Effects of content dynamics of NO3−-N and phenolic acids in soil on root growth of cotton seedlings under the return of wheat straw
-
摘要: 揭示前茬小麦长期秸秆还田后, 后茬棉田土壤硝态氮(NO3−-N)与酚酸含量的时空变化对棉苗根系生长影响的生理机制, 可为完善秸秆还田技术提供理论支撑。试验于2021年与2022年在小麦长期秸秆定位还田地块进行。以棉花品种‘中棉所425’为材料, 设置小麦秸秆不还田(CK)与小麦秸秆还田(S) 2个处理。结果表明, 秸秆还田增加了土壤NO3−-N与酚酸含量, 对0~20 cm土层的影响大于20~40 cm; 随秸秆还田后时间推移, 土壤NO3−-N与酚酸含量呈先增加后降低趋势, 且在秸秆还田后24~31 d达到峰值。秸秆还田后31 d前, 秸秆还田处理棉株根系活力、根系NO3−-N含量、硝酸还原酶活性、根系生物量和形态指标均显著低于CK处理, 31 d后则呈相反趋势。相关分析表明, 0~20 cm土壤酚酸含量与根系活力、根系NO3−-N含量、棉花根系长度、直径、表面积和地上部生物量呈显著负相关; 不同土层NO3−-N含量与棉苗形态、生理指标及生物量之间呈正相关但未达显著水平。秸秆还田对棉花幼苗生长影响呈“先抑后促”的趋势, 秸秆还田后31 d内, 酚酸含量的增加降低了棉苗根系活力, 阻碍了根系生长, 抑制了棉苗对NO3−-N的吸收利用, 表明秸秆还田前期对棉株生长的“抑制效应”大于秸秆的“肥料效应”, 秸秆还田31 d后, 秸秆的“肥料效应”大于酚酸的“抑制效应”, 促进棉株根系的生长。Abstract: Nitrate nitrogen (NO3−-N) is the main form of nitrogen released from crop straws under dry farming conditions, and is the main form of nitrogen absorption by the roots and the plant root growth regulatory signal of cotton. Straw return affects the availability of soil and fertilizer N, thus inhibiting the early growth of crops and even decreasing crop yields. The straw return also releases many phenolic acids, inhibiting crop seed germination and root growth. This study aimed to reveal the mechanisms by which the contents dynamics of NO3−-N and phenolic acid in the soil affect the growth of cotton seedlings under the return of wheat straw. Based on the 11-year return of wheat straw, field experiments were conducted in 2021 and 2022 at Jiangsu Academy of Agricultural Sciences Experimental Station in Nanjing, Jiangsu Province, China. Two treatments, wheat straw removal (CK) and wheat straw return (S), were applied. The contents of NO3−-N and phenolic acid in the soil of the subsequent cotton field, the NO3−-N content and nitrate reductase activity of cotton seedlings, the activity and morphology indices of cotton roots, and the biomass of cotton seedlings were investigated. The results demonstrated that straw return increased the contents of NO3−-N and phenolic acid in the soil, and the effect on the 0–20 cm soil layer was greater than that on the 20–40 cm soil layer. With a delay of days after the straw return, the contents of NO3−-N and phenolic acid in the soil increased and then decreased, reaching a peak at 24−31 d after the straw return. Within 31 days of straw return, the root activity, root NO3−-N content, nitrate reductase (NR) activity, root biomass, and morphological indices of cotton seedlings under the straw return treatment were significantly lower than those under the CK treatment but showed the opposite trend after 31 d of straw return. The correlation analysis showed that phenolic acid content in 0–20 cm soil were significantly and negatively correlated with the root activity, NO3−-N content, length, diameter, and surface area of the root, and the aboveground biomass of cotton seedlings. The NO3−-N content in different soil layers was positively correlated with the index of morphology and physiology and the biomass of cotton seedlings but did not reach a significant level. The effect of straw return on the growth of cotton seedlings showed a trend of “first inhibition and then promotion”. Within 31 d after straw return, the “inhibition effect” of phenolic acid in soil on the growth of cotton seedlings was greater than that of the “fertilization effect” of straw. Higher phenolic acid content reduced the root activity and root growth of cotton seedlings, inhibiting the absorption and utilization of NO3−-N in cotton seedlings. After 31 d of straw return, the “fertilization” effect of straw was greater than the “inhibition” effect of phenolic acid, promoting the root growth of cotton seedlings.
