
Peanut69 SP 16.28±0.15a 0.27±0.01b 274.66±4.16b 2.70±0.20c IP-ZD 13.64±0.14c 0.25±0.01c 290.95±5.91a 3.28±0.08b IP-MC 16.10±0.09b 0.30±0.02a 289.76±3.95a 3.61±0.10a 86 SP 15.54±0.13a 0.18±0.01b 222.32±1.84b 6.84±0.18b IP-ZD 14.48±0.15c 0.18±0.01b 274.50±3.60a 6.45±0.14c IP-MC 14.94±0.06b 0.29±0.03a 224.28±2.03b 8.93±0.19a 处理具体说明见图2。同一玉米出苗后天数内同列不同小写字母表示处理间P<0.05水平差异显著。The description of each treatment is shown in the Fig. 2. Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate. Values of the same days after maize emergence followed by different lowercase letters within a column are significantly different at P<0.05 probability. 2.5 大穗型玉米对玉米||花生干物质的影响
如图5所示, 在间作体系中, IM-MC的单株干物质积累量明显高于IM-ZD, 在玉米出苗后39 d、53 d、81 d和101 d分别提高18.22%、8.03%、1.94%和7.55%, 且在苗后101 d达差异显著水平(P<0.05); 与IP-ZD相比, IP-MC的单株干物质积累量在玉米出苗后39 d、53 d、81 d和101 d分别提高22.26%、39.62%、38.50%和26.77%, 均达差异显著水平(P<0.05)。这表明MMC||P能够提高玉米和花生的单株干物质。
2.6 大穗型玉米对玉米||花生干物质分配的影响
如表2所示, 在间作体系中, IM-MC收获期各器官干物质积累量高于IM-ZD, 其茎、叶、苞叶、穗轴和籽粒分别提高−2.46%~2.69%、1.62%~8.76%、10.65%~11.09%、11.32%~33.78%和9.74%~10.84%, 降低了干物质向茎、叶的分配比例, 提高了向苞叶、穗轴和籽粒的分配比例, 分别提高0.88%~3.29%、3.51%~21.97%和1.06%~2.03%。如表3所示, IP-MC的收获期各器官干物质积累量高于IP-ZD, 其茎、叶和荚果分别提高8.03%~20.32%、1.54%~15.28%和34.56%~38.33%, 降低了干物质向茎和叶的分配比例, 提高了其向荚果中的分配比例, 提高幅度为9.12%~15.93%, IP-MC荚果的干物质积累及分配比例均达差异显著水平(P<0.05)。这表明MMC||P能够提高玉米籽粒和花生荚果中干物质积累和分配比例。
表 2 玉米穗型对玉米||花生中玉米干物质分配的影响Table 2. Effects of spike types of maize on maize dry matter distribution in maize||peanut年份
Year处理
Treatment干物质
Dry matter (g·plant−1)干物质分配比例
Dry matter distribution rate (%)茎
Stem叶
Leaf苞叶
Bract穗轴
Rachis籽粒
Grain茎
Stem叶
Leaf苞叶
Bract穗轴
Rachis籽粒
Grain2020 SM-ZD 48.96±2.53b 27.65±4.29a 10.33±2.08b 13.28±0.41d 104.14±0.98c 23.96±0.74a 13.53±1.82a 5.05±1.10a 6.50±0.23c 50.96±1.45b IM-ZD 55.76±1.19a 30.32±1.15a 13.95±0.25a 19.08±1.06b 139.12±2.41b 21.59±0.21b 11.74±0.50ab 5.40±0.02a 7.39±0.31b 53.88±0.43a SM-MC 50.06±3.02b 28.48±0.81a 11.43±0.10b 16.05±0.28c 110.46±9.83c 23.13±0.08a 13.16±0.52a 5.28±0.30a 7.41±0.52b 51.03±1.39b IM-MC 57.26±4.22a 30.81±1.61a 15.43±1.06a 25.52±0.48a 154.20±3.10a 20.22±1.06c 10.88±0.67b 5.45±0.43a 9.01±0.21a 54.44±0.34a 2021 SM-ZD 42.67±1.18b 24.58±0.96c 12.40±0.41c 15.21±0.31c 106.25±2.65c 21.22±0.52a 12.22±0.61a 6.17±0.25a 7.56±0.13b 52.83±0.71b IM-ZD 49.55±1.58a 29.63±0.53ab 16.71±0.89ab 21.09±0.13b 147.25±0.60b 18.75±0.44c 11.21±0.20a 6.32±0.29a 7.98±0.02ab 55.73±0.66a SM-MC 42.48±0.55b 27.30±1.63bc 13.98±0.85bc 16.34±0.17c 116.15±2.35c 19.64±0.11b 12.62±0.78a 6.46±0.35a 7.56±0.14b 53.71±0.66b IM-MC 48.33±0.65a 32.22±3.78a 18.56±2.79a 23.48±1.49a 161.59±11.60a 17.01±0.57d 11.34±1.81a 6.53±0.74a 8.26±0.41a 56.86±1.92a 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 表 3 玉米穗型对玉米||花生中花生干物质分配的影响Table 3. Effects of spike types of maize on peanut dry matter distribution in maize||peanut年份