-
Keywords:
- Whet straw return /
- NO3−-N /
- Phenolic acids /
- Root activity /
- Nitrate reductase /
- Subsequent cotton
-
秸秆还田已成为提高土壤肥力、保护生态环境以促进农业可持续发展的重要技术措施之一[1-2]。在我国小麦(Triticum aestivum L.)-棉花(Gossypium hirsutum L.)两熟种植区, 麦后短季棉直播技术可以实现植棉轻简化、机械化和规模化, 已成为主要发展方向[3-4]。但生产中前茬小麦秸秆还田, 后茬棉花“弱苗晚发”, 致使棉花生育期推迟[5]。因此, 深入研究小麦秸秆还田后直播棉苗养分吸收与根系生长发育的生理机制, 对于揭示麦棉两熟秸秆还田下直播棉“弱苗晚发”的成因, 完善麦[油菜(Brassica napus L.)]后直播棉高效栽培技术具有重要意义。
氮素是作物生长发育中最为重要的结构物质[6], 硝态氮(NO3−-N)是棉花吸收氮素的最主要形态。旱作作物秸秆还田后, 其氮素释放是以NO3−-N为主要形式, 占80%以上[7]。前人研究表明, NO3−-N不仅是植物吸收营养的主要离子形式[8], 而且是植物根系生长发育的调控信号[9]。秸秆还田显著提高土壤全氮、速效氮含量, 利于作物生长发育[10]; 但也有研究认为, 由于还田作物秸秆碳氮比较高, 秸秆还田初期微生物争氮造成土壤氮素供应不足[11], 影响作物苗期生长。因此, 必须明确小麦秸秆还田后土壤NO3−-N含量的时空变化特征及其对棉苗根系生长与氮素吸收的影响机制, 才能揭示麦棉两熟秸秆还田下直播棉“弱苗晚发”的成因, 而目前少见相关报道。
另一方面, 作物秸秆集中还田释放大量化感物质, 产生化感胁迫抑制作物种子萌发、根系生长[12]。研究指出秸秆内酚酸等化感物质影响根系细胞的膜通透性、破坏根系细胞结构, 且对幼苗根系的影响大于地上部[13-15]。小麦秸秆中的化感物质主要包括酚酸类、异羌肟酸类和短链脂肪酸类等, 其中酚酸类物质被认为是主要的化感物质[16-18]; 我们前期的研究发现小麦秸秆浸提液中总酚酸含量影响其化感效应, 对棉花种子萌发具有显著的化感胁迫; 亦显著影响了棉花根系的生理功能, 棉花根系呼吸速率与根系活力显著降低[19]。在大田环境下, 明确小麦秸秆还田后土壤酚酸含量时空变化特征及其对棉苗根系生长与氮素吸收的影响, 可以进一步揭示小麦秸秆还田后棉苗“弱苗晚发”的原因。
为此, 本文基于小麦长期秸秆还田定位试验, 研究小麦秸秆还田对后茬棉田土壤NO3−-N与酚酸含量动态变化及其对棉苗根系生理活性、根系形态建成及生物量的影响, 以期阐明小麦秸秆还田下土壤NO3−-N与酚酸含量的时空变化影响棉苗根系生长发育的生理机制, 为完善麦棉两熟秸秆管理策略与直播棉高效栽培技术提供理论支撑。
1. 材料与方法
1.1 试验设计
试验于2021年与2022年在江苏省南京市(118°50′E, 32°02′N)江苏省农业科学院连续11年秸秆还田定位试验田块进行。供试土壤为黏质土, 两年0~20 cm土壤pH分别为6.0和5.9, 含有机质12.8 g∙kg−1和13.1 g∙kg−1, 全氮1.31 g∙kg−1和1.28 g∙kg−1, 碱解氮112.0 mg∙kg−1和105.0 mg∙kg−1, 速效磷36.8 mg∙kg−1和36.1 mg∙kg−1, 速效钾152.5 mg∙kg−1和153.1 mg∙kg−1。试验期间气温与降雨情况如图1所示。
以棉花品种‘中棉所425’为材料, 设置小麦秸秆不还田(CK)与小麦秸秆全量还田(S) 两个处理, 每处理4次重复, 共8个小区, 小区面积28 m2。2021年、2022年分别于5月30日与5月28日将粉碎的小麦秸秆(长度<8 cm)均匀地平铺在试验小区, 然后用旋耕机翻耕到0~20 cm土层中, 秸秆还田量为9000 kg∙hm−2。棉花于6月9日(2021年)与6月7日(2022年)播种, 种植密度9.75×104株∙hm−2, 等行距(76 cm)种植。为降低外源氮对试验结果的影响, 氮肥于田间取样结束后(播种后40 d)施入, 磷肥与钾肥于整地时一次性施入。其他措施按一般大田管理进行。
1.2 测定内容与方法
1.2.1 土壤NO3−-N与酚酸含量的测定
分别于小麦秸秆还田后10 d (棉花播种当天)、17 d、24 d、31 d、38 d和45 d, 在棉花行上两株棉花的中间位置取不同深度(0~20 cm、20~40 cm)土壤, 用冰盒带回实验室, 剔除土块、作物残渣等后充分混匀土样。一部分土样于−40 ℃保存用于NO3−-N含量测定, 另一部分土样于4 ℃保存用于酚酸含量测定。每小区重复3次。土壤NO3−-N含量采用紫外分光光度计测定[20], 土壤酚酸含量采用ASE-HPLC法测定[21]。
1.2.2 棉苗根系活力、形态指标与生物量的测定
分别于小麦秸秆还田后17 d、24 d、31 d、38 d和45 d, 每个小区选取长势一致的连续4~8株棉苗, 采用流水冲根法获取根系后, 取其中部分棉苗嫩根立刻采用TTC法测定根系活力[22], 另一部分棉苗利用WinRHIZO根系分析系统测定根系长度、直径、表面积、体积; 之后将棉苗按根、茎和叶不同器官分开, 于105 ℃杀青30 min后80 ℃烘干至恒重, 测定生物量。
1.2.3 棉苗NO3−-N含量与硝酸还原酶(NR)活性的测定
在1.2.2取样的同时, 取部分棉苗根系与叶片测定NO3−-N含量、硝酸还原酶(NR)活性。采用水杨酸法测定根系与叶片NO3−-N含量[22], 采用NBT还原法测定根系与叶片NR活性[22]。
1.3 数据处理与分析
采用Microsoft Excel数据处理软件分析数据和制作表格, 用SPSS 17.0统计软件进行方差分析, 用 LSD法检验处理间平均值的差异显著性, 用Origin 2021作图。
2. 结果与分析
2.1 秸秆还田对土壤NO3−-N与酚酸含量的影响
由图2可见, 随秸秆还田后时间推移, 0~20 cm土壤NO3−-N含量呈先增加后降低的趋势, 两年NO3−-N含量分别于秸秆还田后24 d (2021年)和31 d (2022年)达峰值, 分别为23.8 μg∙g−1和20.5 μg∙g−1。秸秆还田后10~45 d秸秆还田(S)处理0~20 cm土壤NO3−-N含量显著高于CK; 20~40 cm土壤NO3−-N也呈高于CK的变化, 但仅于2021年秸秆还田后17~24 d及38~45 d、2022年秸秆还田后24~38 d达显著水平。