Year处理
Treatment干物质
Dry matter (g·plant−1)干物质分配比例
Dry matter distribution (%)茎
Stem叶
Leaf荚果
Pod茎
Stem叶
Leaf荚果
Pod2020 SP 15.48±0.40a 8.19±0.87a 19.07±0.83a 36.21±1.34b 19.17±1.58b 44.62±0.50a IP-ZD 12.93±0.54b 7.65±0.25a 11.63±0.23c 40.14±1.44a 23.76±0.73a 36.10±0.72c IP-MC 13.96±0.42b 7.77±0.19a 15.64±0.52b 37.36±0.98ab 20.78±0.08b 41.85±0.94b 2021 SP 17.35±0.40a 9.22±0.84a 24.55±0.41a 33.95±0.75a 18.04±1.15b 48.01±0.92a IP-ZD 11.43±0.37b 6.56±0.62b 12.89±0.66c 37.01±0.91a 21.24±0.90a 41.75±0.25b IP-MC 13.75±1.73b 7.56±0.33b 17.83±1.11b 35.13±3.31a 19.31±1.56ab 45.56±2.79a 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 2.7 大穗型玉米对玉米||花生种间竞争力指数的影响
如图6所示, 随着玉米出苗后天数的增加, 间作玉米和间作花生的种间竞争力指数分别表现为升高和降低的趋势。在间作体系中, IM-MC的种间竞争力指数明显低于IM-ZD, 在2020年玉米出苗后96 d和2021年出苗后39 d、53 d、81 d和101 d均达差异显著水平(P<0.05)。而IP-MC的种间竞争力指数则明显高于IP-ZD, 在2020年玉米出苗后96 d和2021年出苗后39 d、53 d、81 d和101 d分别提高33.97%、65.12%、52.20%、44.72%和24.44%, 均达差异显著水平(P<0.05)。这表明MMC||P能够协调玉米、花生种间竞争矛盾, 增强花生对玉米的种间竞争能力。
2.8 大穗型玉米对玉米||花生产量性状的影响
如表4所示, 在间作体系中, 与IM-ZD相比, IM-MC的穗长和穗行数分别提高4.65%~8.28%和9.17%~11.74%, 但秃尖长、行粒数和百粒重差异并不显著, IM-MC的产量较IM-ZD有所下降, 降低幅度为2.71%~5.99%, 但未达差异显著水平(P<0.05)。如表5所示, 与IP-ZD相比, IP-MC的果数、百果重、单株果重和产量均有所提高, 提高幅度分别为10.50%~33.70%、13.44%~14.35%、26.42%~51.66%和26.39%~51.61%, 均达差异显著水平(P<0.05)。这表明, MMC||P能够有效改善玉米、花生的产量性状, 显著提高花生产量。
表 4 玉米穗型对玉米||花生中玉米产量性状的影响Table 4. Effects of spike types of maize on maize yield traits in maize||peanut年份
Year处理
Treatment秃尖长
Bare top
length (cm)穗长
Ear length
(cm)穗行数
Ear rows number行粒数
Grains number per row百粒重
100-grain weight
(g)产量
Yield
(kg·hm−2)2020 SM-ZD 0.44±0.17b 14.42±0.90c 14.67±0.12c 33.62±1.28ab 32.24±1.40b 10 731.5±628.3a IM-ZD 0.35±0.24b 15.48±0.62bc 15.33±0.23b 34.45±1.78ab 33.45±0.99ab 8608.3±217.3b SM-MC 1.58±0.31a 16.10±0.40ab 17.08±0.58a 32.50±0.52b 33.14±0.81ab 10 273.1±859.1a IM-MC 1.30±0.63a 16.76±0.30a 17.13±0.12a 36.12±1.06a 35.37±1.25a 8375.0±69.6b 2021 SM-ZD 0.30±0.26a 15.27±0.13b 14.47±0.42b 32.35±1.11bc 31.22±0.15c 9044.4±150.3a IM-ZD 0.21±0.08a 16.02±0.24ab 14.53±0.58b 36.24±0.43a 33.70±0.40a 6958.3±237.6c SM-MC 0.37±0.18a 15.39±0.73b 15.67±0.42a 30.28±1.02c 32.63±0.50b 7943.1±350.4b IM-MC 0.22±0.20a 16.76±0.30a 15.87±0.31a 34.24±1.53ab 33.69±0.61a 6541.7±112.7c 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level . 表 5 玉米穗型对玉米||花生中花生产量性状的影响Table 5. Effects of spike types of maize on peanut yield traits in maize||peanut年份
Year处理
Treatment果数
Pods number
(pods·m−2)百果重
100-pod weight
(g)单株果重
Pod weight per plant
(g)产量