图 2 小麦秸秆还田对后茬棉田土壤NO3−-N含量和酚酸含量动态变化的影响CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.Figure 2. Effects of wheat straw return on the content dynamics of NO3−-N and phenolic acid in soil of subsequent cotton随秸秆还田后时间推移, 0~20 cm土壤酚酸含量呈先增加后降低的趋势, 两年酚酸含量分别于秸秆还田后24 d (2021年)和31 d (2022年)达到峰值, 为88.5 μg∙g−1和68.2 μg∙g−1。秸秆还田后10~45 d S处理0~20 cm土壤酚酸含量显著高于CK, 20~40 cm土壤酚酸含量处理间差异不显著, 可见秸秆还田对0~20 cm土壤酚酸含量影响大于20~40 cm土壤。
2.2 秸秆还田对棉苗根系活力的影响
由图3可知, 2021年秸秆还田后17~24 d S处理棉苗根系活力显著低于CK, 还田后31 d与CK无显著差异, 而还田后38~45 d则显著高于CK; 与CK相比, 2022年秸秆还田后17 d S处理根系活力降低未达显著水平, 其他趋势一致。可见, 秸秆还田抑制了还田后31 d前棉苗根系活力, 在38 d后对根系活力的影响由抑制转为促进。
2.3 秸秆还田对棉苗根系及叶片NO3−-N含量与硝酸还原酶(NR)活性的影响
秸秆还田后17~24 d S处理根系NO3−-N含量显著低于CK, 还田后38~45 d显著高于CK (图4)。2021年秸秆还田后17~31 d S处理叶片NO3−-N含量显著低于CK, 还田后45 d显著高于CK; 与CK 相比, 2022年秸秆还田后31 d S 处理NO3−-N含量降低未达显著水平, 秸秆还田后38 d S 处理NO3−-N含量升高达显著水平, 其他时段趋势一致。可见, 秸秆还田降低了还田后24 d前棉苗对NO3−-N的吸收, 而还田后38~45 d则促进了棉苗对NO3−-N的吸收。
图 4 小麦秸秆还田对后茬棉苗NO3−-N含量和硝酸还原酶(NR)活性动态变化的影响CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.Figure 4. Effects of wheat straw return on the dynamics of NO3−-N content and nitrate reductase (NR) activity of cotton seedlings硝酸还原酶是植物氮素同化过程中的关键酶之一, 其活性可作为根系吸收利用NO3−-N的指标[23]。图4还可见, 2021年 S处理根系和叶片NR活性分别在秸秆还田后17 d和17~24 d显著低于CK处理, 秸秆还田31 d后和38 d后显著高于CK; 与CK相比, 2022年秸秆还田后17d S处理叶NR活性未达显著水平, 其他趋势一致。可见, 秸秆还田抑制了还田后24 d前棉苗NR活性, 且对叶片的抑制作用时间长于根系。
2.4 秸秆还田对棉苗根系形态与生物量动态的影响
由图5可见, 2021年秸秆还田后17~24 d, S处理的棉苗根系长度和直径显著低于CK, 还田后31~38 d与CK差异不显著, 还田后45 d则显著高于CK; 秸秆还田后17~31 d S处理的棉苗根系表面积与体积亦低于CK, 还田后38~45 d高于CK, 两年结果一致。表明, 秸秆还田显著影响还田后31 d前棉苗根系形态建成。
图 5 小麦秸秆还田对后茬棉苗根系形态指标动态变化的影响CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.Figure 5. Effects of wheat straw return on the dynamics of root morphological indexes of cotton seedlings由表1可见, 棉苗根系和地上部生物量均随秸秆还田后时间推移而增大。秸秆还田后17~31 d S处理棉苗根系与地上部生物量显著低于CK, 还田后38~45 d则显著高于CK; 两年试验结果一致。可见, 秸秆还田不利于还田后31 d前棉苗生物量的累积。
表 1 小麦秸秆还田棉苗生物量的动态变化Table 1. Dynamics of biomass of cotton seedlings under the return of wheat strawmg∙plant−1 年份
Year处理
Treatment部位
Part秸秆还田后天数 Days after straw return (d) 17 24 31 38 45 2021 CK 根系
Root9.0±0.4 26.0±2.7* 63.0±2.5* 202.4±15.2 533.2±20.4 S 8.0±0.4 16.0±1.3 50.0±2.0 256.5±10.5* 720.6±30.0* CK 地上部
Shoot100.1±4.5* 331.3±10.3* 851.3±9.0** 1875.4±66.5 5973.1±95.5 S 80.2±3.9 303.4±12.3 790.2±14.0 2161.5±124.1* 6370.0±262.3* 2022 CK 根系
Root10.9±0.5* 40.0±1.8 99.0±9.8** 295.4±18.8 457.2±28.6 S 7.7±0.1 38.1±0.6 77.9±5.8 350.3±33.3* 616.1±64.5** CK 地上部
Shoot96.5±11.1 172.6±9.9* 492.2±30.1** 1783.9±71.4 4300.5±218.5 S 90.0±7.4 141.8±7.6 343.7±28.0 2083.0±48.4 5175.0±167.4* CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively. 2.5 土壤酚酸、NO3−-N含量与棉苗根系生理与形态指标及生物量的相关性分析
由表2可见, 0~20 cm土壤酚酸含量与根系活力、根系NO3−-N含量、根系长度、直径、表面积及地上部生物量显著负相关; 与NR活性、根系体积和生物量相关关系未达显著水平; 20~40 cm土壤酚酸含量与根系活力及根系长度呈显著负相关, 与其他指标相关关系未达显著水平。不同土层NO3−-N含量与根系生理指标、根系形态指标、生物量等棉苗生长指标相关性不显著。
表 2 土壤酚酸、NO3−-N含量与棉苗根系生理、根系形态及生物量的相关性分析Table 2. Correlation analysis of soil phenolic acid, NO3−-N contents with root physiology, morphology and plant biomass of cotton seedlings土层深度
Soil depth
(cm)根系生理指标 Root physiology 根系形态指标 Root morphology 生物量 Biomass 根系活力
Root activityNO3−-N含量
NO3−-N contentNR活性
NR activity长度
Length直径
Diameter表面积
Surface area体积
Volume根系
Root地上部
Shoot酚酸含量
Phenolic acid content>0~20 > −0.678* > −0.663* > −0.425 >−0.675* > −0.700* > −0.656* >−0.621 >−0.628 > −0.658* >20~40 >−0.706* >−0.404 >−0.315 >−0.634* >−0.446 >−0.607 >−0.578 >−0.577 >−0.613 NO3−-N含量
NO3−-N content>0~20 >0.348 >0.610 >0.433 >0.154 >0.182 >0.157 >0.176 >0.209 >0.163 >20~40 >0.529 >0.625 >0.069 >0.443 >0.542 >0.523 >0.581 >0.607 >0.533 N=10. *和**分别表示在P<0.05和P<0.01水平显著相关。* and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively. 3. 讨论
3.1 秸秆还田提高了棉花苗期土壤NO3−-N和酚酸含量
大量研究表明, 秸秆还田有利于提高土壤有机质含量、改善土壤物理性状、增加土壤肥力, 提高作物产量[24-26]。NO3−-N是棉苗吸收氮素的主要形态。本研究发现, 小麦秸秆还田下, 0~40 cm土壤NO3−-N含量在还田后10~45 d均显著高于CK处理, 表明小麦秸秆还田增加了后茬棉田土壤氮素的供给, 这与张国娟等[10]研究结果一致。小麦秸秆还田后不仅释放营养元素, 同时大量化感物质释放。前人研究表明, 秸秆还田后作物秸秆经过雨水的淋浸和微生物的腐解释放出酚酸类化感物质, 当其积累到一定含量后, 会抑制下茬作物种子萌发、幼苗生长及根系吸收[27-29]。本研究亦发现小麦秸秆还田显著提高后茬棉田0~20 cm土壤酚酸含量, 且在还田后24~31 d含量达到峰值, 之后显著降低, 这与张承胤等[30]发现玉米秸秆腐解7~28 d土壤酚酸物质含量达峰值的结果相似[31]。
3.2 秸秆还田土壤酚酸抑制棉苗氮素吸收与转化
根系是作物与土壤接触的器官, 能感知土壤环境变化并反馈于植株。前人研究表明土壤酚酸物质能够降低植物体内保护酶活性, 造成细胞膜受损[32-33], 进而影响植物对矿质元素的吸收利用[34-35]。吕卫光等[36]研究发现酚酸处理显著抑制黄瓜(Cucumis sativus L.)对NO3−-N的吸收, 导致细胞内含物大量外渗, 植株生长量降低。本试验条件下, 小麦秸秆还田下棉苗根系活力在还田后31 d前降低, 同时土壤中NO3−-N含量高而根系与叶片NO3−-N含量在还田后24 d 或31 d 显著降低, 这可能与较高酚酸含量抑制了棉株对NO3−-N的吸收有关[24,35]。此外, 本试验中棉苗根系与叶片NR活性分别在小麦秸秆还田后17 d与31 d前降低, 可能与根系及叶片中NO3−-N浓度降低有关[23]。前人研究还表明酚酸物质破坏了根系细胞结构, 抑制根系的纵向生长和细胞分裂, 从而在根系形态上表现出明显的变化[37-38]。本研究结果亦表明, 小麦秸秆还田下根系长度、直径和体积在还田后24 d前显著降低, 根系表面积在还田后31 d前显著降低; 根系及地上部生物量在还田后31 d前均降低, 这可能是造成棉苗“弱苗晚发”的主要原因[39]。
进一步研究发现, 麦秸秆还田31 d后根系与叶片NO3−-N含量、NR活性、棉苗根系形态指标与生物量均显著高于CK处理, 其原因可能是随着麦秸秆还田时间推移, 土壤酚酸含量降低, 对根系活力和棉苗NR活性抑制减弱, 而麦秸秆还田带来的肥料效应(NO3−-N含量升高)大于酚酸抑制效应, 从而促进了棉苗生长[40]。鉴于秸秆还田前期, 棉苗根系对氮素的吸收利用受抑制, 生产中秸秆还田下配施速效氮肥或苗期喷施叶面肥, 可以缓解氮素固定、促进棉苗生长, 是解决秸秆还田下“弱苗晚发”的重要技术措施[2,4]。
4. 结论
小麦秸秆还田增加后茬棉田土壤酚酸和NO3−-N含量, 对0~20 cm土层的影响大于20~40 cm。还田后21 d前, 土壤酚酸对棉株生长的“抑制效应”大于秸秆的“肥料效应”, 降低后茬棉苗根系活力和根系生长, 抑制了对NO3−-N的吸收利用, 是影响后茬棉苗根系形态建成和生物量形成、造成棉苗“弱苗晚发” 的主要原因。小麦秸秆还田31 d后, 秸秆的“肥料效应”大于酚酸的“抑制效应”, 促进了棉株NO3−-N的吸收利用和生物量增加。
-
图 2 小麦秸秆还田对后茬棉田土壤NO3−-N含量和酚酸含量动态变化的影响
CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.
Figure 2. Effects of wheat straw return on the content dynamics of NO3−-N and phenolic acid in soil of subsequent cotton
图 4 小麦秸秆还田对后茬棉苗NO3−-N含量和硝酸还原酶(NR)活性动态变化的影响
CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.
Figure 4. Effects of wheat straw return on the dynamics of NO3−-N content and nitrate reductase (NR) activity of cotton seedlings
图 5 小麦秸秆还田对后茬棉苗根系形态指标动态变化的影响
CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively.
Figure 5. Effects of wheat straw return on the dynamics of root morphological indexes of cotton seedlings
表 1 小麦秸秆还田棉苗生物量的动态变化
Table 1 Dynamics of biomass of cotton seedlings under the return of wheat straw
mg∙plant−1 年份
Year处理
Treatment部位
Part秸秆还田后天数 Days after straw return (d) 17 24 31 38 45 2021 CK 根系
Root9.0±0.4 26.0±2.7* 63.0±2.5* 202.4±15.2 533.2±20.4 S 8.0±0.4 16.0±1.3 50.0±2.0 256.5±10.5* 720.6±30.0* CK 地上部