Yield
(kg·hm−2)2020 SP 393.33±16.91a 120.60±7.47c 21.31±0.40a 4735.2±88.4a IP-ZD 151.67±7.72c 150.40±4.47b 10.26±0.59c 1368.6±79.2c IP-MC 202.78±12.18b 170.61±2.60a 15.56±0.80b 2074.9±106.5b 2021 SP 379.26±18.90a 117.28±2.94b 20.00±0.50a 4444.4±111.1a IP-ZD 222.22±11.11c 119.95±4.51b 12.00±0.87c 1600.0±115.5c IP-MC 245.56±6.19b 137.17±6.53a 15.17±1.04b 2022.2±138.8b 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 2.9 大穗型玉米对玉米||花生土地当量比的影响
如表6所示, 2年的试验结果均表明, 在间作体系中, MZD||P与MMC||P的间作产量差异并不显著, 但MMC||P的间作优势较MZD||P提高22.21%~24.08%, 达差异显著水平(P<0.05); 与MZD||P相比, MMC||P的PLER-M提高2.08%~7.14%, 差异并不显著, 但它却显著提高了PLER-P, 提高幅度为26.35%~51.93%, 其LER的提高幅度为13.26%~15.27%, 达差异显著水平(P<0.05)。这表明MMC||P在保证玉米产量的同时, 又能够显著提高花生产量, 从而提高间作产量和土地当量比, 增加间作优势。
表 6 玉米穗型对玉米||花生土地当量比的影响Table 6. Effects of spike types of maize on land equivalent ratios of maize||peanut年份
Year处理
Treatment间作体系产量
Yield of intercropping system (kg·hm−2)间作优势
Intercropping advantage (kg·hm−2)PLER-M PLER-P LER 2020 MZD‖P 9976.9±210.3a 2577.5±82.0b 0.80±0.03a 0.29±0.01b 1.09±0.03b MMC‖P 10 449.9±92.8a 3198.2±299.1a 0.82±0.07a 0.44±0.03a 1.26±0.04a 2021 MZD‖P 8558.3±261.0a 2070.1±214.7b 0.77±0.02a 0.36±0.03b 1.13±0.04b MMC‖P 8563.9±236.3a 2529.8±145.6a 0.82±0.03a 0.45±0.02a 1.28±0.03a MZD||P: 中穗型玉米品种‘郑单958’与花生间作; MMC||P: 大穗型玉米品种‘MC4520’与花生间作; PLER-M: 间作玉米偏土地当量比; PLER-P: 间作花生偏土地当量比; LER: 土地当量比。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。MZD||P: maize medium-spike cultivar ‘Zhengdan 958’ intercropping with peanut; MMC||P: maize large-spike cultivar ‘MC4520’ intercropping with peanut; PLER-M: partial land equivalent ratio of intercropped maize; PLER-P: partial land equivalent ratio of intercropped peanut; LER: land equivalent ratio. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 3. 讨论
3.1 大穗型玉米有利于改善玉米||花生功能叶的光合特性
间套作中光是限制低位作物生长发育和产量形成的重要因素[21-22], 间作通过作物间合理搭配构建不同的群体结构, 影响作物冠层环境[23-24], 而作物的光合特性则与其冠层环境密切相关, 在间作体系中优势作物可获得较多光照, 有利于其生长发育, 而劣势作物受遮荫影响, 生长受到一定抑制, 引起庇荫效应[25-26]。通过不同品种搭配和空间布局的改善, 可以调控间作体系冠层环境和种间关系, 改善其光合特性, 进一步扩大间作优势[27]。本研究中, 与中穗型玉米||花生相比, 大穗型玉米||花生提高了玉米和花生各生育时期的SPAD值; 而且大穗型玉米||花生不仅提高了玉米和花生的光饱和点和净光合速率, 还显著提高了其气孔导度和蒸腾速率, 降低了花生的胞间CO2浓度, 研究结果表明选用大穗型玉米和花生间作能有效改善玉米、花生光合特性, 提高其光合能力。这与前人的研究结果相似, 在间作体系中适宜降低优势作物的种植密度, 可以提高劣势作物的叶面积指数和叶绿素相对含量, 改善其光合特性[16], 也有研究表明遮荫会显著影响花生的光合能力, 如降低其净光合速率、气孔导度、光饱和点、光补偿点等相关特性, 且随着遮荫程度增强而加剧[28], 因此本研究中, 通过选用大穗型玉米与花生间作能够降低玉米的叶面积指数, 一定程度上减弱花生所受遮荫, 改善花生光合特性并提高其光合能力。
3.2 大穗型玉米能协调玉米||花生种间竞争, 促进花生干物质积累