Shoot100.1±4.5* 331.3±10.3* 851.3±9.0** 1875.4±66.5 5973.1±95.5 S 80.2±3.9 303.4±12.3 790.2±14.0 2161.5±124.1* 6370.0±262.3* 2022 CK 根系
Root10.9±0.5* 40.0±1.8 99.0±9.8** 295.4±18.8 457.2±28.6 S 7.7±0.1 38.1±0.6 77.9±5.8 350.3±33.3* 616.1±64.5** CK 地上部
Shoot96.5±11.1 172.6±9.9* 492.2±30.1** 1783.9±71.4 4300.5±218.5 S 90.0±7.4 141.8±7.6 343.7±28.0 2083.0±48.4 5175.0±167.4* CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant differences at P<0.05 and P<0.01 levels, respectively. 表 2 土壤酚酸、NO3−-N含量与棉苗根系生理、根系形态及生物量的相关性分析
Table 2 Correlation analysis of soil phenolic acid, NO3−-N contents with root physiology, morphology and plant biomass of cotton seedlings
土层深度
Soil depth
(cm)根系生理指标 Root physiology 根系形态指标 Root morphology 生物量 Biomass 根系活力
Root activityNO3−-N含量
NO3−-N contentNR活性
NR activity长度
Length直径
Diameter表面积
Surface area体积
Volume根系
Root地上部
Shoot酚酸含量
Phenolic acid content>0~20 > −0.678* > −0.663* > −0.425 >−0.675* > −0.700* > −0.656* >−0.621 >−0.628 > −0.658* >20~40 >−0.706* >−0.404 >−0.315 >−0.634* >−0.446 >−0.607 >−0.578 >−0.577 >−0.613 NO3−-N含量
NO3−-N content>0~20 >0.348 >0.610 >0.433 >0.154 >0.182 >0.157 >0.176 >0.209 >0.163 >20~40 >0.529 >0.625 >0.069 >0.443 >0.542 >0.523 >0.581 >0.607 >0.533 N=10. *和**分别表示在P<0.05和P<0.01水平显著相关。* and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively. -
[1] KUMAR M, MITRA S, MAZUMDAR S P, et al. Improvement of soil health and system productivity through crop diversification and residue incorporation under jute-based different cropping systems[J]. Agronomy, 2021, 11(8): 1622 doi: 10.3390/agronomy11081622
[2] YANG C Q, LI J N, ZHANG G W, et al. Barley straw combined with urea and controlled-release nitrogen fertilizer improves lint yield and nitrogen utilization of field-seeded cotton[J]. Agronomy, 2022, 12(5): 1208 doi: 10.3390/agronomy12051208
[3] 刘瑞显, 周治国, 陈德华, 等. 长江流域棉区棉花“三集中”的轻简高效理论与栽培途径[J]. 中国棉花, 2018, 45(9): 11−12, 17 doi: 10.11963/1000-632X.lrxzzg.20180920 LIU R X, ZHOU Z G, CHEN D H, et al. Theory of “Sanjizhong” and technology on simple and efficient cotton cultivation in the Yangtze River valley[J]. China Cotton, 2018, 45(9): 11−12, 17 doi: 10.11963/1000-632X.lrxzzg.20180920
[4] 杨长琴, 周治国, 陈德华, 等. 长江流域棉区麦(油)棉两熟种植的棉花增密减肥轻简高效技术[J]. 中国棉花, 2018, 45(10): 1−4 YANG C Q, ZHOU Z G, CHEN D H, et al. Light-simplified and high efficient cultivation technologies of cotton with increased planting density and reduced fertilizer application for wheat/rape-cotton cropping system in the Yangtze valley[J]. China Cotton, 2018, 45(10): 1−4
[5] 孙磊, 陈兵林, 周治国. 麦棉套作Bt棉花根系分泌物对土壤速效养分及微生物的影响[J]. 棉花学报, 2007, 19(1): 18−22 doi: 10.3969/j.issn.1002-7807.2007.01.004 SUN L, CHEN B L, ZHOU Z G. Effects of root exudates on available soil nutrition, micro-organism quantity of Bt cotton in wheat-cotton intercropping system[J]. Cotton Science, 2007, 19(1): 18−22 doi: 10.3969/j.issn.1002-7807.2007.01.004
[6] 徐国伟, 吴长付, 刘辉, 等. 秸秆还田与氮肥管理对水稻养分吸收的影响[J]. 农业工程学报, 2007, 23(7): 191−195 doi: 10.3321/j.issn:1002-6819.2007.07.037 XU G W, WU C F, LIU H, et al. Effects of straw residue return and nitrogen management on nutrient absorption of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(7): 191−195 doi: 10.3321/j.issn:1002-6819.2007.07.037
[7] 李逢雨, 孙锡发, 冯文强, 等. 麦秆、油菜秆还田腐解速率及养分释放规律研究[J]. 植物营养与肥料学报, 2009, 15(2): 374−380 doi: 10.3321/j.issn:1008-505X.2009.02.018 LI F Y, SUN X F, FENG W Q, et al. Nutrient release patterns and decomposing rates of wheat and rapeseed straw[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 374−380 doi: 10.3321/j.issn:1008-505X.2009.02.018
[8] 李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5): 982−993 doi: 10.11869/j.issn.100-8551.2020.05.0982 LI C Y, KONG X Q, DONG H Z. Nitrate uptake, transport and signaling regulation pathways[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 982−993 doi: 10.11869/j.issn.100-8551.2020.05.0982
[9] VEGA A, OBRIEN J A, GUTIERREZ R A, et al. Nitrate and hormonal signaling crosstalk for plant growth and development[J]. Current Opinion in Plant Biology, 2019, 52: 155−163 doi: 10.1016/j.pbi.2019.10.001
[10] 张国娟, 濮晓珍, 张鹏鹏, 等. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响[J]. 中国农业科学, 2017, 50(13): 2624−2634 doi: 10.3864/j.issn.0578-1752.2017.13.020 ZHANG G J, PU X Z, ZHANG P P, et al. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region[J]. Scientia Agricultura Sinica, 2017, 50(13): 2624−2634 doi: 10.3864/j.issn.0578-1752.2017.13.020
[11] HODGE A, ROBINSON D, FITTER A. Are microorganisms more effective than plants at competing for nitrogen?[J]. Trends in Plant Science, 2000, 5(7): 304−308 doi: 10.1016/S1360-1385(00)01656-3
[12] 郑皓皓, 胡晓军, 贾敬业, 等. 麦秸还田耕层酚酸变化及其对夏玉米生长的影响[J]. 中国生态农业学报, 2001, 9(4): 79−81 ZHENG H H, HU X J, JIA J Y, et al. Changes of the phenolic acid in plough layer and its effects on the growth and yield of summer corn with returning wheat straw[J]. Chinese Journal of Eco-Agriculture, 2001, 9(4): 79−81
[13] WU H W, HAIG T, PRATLEY J, et al. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum)[J]. Journal of Agricultural and Food Chemistry, 2002, 50(16), 4567–4571
[14] 张国伟, 杨长琴, 刘瑞显, 等. 对羟基苯甲酸和间苯三酚对棉花幼苗根系线粒体功能和根系生长的影响[J]. 应用生态学报, 2018, 29(1): 231−237 ZHANG G W, YANG C Q, LIU R X, et al. Effects of p-hydroxybenzoic acid and phloroglucinol on mitochondria function and root growth in cotton (Gossypium hirsutum L.) seedling roots[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 231−237
[15] BAZIRAMAKENGA R, LEROUX G D, SIMARD R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Journal of Chemical Ecology, 1995, 21(9): 1271−1285 doi: 10.1007/BF02027561
[16] INDERJIT, DUKE S O. Ecophysiological aspects of allelopathy[J]. Planta, 2003, 217(4): 529−539 doi: 10.1007/s00425-003-1054-z
[17] YOUNG C C, ZHU THORNE L R, WALLER G R. Phytotoxic potential of soils and wheat straw in rice rotation cropping systems of subtropical Taiwan[J]. Plant and Soil, 1989, 120(1): 95−101 doi: 10.1007/BF02370295
[18] KONG C H, ZHANG S Z, LI Y H, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications, 2018, 9: 3867 doi: 10.1038/s41467-018-06429-1