合理的间作体系能够提高作物对自然资源的利用, 具有明显间作产量优势[29-30], 而种间竞争是间作优势的重要决定因素[31]。在间作系统中, 优势作物一定程度上抑制劣势作物对于光能、水分和养分等的吸收利用, 从而影响其生长发育[32]。但通过调控间作作物品种可以协调种间竞争, 促进劣势作物的生长发育, 扩大间作产量优势[33]。本研究中, 与中穗型玉米||花生相比, 大穗型玉米||花生降低了玉米叶面积指数、提高了花生的叶面积指数, 显著提高了花生相对玉米的种间竞争力指数, 提高幅度为24.44%~65.12%, 从而增加了花生各生育时期的干物质积累, 尤其是显著促进了成熟期花生干物质积累及其向荚果中的分配, 其分配比例显著提高9.12%~15.93%, 研究结果表明选用大穗型玉米和花生间作能够协调共生后期种间竞争, 提高花生种间竞争能力, 促进其光合物质积累及向荚果中的分配。这与前人的研究结果相似, 在间作体系中减弱高位作物对低位作物的遮荫可以提高低位作物的叶面积指数、光能利用效率和生长速率[14], 促进其对于光能和养分的吸收利用[34], 提高光合物质积累和产量[35], 充分发挥间作互补效应[36]。也可能是与大穗型玉米品种和花生间作的空间布局改变了其冠层光环境, 提高光能透射率, 从而有效协调其地上种间光竞争, 提高花生光合能力有关[8], 其机理还需进一步深入研究。
3.3 大穗型玉米提高玉米||花生体系中花生产量、偏土地当量比及间作优势
间作存在明显的种间竞争与互补关系, 这对提高作物产量和养分利用效率具有重要影响[37]。在玉米||花生共生后期, 花生受玉米遮荫影响处于种间竞争劣势, 这限制了其产量的提高[38]。但通过品种选择和栽培措施可以有效调控两者之间种间竞争关系, 减弱玉米对花生的遮荫影响, 增强其种间竞争能力, 提高光合物质积累和产量, 扩大间作优势[27,36]。本研究中, 与中穗型玉米||花生相比, 大穗型玉米||花生显著提高了花生的果数、百果重、单株果重和产量。虽然在间作体系中大穗型玉米的产量略低于中穗型玉米, 但两者玉米的产量和偏土地当量比差异并不显著; 与选用中穗型玉米品种间作的花生相比, 选用大穗型玉米品种间作的花生显著提高了其产量和偏土地当量比, 从而显著提高了大穗型玉米品种和花生间作的土地当量比和间作优势, 研究结果表明选用大穗型玉米品种和花生间作能够改善花生产量性状, 提高花生产量和偏土地当量比, 从而提高土地当量比, 扩大间作产量优势。这与前人的研究结果相似, 在间作体系中花生受遮荫影响会导致其光合物质积累、单株果数、百果重及产量显著降低[15]。而本研究中通过选用大穗型玉米品种与花生间作能够降低玉米的叶面积指数, 减弱花生遮荫程度, 协调玉米花生之间的种间竞争关系, 提高花生光合能力、干物质积累及向荚果的分配, 改善花生产量性状并提高其产量和偏土地当量比, 从而提高间作产量和间作优势。
4. 结论
综上所述, 在本研究条件下, 选用大穗型玉米品种与花生间作能够增强花生的种间竞争能力, 提高共生后期花生的光合能力, 促进光合物质的积累及其向荚果分配, 从而显著提高间作花生的产量和偏土地当量比, 进一步增加玉米||花生间作产量优势, 提高农田利用效率。
-
图 2 玉米穗型对玉米||花生叶面积指数的影响
SM-ZD: 单作中穗型玉米品种‘郑单 958’; SM-MC: 单作大穗型玉米品种‘MC4520’; IM-ZD: 间作中穗型玉米品种‘郑单 958’; IM-MC: 间作大穗型玉米品种‘MC4520’; SP: 单作花生; IP-ZD: 与中穗型玉米品种‘郑单 958’间作的花生; IP-MC: 与大穗型玉米品种‘MC4520’间作的花生。不同小写字母表示同一时间处理间P<0.05水平差异显著。SM-ZD: sole-cropped maize medium-spike cultivar ‘Zhengdan 958’; SM-MC: sole-cropped maize large-spike cultivar ‘MC4520’; IM-ZD: intercropped maize medium-spike cultivar ‘Zhengdan 958’; IM-MC: intercropped maize large-spike cultivar ‘MC4520’; SP: sole-cropped peanut; IP-ZD: intercropped peanut with maize mdeium-spike cultivar ‘Zhengdan 958’; IP-MC: intercropped peanut with maize large-spike cultivar ‘MC4520’. Different lowercase letters indicate significant differences among treatments at P<0.05 level in the same days after seedlings.
Figure 2. Effects of spike types of maize on crop leaf area index in maize||peanut
图 3 玉米穗型对玉米||花生SPAD值的影响
处理具体说明见图2。不同小写字母表示同一时间处理间在P<0.05水平差异显著。The description of each treatment is shown in the Fig. 2. Different lowercase letters indicate significant differences among treatments at P<0.05 level in the same days after seedlings.
Figure 3. Effects of spike types of maize on SPAD value of maize||peanut
图 4 玉米穗型对玉米||花生光合-光强响应曲线的影响
处理具体说明见图2。图A和C为2021年玉米出苗后69 d; 图B和D为2021年玉米出苗后86 d。Pmax: 最大净光合速率。The description of each treatment is shown in the Fig. 2. Fig. A and C show curves of 69 days after maize emergence in 2021. Fig. B and D show curves of 86 days after maize emergence in 2021. Pmax: maximum net photosynthetic rate.
Figure 4. Effects of spike types of maize on photosynthesis-light intensity response curves of maize||peanut
表 1 玉米穗型对玉米||花生气体交换参数的影响
Table 1 Effects of spike types of maize on gas exchange parameters in maize||peanut
作物
Crop玉米出苗后天数
Days after maize emergence (d)处理
Treatment净光合速率
Pn (μmol·m−2·s−1)气孔导度
Gs (mol·m−2·s−1)胞间CO2浓度
Ci (μmol·mol−1)蒸腾速率
Tr (mmol·m−2·s−1)玉米
Maize69 SM-ZD 27.52±0.42c 0.19±0.02c 104.86±4.12d 6.85±0.10c IM-ZD 29.26±0.74b 0.22±0.01b 124.00±1.96b 7.11±0.11b SM-MC 27.67±0.60c 0.19±0.01c 118.08±3.21c 5.26±0.25d IM-MC 33.87±0.54a 0.27±0.02a 129.03±1.88a 8.39±0.31a 86 SM-ZD 22.44±0.23d 0.12±0.00c 62.21±1.82d 1.85±0.14d IM-ZD 27.17±0.60b 0.16±0.02b 82.17±2.11c 2.30±0.09b SM-MC 22.97±0.27c 0.13±0.01c 95.32±4.30b 2.13±0.03c IM-MC 29.39±0.39a 0.21±0.02a 128.51±2.97a 2.79±0.18a 花生
Peanut69 SP 16.28±0.15a 0.27±0.01b 274.66±4.16b 2.70±0.20c IP-ZD 13.64±0.14c 0.25±0.01c 290.95±5.91a 3.28±0.08b IP-MC 16.10±0.09b 0.30±0.02a 289.76±3.95a 3.61±0.10a 86 SP 15.54±0.13a 0.18±0.01b 222.32±1.84b 6.84±0.18b IP-ZD 14.48±0.15c 0.18±0.01b 274.50±3.60a 6.45±0.14c IP-MC 14.94±0.06b 0.29±0.03a 224.28±2.03b 8.93±0.19a 处理具体说明见图2。同一玉米出苗后天数内同列不同小写字母表示处理间P<0.05水平差异显著。The description of each treatment is shown in the Fig. 2. Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate. Values of the same days after maize emergence followed by different lowercase letters within a column are significantly different at P<0.05 probability. 表 2 玉米穗型对玉米||花生中玉米干物质分配的影响
Table 2 Effects of spike types of maize on maize dry matter distribution in maize||peanut
年份
Year处理
Treatment干物质
Dry matter (g·plant−1)干物质分配比例
Dry matter distribution rate (%)茎
Stem叶
Leaf苞叶
Bract穗轴
Rachis籽粒
Grain茎
Stem叶
Leaf苞叶
Bract穗轴
Rachis籽粒
Grain2020 SM-ZD 48.96±2.53b 27.65±4.29a 10.33±2.08b 13.28±0.41d 104.14±0.98c 23.96±0.74a 13.53±1.82a 5.05±1.10a 6.50±0.23c 50.96±1.45b IM-ZD 55.76±1.19a 30.32±1.15a 13.95±0.25a 19.08±1.06b 139.12±2.41b 21.59±0.21b 11.74±0.50ab 5.40±0.02a 7.39±0.31b 53.88±0.43a SM-MC 50.06±3.02b 28.48±0.81a 11.43±0.10b 16.05±0.28c 110.46±9.83c 23.13±0.08a 13.16±0.52a 5.28±0.30a 7.41±0.52b 51.03±1.39b IM-MC 57.26±4.22a 30.81±1.61a 15.43±1.06a 25.52±0.48a 154.20±3.10a 20.22±1.06c 10.88±0.67b 5.45±0.43a 9.01±0.21a 54.44±0.34a 2021 SM-ZD 42.67±1.18b 24.58±0.96c 12.40±0.41c 15.21±0.31c 106.25±2.65c 21.22±0.52a 12.22±0.61a 6.17±0.25a 7.56±0.13b 52.83±0.71b IM-ZD 49.55±1.58a 29.63±0.53ab 16.71±0.89ab 21.09±0.13b 147.25±0.60b 18.75±0.44c 11.21±0.20a 6.32±0.29a 7.98±0.02ab 55.73±0.66a SM-MC 42.48±0.55b 27.30±1.63bc 13.98±0.85bc 16.34±0.17c 116.15±2.35c 19.64±0.11b 12.62±0.78a 6.46±0.35a 7.56±0.14b 53.71±0.66b IM-MC 48.33±0.65a 32.22±3.78a 18.56±2.79a 23.48±1.49a 161.59±11.60a 17.01±0.57d 11.34±1.81a 6.53±0.74a 8.26±0.41a 56.86±1.92a 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 表 3 玉米穗型对玉米||花生中花生干物质分配的影响
Table 3 Effects of spike types of maize on peanut dry matter distribution in maize||peanut
年份
Year处理
Treatment干物质
Dry matter (g·plant−1)干物质分配比例
Dry matter distribution (%)茎
Stem叶
Leaf荚果
Pod茎
Stem叶
Leaf荚果
Pod2020 SP 15.48±0.40a 8.19±0.87a 19.07±0.83a 36.21±1.34b 19.17±1.58b 44.62±0.50a IP-ZD 12.93±0.54b 7.65±0.25a 11.63±0.23c 40.14±1.44a 23.76±0.73a 36.10±0.72c IP-MC 13.96±0.42b 7.77±0.19a 15.64±0.52b 37.36±0.98ab 20.78±0.08b 41.85±0.94b 2021 SP 17.35±0.40a 9.22±0.84a 24.55±0.41a 33.95±0.75a 18.04±1.15b 48.01±0.92a IP-ZD 11.43±0.37b 6.56±0.62b 12.89±0.66c 37.01±0.91a 21.24±0.90a 41.75±0.25b IP-MC 13.75±1.73b 7.56±0.33b 17.83±1.11b 35.13±3.31a 19.31±1.56ab 45.56±2.79a 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 表 4 玉米穗型对玉米||花生中玉米产量性状的影响