[19] 刘瑞显, 张国伟, 杨长琴, 等. 小麦秸秆浸提液和腐解液对棉花种子发芽及幼苗生长的化感效应[J]. 棉花学报, 2016, 28(4): 375−383 doi: 10.11963/issn.1002-7807.201604009 LIU R X, ZHANG G W, YANG C Q, et al. Allelopathic effects of wheat straw extract and decomposition liquid on cotton seed germination and seedling growth[J]. Cotton Science, 2016, 28(4): 375−383 doi: 10.11963/issn.1002-7807.201604009
[20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000 LU R K. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agriculture Scientech Press, 2000
[21] 尹承苗, 王功帅, 李园园, 等. 一种分析土壤中酚酸类物质含量的新方法−以连作苹果园土壤为试材[J]. 中国农业科学, 2013, 46(21): 4612−4619 doi: 10.3864/j.issn.0578-1752.2013.21.025 YIN C M, WANG G S, LI Y Y, et al. A new method for analysis of phenolic acids in the soil — Soil from replanted apple orchards was investigated[J]. Scientia Agricultura Sinica, 2013, 46(21): 4612−4619 doi: 10.3864/j.issn.0578-1752.2013.21.025
[22] 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006 WANG X K. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2006
[23] 曹岩坡, 高志奎, 何俊萍, 等. 外源水杨酸对韭菜硝酸盐累积及还原同化的影响[J]. 园艺学报, 2009, 36(3): 415−420 doi: 10.3321/j.issn:0513-353X.2009.03.016 CAO Y P, GAO Z K, HE J P, et al. Effects of exogenous salicylic acid on nitrate accumulation and reduction and assimilation in the leaves of Chinese chive[J]. Acta Horticulturae Sinica, 2009, 36(3): 415−420 doi: 10.3321/j.issn:0513-353X.2009.03.016
[24] ZHANG S L, WANG Y, SHEN Q S. Influence of straw amendment on soil physicochemical properties and crop yield on a consecutive mollisol slope in northeastern China[J]. Water, 2018, 10(5): 559 doi: 10.3390/w10050559
[25] ZHAO S C, LI K J, ZHOU W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82−88
[26] CHATTERJEE A. Annual crop residue production and nutrient replacement costs for bioenergy feedstock production in United States[J]. Agronomy Journal, 2013, 105(3): 685−692 doi: 10.2134/agronj2012.0350
[27] 杨延杰, 王晓伟, 赵康, 等. 邻苯二甲酸对萝卜种子萌发、幼苗叶片膜脂过氧化及渗透调节物质的影响[J]. 生态学报, 2013, 33(19): 6074−6080 doi: 10.5846/stxb201304260826 YANG Y J, WANG X W, ZHAO K, et al. Effects of phthalic acid on seed germination, membrane lipid peroxidation and osmoregulation substance of radish seedlings[J]. Acta Ecologica Sinica, 2013, 33(19): 6074−6080 doi: 10.5846/stxb201304260826
[28] 李彦斌, 刘建国, 程相儒, 等. 秸秆还田对棉花生长的化感效应[J]. 生态学报, 2009, 29(9): 4942−4948 doi: 10.3321/j.issn:1000-0933.2009.09.042 LI Y B, LIU J G, CHENG X R, et al. The allelopathic effects of returning cotton stalk to soil on the growth of succeeding cotton[J]. Acta Ecologica Sinica, 2009, 29(9): 4942−4948 doi: 10.3321/j.issn:1000-0933.2009.09.042
[29] SOON Y K, LUPWAYI N Z. Straw management in a cold semi-arid region: impact on soil quality and crop productivity[J]. Field Crops Research, 2012, 139: 39−46 doi: 10.1016/j.fcr.2012.10.010
[30] 张承胤, 代丽, 甄文超. 玉米秸秆还田对小麦根部病害化感作用的模拟研究[J]. 中国农学通报, 2007, 23(5): 298−301 doi: 10.3969/j.issn.1000-6850.2007.05.069 ZHANG C Y, DAI L, ZHEN W C. Simulation of allelopathy in maize straw returning on root disease of wheat[J]. Chinese Agricultural Science Bulletin, 2007, 23(5): 298−301 doi: 10.3969/j.issn.1000-6850.2007.05.069