Table 4 Effects of spike types of maize on maize yield traits in maize||peanut
年份
Year处理
Treatment秃尖长
Bare top
length (cm)穗长
Ear length
(cm)穗行数
Ear rows number行粒数
Grains number per row百粒重
100-grain weight
(g)产量
Yield
(kg·hm−2)2020 SM-ZD 0.44±0.17b 14.42±0.90c 14.67±0.12c 33.62±1.28ab 32.24±1.40b 10 731.5±628.3a IM-ZD 0.35±0.24b 15.48±0.62bc 15.33±0.23b 34.45±1.78ab 33.45±0.99ab 8608.3±217.3b SM-MC 1.58±0.31a 16.10±0.40ab 17.08±0.58a 32.50±0.52b 33.14±0.81ab 10 273.1±859.1a IM-MC 1.30±0.63a 16.76±0.30a 17.13±0.12a 36.12±1.06a 35.37±1.25a 8375.0±69.6b 2021 SM-ZD 0.30±0.26a 15.27±0.13b 14.47±0.42b 32.35±1.11bc 31.22±0.15c 9044.4±150.3a IM-ZD 0.21±0.08a 16.02±0.24ab 14.53±0.58b 36.24±0.43a 33.70±0.40a 6958.3±237.6c SM-MC 0.37±0.18a 15.39±0.73b 15.67±0.42a 30.28±1.02c 32.63±0.50b 7943.1±350.4b IM-MC 0.22±0.20a 16.76±0.30a 15.87±0.31a 34.24±1.53ab 33.69±0.61a 6541.7±112.7c 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level . 表 5 玉米穗型对玉米||花生中花生产量性状的影响
Table 5 Effects of spike types of maize on peanut yield traits in maize||peanut
年份
Year处理
Treatment果数
Pods number
(pods·m−2)百果重
100-pod weight
(g)单株果重
Pod weight per plant
(g)产量
Yield
(kg·hm−2)2020 SP 393.33±16.91a 120.60±7.47c 21.31±0.40a 4735.2±88.4a IP-ZD 151.67±7.72c 150.40±4.47b 10.26±0.59c 1368.6±79.2c IP-MC 202.78±12.18b 170.61±2.60a 15.56±0.80b 2074.9±106.5b 2021 SP 379.26±18.90a 117.28±2.94b 20.00±0.50a 4444.4±111.1a IP-ZD 222.22±11.11c 119.95±4.51b 12.00±0.87c 1600.0±115.5c IP-MC 245.56±6.19b 137.17±6.53a 15.17±1.04b 2022.2±138.8b 处理具体说明见图2。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。The description of each treatment is shown in the Fig. 2. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. 表 6 玉米穗型对玉米||花生土地当量比的影响
Table 6 Effects of spike types of maize on land equivalent ratios of maize||peanut
年份
Year处理
Treatment间作体系产量
Yield of intercropping system (kg·hm−2)间作优势
Intercropping advantage (kg·hm−2)PLER-M PLER-P LER 2020 MZD‖P 9976.9±210.3a 2577.5±82.0b 0.80±0.03a 0.29±0.01b 1.09±0.03b MMC‖P 10 449.9±92.8a 3198.2±299.1a 0.82±0.07a 0.44±0.03a 1.26±0.04a 2021 MZD‖P 8558.3±261.0a 2070.1±214.7b 0.77±0.02a 0.36±0.03b 1.13±0.04b MMC‖P 8563.9±236.3a 2529.8±145.6a 0.82±0.03a 0.45±0.02a 1.28±0.03a MZD||P: 中穗型玉米品种‘郑单958’与花生间作; MMC||P: 大穗型玉米品种‘MC4520’与花生间作; PLER-M: 间作玉米偏土地当量比; PLER-P: 间作花生偏土地当量比; LER: 土地当量比。同一年份内同列不同小写字母表示处理间P<0.05 水平差异显著。MZD||P: maize medium-spike cultivar ‘Zhengdan 958’ intercropping with peanut; MMC||P: maize large-spike cultivar ‘MC4520’ intercropping with peanut; PLER-M: partial land equivalent ratio of intercropped maize; PLER-P: partial land equivalent ratio of intercropped peanut; LER: land equivalent ratio. Values in the same year followed by different lowercase letters within a column are significantly different at P<0.05 probability level. -
[1] DU J B, HAN T F, GAI J Y, et al. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17(4): 747−754 doi: 10.1016/S2095-3119(17)61789-1
[2] 党科, 宫香伟, 吕思明, 等. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175−1187 DANG K, GONG X W, LYU S M, et al. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping[J]. Acta Agronomica Sinica, 2021, 47(6): 1175−1187
[3] 王一帆, 殷文, 胡发龙, 等. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929−941 doi: 10.3724/SP.J.1006.2021.01047 WANG Y F, YIN W, HU F L, et al. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground[J]. Acta Agronomica Sinica, 2021, 47(5): 929−941 doi: 10.3724/SP.J.1006.2021.01047
[4] JIAO N Y, WANG J T, MA C, et al. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping[J]. The Crop Journal, 2021, 9(6): 1460−1469 doi: 10.1016/j.cj.2020.12.004
[5] FENG C, SUN Z X, ZHANG L Z, et al. Maize/peanut intercropping increases land productivity: a meta-analysis[J]. Field Crops Research, 2021, 270: 108208 doi: 10.1016/j.fcr.2021.108208
[6] ZHAO X H, DONG Q Q, HAN Y, et al. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity[J]. BMC Microbiology, 2022, 22(1): 14 doi: 10.1186/s12866-021-02425-6
[7] 焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究[J]. 作物学报, 2006, 32(6): 917−923 JIAO N Y, NING T Y, ZHAO C, et al. Characters of photosynthesis in intercropping system of maize and peanut[J]. Acta Agronomica Sinica, 2006, 32(6): 917−923
[8] YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems[J]. Field Crops Research, 2017, 203: 16−23 doi: 10.1016/j.fcr.2016.12.007
[9] JIAO N Y, WANG F, MA C, et al. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil[J]. European Journal of Agronomy, 2021, 128: 126303 doi: 10.1016/j.eja.2021.126303
[10] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415 LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
[11] WANG Q, SUN Z X, BAI W, et al. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432−446
[12] MADDONNI G A, CHELLE M, DROUET J L, et al. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements[J]. Field Crops Research, 2001, 70(1): 1−13 doi: 10.1016/S0378-4290(00)00144-1
[13] MADDONNI G A, OTEGUI M E, CIRILO A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation[J]. Field Crops Research, 2001, 71(3): 183−193 doi: 10.1016/S0378-4290(01)00158-7
[14] SIJA P, SUGITO Y, SURYANTO A, et al. Radiation use efficiency of maize (Zea mays L.) on different varieties and intercropping with mungbean in the rainy season[J]. Agrivita: Journal of Agricultural Science, 2020, 42(3): 462−471
[15] 李美, 孙智明, 李朦朦, 等. 不同比例玉米花生间作对花生生长及产量品质的影响[J]. 核农学报, 2013, 27(3): 391−397 doi: 10.11869/hnxb.2013.03.0391 LI M, SUN Z M, LI M M, et al. Effect of maize-peanut intercropping on peanut growth, yield and quality[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 391−397 doi: 10.11869/hnxb.2013.03.0391
[16] 王钰云, 王宏富, 李智, 等. 间作遮阴对花生生长发育及产量的影响[J]. 山西农业科学, 2020, 48(2): 218−221 WANG Y Y, WANG H F, LI Z, et al. Effect of intercropping shading on growth and yield of peanut[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 218−221
[17] DHIMA K V, LITHOURGIDIS A S, VASILAKOGLOU I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio[J]. Field Crops Research, 2007, 100(2/3): 249−256
[18] 焦念元, 陈明灿, 付国占, 等. 玉米花生间作复合群体的光合物质积累与叶面积指数变化[J]. 作物杂志, 2007(1): 34−35 JIAO N Y, CHEN M C, FU G Z, et al. Photosynthetic matter accumulation and leaf area index change in compound population of maize intercropping peanut[J]. Crops, 2007(1): 34−35
[19] WILLY. Intercropping—its importance and research needs. 2. Agronomy and research needs[J]. Field Crop Abstracts, 1979, 32(2): 73−85
[20] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping[J]. Experimental Agriculture, 1980, 16(3): 217−228 doi: 10.1017/S0014479700010978
[21] YAO X D, ZHOU H L, ZHU Q, et al. Photosynthetic response of soybean leaf to wide light-fluctuation in maize-soybean intercropping system[J]. Frontiers in Plant Science, 2017, 8: 1695 doi: 10.3389/fpls.2017.01695
[22] KIM J, SONG Y, KIM D W, et al. Evaluating different interrow distance between corn and soybean for optimum growth, production and nutritive value of intercropped forages[J]. Journal of Animal Science and Technology, 2018, 60(1): 1−6 doi: 10.1186/s40781-017-0158-0
[23] RAZA A, ASGHAR M A, AHMAD B, et al. Agro-techniques for lodging stress management in maize-soybean intercropping system—a review[J]. Plants (Basel, Switzerland), 2020, 9(11): 1592