[31] 李晓韦, 韩上, 雷之萌, 等. 氮素形态对油菜秸秆腐解及养分释放规律的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 717−725 LI X W, HAN S, LEI Z M, et al. Effects of nitrogen forms on decomposition and nutrient release of rapeseed straw[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 717−725
[32] YU J Q, MATSUI Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings[J]. Journal of Chemical Ecology, 1997, 23(3): 817−827 doi: 10.1023/B:JOEC.0000006413.98507.55
[33] 王华田, 杨阳, 王延平, 等. 外源酚酸对欧美杨‘I-107’水培幼苗硝态氮吸收利用的影响[J]. 植物生态学报, 2011, 35(2): 214−222 doi: 10.3724/SP.J.1258.2011.00214 WANG H T, YANG Y, WANG Y P, et al. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’[J]. Chinese Journal of Plant Ecology, 2011, 35(2): 214−222 doi: 10.3724/SP.J.1258.2011.00214
[34] 张淑香, 高子勤. 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质[J]. 应用生态学报, 2000, 11(1): 152−156 doi: 10.3321/j.issn:1001-9332.2000.01.039 ZHANG S X, GAO Z Q. Continuous cropping obstacle and rhizospheric microecology Ⅱ. Root exudates and phenolic acids[J]. Chinese Journal of Applied Ecology, 2000, 11(1): 152−156 doi: 10.3321/j.issn:1001-9332.2000.01.039
[35] BLUM U, GERIG T M. Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies[J]. Journal of Chemical Ecology, 2005, 31(8): 1907−1932 doi: 10.1007/s10886-005-5934-5
[36] 吕卫光, 张春兰, 袁飞, 等. 化感物质抑制连作黄瓜生长的作用机理[J]. 中国农业科学, 2002, 35(1): 106−109 doi: 10.3321/j.issn:0578-1752.2002.01.021 LYU W G, ZHANG C L, YUAN F, et al. Mechanism of allelochemicals inhibiting continuous cropping cucumber growth[J]. Scientia Agricultura Sinica, 2002, 35(1): 106−109 doi: 10.3321/j.issn:0578-1752.2002.01.021
[37] CHON S U, CHOI S K, JUNG S Y, et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Protection, 2002, 21(10): 1077−1082 doi: 10.1016/S0261-2194(02)00092-3
[38] 张志忠, 孙志浩, 陈文辉, 等. 有机酸类化感物质对甜瓜的化感效应[J]. 生态学报, 2013, 33(15): 4591−4598 doi: 10.5846/stxb201204270609 ZHANG Z Z, SUN Z H, CHEN W H, et al. Allelopathic effects of organic acid allelochemicals on melon[J]. Acta Ecologica Sinica, 2013, 33(15): 4591−4598 doi: 10.5846/stxb201204270609
[39] ASIMINA P, BILLY O, KAMERAN I. Allelopathic effect of some weeds on the germination of seeds of selected crops grown in Akwa Ibom State, Nigeria[J]. World Journal of Agricultural Research, 2013, 1(4): 59−64
[40] 刘艳慧, 王双磊, 李金埔, 等. 棉花秸秆还田对土壤速效养分及微生物特性的影响[J]. 作物学报, 2016, 42(7): 1037−1046 doi: 10.3724/SP.J.1006.2016.01037 LIU Y H, WANG S L, LI J P, et al. Effects of cotton straw returning on soil available nutrients and microbial characteristics[J]. Acta Agronomica Sinica, 2016, 42(7): 1037−1046 doi: 10.3724/SP.J.1006.2016.01037
-
期刊类型引用(3)
1. 孙恩惠,张晶,陈泽秋,雍宬,王秋君,周明,陈玲,曲萍,靳红梅,黄红英. 秸秆基质块育秧对水稻幼苗生长生理及产量的影响. 中国农业大学学报. 2025(05): 42-52 . 百度学术
2. 郭宇坤,张燕飞,野金花,李佳擎,金智慧,苗宇航,吕艳东,郭晓红. 不同氮用量对香稻幼苗生长及生理指标的影响. 山东农业科学. 2024(03): 78-85 . 百度学术
3. 王颖洁,张朋,宋晨愿,查向浩. 秸秆生物质综合利用的现状分析. 现代农业. 2023(04): 108-112 . 百度学术
其他类型引用(3)