[24] YANG G Z, LUO X J, NIE Y C, et al. Effects of plant density on yield and canopy micro environment in hybrid cotton[J]. Journal of Integrative Agriculture, 2014, 13(10): 2154−2163 doi: 10.1016/S2095-3119(13)60727-3
[25] 刘鑫. 玉豆带状间作系统光能分布、截获与利用研究[D]. 雅安: 四川农业大学, 2016 LIU X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system[D]. Ya’an: Sichuan Agricultural University, 2016
[26] 王庆燕. 不同群体结构下玉米避阴反应的生理生化机制及其调控研究[D]. 北京: 中国农业大学, 2015 WANG Q Y. Physiological and biochemical mechanisms of shade avoidance response and its regulation in maize plants under different group structures[D]. Beijing: China Agricultural University, 2015
[27] 范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征[J]. 中国生态农业学报(中英文), 2022, 30(11): 1750−1761 FAN H, YIN W, CHAI Q. Research progress on photo-physiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1750−1761
[28] 张昆, 万勇善, 刘风珍. 苗期弱光对花生光合特性的影响[J]. 中国农业科学, 2010, 43(1): 65−71 ZHANG K, WAN Y S, LIU F Z. Effects of weak light on photosynthetic characteristics of peanut seedlings[J]. Scientia Agricultura Sinica, 2010, 43(1): 65−71
[29] HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition[J]. Field Crops Research, 2017, 201: 41−51 doi: 10.1016/j.fcr.2016.10.021
[30] MAO L L, ZHANG L Z, LI W Q, et al. Yield advantage and water saving in maize/pea intercrop[J]. Field Crops Research, 2012, 138: 11−20 doi: 10.1016/j.fcr.2012.09.019
[31] ZHANG R Z, MENG L B, LI Y, et al. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping[J]. Food and Energy Security, 2021, 10(2): 379−393 doi: 10.1002/fes3.282
[32] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J]. 中国农业科学, 2005, 38(5): 965−973 XIAO Y B, LI L, ZHANG F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean[J]. Scientia Agricultura Sinica, 2005, 38(5): 965−973
[33] 张妍, 王利立, 柴强, 等. 施氮水平对大麦间作豌豆种间竞争的调控效应[J]. 农业现代化研究, 2014, 35(3): 381−384 ZHANG Y, WANG L L, CHAI Q, et al. Effects of nitrogen fertilization on inter-competitiveness in a barley-pea intercropping system[J]. Research of Agricultural Modernization, 2014, 35(3): 381−384
[34] PRASAD R B, BROOK R M. Effect of varying maize densities on intercropped maize and soybean in Nepal[J]. Experimental Agriculture, 2005, 41(3): 365−382 doi: 10.1017/S0014479705002693
[35] 刘颖, 王建国, 郭峰, 等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994−1001 LIU Y, WANG J G, GUO F, et al. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994−1001
[36] 冯晨, 黄波, 冯良山, 等. 不同配置对辽西玉米||花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61−73 FENG C, HUANG B, FENG L S, et al. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in west Liaoning[J]. Scientia Agricultura Sinica, 2022, 55(1): 61−73
[37] ZHOU T, WANG L, SUN X, et al. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping[J]. Field Crops Research, 2021, 262: 108054 doi: 10.1016/j.fcr.2020.108054
[38] 林松明, 孟维伟, 南镇武, 等. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 31−41 LIN S M, MENG W W, NAN Z W, et al. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31−41
-
期刊类型引用(6)
1. 赵雅姣,刘晓静,蔺芳. 适宜于黄土高原半干旱区豆禾饲草间套作组合的筛选. 草业学报. 2025(03): 97-110 . 百度学术
2. 杜桂娟,白伟,蔡倩,冯晨,向午燕,董智,张哲,侯志研. 玉米-紫花苜蓿间作模式对作物产量及土地生产力的影响. 中国农业气象. 2025(03): 398-408 . 百度学术
3. 张志华,林洪鑫,袁展汽,肖运萍,汪瑞清,吕丰娟. 不同施氮量对间作体系木薯、花生产量和经济效益的影响. 热带农业科学. 2024(02): 1-8 . 百度学术
4. 韩静,王一帆,高玉红,王瑛泽,剡斌,文明,王海娣,刘宏胜. 胡麻间作模式对作物养分吸收利用及产量的影响. 中国生态农业学报(中英文). 2024(06): 997-1008 . 本站查看
5. 张思培,伊淼,王建国,杨莎,彭振英,崔利,张正,郭峰,张佳蕾,万书波. 小麦-玉米Ⅱ花生周年轮作对土壤理化性状和有机碳的影响. 中国油料作物学报. 2024(03): 554-564 . 百度学术
6. 刘涵,丁迪,汪江涛,郑宾,王笑笑,朱晨旭,刘娟,刘领,付国占,焦念元. 玉米穗型与种植密度对玉米花生间作种间竞争的协调效应. 中国农业科学. 2024(19): 3758-3769 . 百度学术
其他类型引用(0)