Effect of maize row orientation configurations on the photosynthetic characteristics, leaf structure and yield of soybean in relay strip intercropping systems
-
摘要: 玉米−大豆带状复合种植技术具有提高土地利用率, 扩大大豆生产面积, 提高大豆产量的作用, 而田间配置直接影响大豆生长发育和产量形成。本研究通过分析玉米−大豆带状套作模式行向配置对大豆形态、光合生理参数及产量的影响, 确定南方区域玉米−大豆带状套作模式的最优行向。试验采用单因素随机区组设计, 玉米大豆行比为2∶2, 带宽2 m, 设置6个处理: 玉米西北-东南行向净作(CKm)、大豆西北-东南行向净作(CKs)和4种行向的玉米−大豆带状套作[东-西(A1)、南-北(A2)、西北-东南(A3)、东北-西南(A4)], 分析套作大豆光环境、株高、叶面积指数、光合色素、光合参数、叶片结构特性、粒叶比及产量等对复合种植系统行向的响应。结果表明, 东-西行向和西北-东南行向处理的大豆前期受荫蔽程度显著低于南-北行向和东北-西南行向处理(P<0.05); 东-西行向种植, 套作大豆受光量最大。与净作大豆西北-东南行向处理相比, 带状套作各处理大豆叶面积指数、地上部生物量、光合色素含量、净光合速率、叶片生产能力、叶片厚度、气孔密度显著降低, 整体趋势为东-西行向>西北-东南行向>南-北行向>东北-西南行向处理。东-西行向处理各生育时期大豆叶面积指数、地上部生物量、光合色素含量、净光合速率以及大豆叶片厚度、气孔密度、气孔长度和气孔开度均显著高于其他带状套作处理。在产量和效益方面, 东-西行向处理的大豆产量和整株粒叶比、1~5节位粒叶比及3~4节位粒叶比分别为1932.66 kg∙hm−2和1074.25 g∙m−2、498.50 g∙m−2及207.59 g∙m−2, 高于其他带状套作处理(P<0.05)。与玉米净作处理相比, 南-北行向、西北-东南行向和东北-西南行向处理玉米实际产量显著降低, 而东-西行向处理玉米产量增加1.67%。东-西行向处理下玉米产量贡献率最高(79.44%), 土地当量比为1.66。在中国南方地区, 东-西行向种植能显著发挥玉米−大豆套作复合种植模式的优势。Abstract: A maize-soybean intercropping system is conducive to increasing land use, expanding soybean production areas, and improving soybean quality. Furthermore, the field configuration directly affects soybean growth and yield formation. This study analyzed the effects of varying row direction configurations on the morphology, photosynthetic physiological parameters, and yield of soybeans in relay strip intercropping systems to determine the optimal row direction for maize-soybean relay strip intercropping systems in southern China. A single-factor randomized block design was used in this study. The intercropping patterns used wide-narrow-row planting with alternating strips of maize and soybeans. The ratio of maize and soybean rows per strip in the relay strip intercropping systems was 2∶2. There were six treatments: monoculture maize (CKm) and soybean (CKs) both with northwest-southeast row direction, and the east-west, north-south, northwest-southeast, and northeast-southwest row direction of the relay strip intercropping systems of soybean−maize. The determination indices included the light environment, plant height, leaf area index, photosynthetic pigment, photosynthetic parameters, leaf structure, grain to leaf ratio, and yield. The results showed that the shading degrees of intercropped soybeans in the east-west and northwest-southeast directions were significantly lower than that in the north-south and northeast-southwest directions (P<0.05). Soybeans planted in the east-west direction received maximum light. The leaf area index (LAI), aboveground biomass, photosynthetic pigment content, net photosynthetic rate, leaf productivity, leaf thickness, and stomatal density of soybeans in the strip intercropping treatments decreased significantly, with the overall trend of the east-west direction treatment > northwest-southeast direction treatment > north-south direction treatment > northeast-southwest direction treatment. The LAI, aboveground biomass, photosynthetic pigment content, net photosynthetic rate, thickness, stomatal density, stomatal length, and stomatal opening of the east-west direction treatment were significantly higher than those of the other relay strip intercropping treatments at each growth stage. In terms of yield and benefit, under the east-west direction treatment, soybean yield, grain-leaf ratio, grain leaf ratio at 1–5 nodes, and grain leaf ratio at 3–4 nodes were 1932.66 kg∙hm−2, 1074.25 g∙m−2, 498.50 g∙m−2, and 207.59 g∙m−2, respectively, which were higher than those in other treatments (P<0.05). Compared with the CKm treatment, the actual yield of maize in the north-south, northwest-southeast, and northeast-southwest direction treatments decreased significantly, whereas that in the east-west direction treatment increased by 1.67%. Moreover, the east-west direction treatment had the highest yield contribution rate (79.44%) of maize, and the land equivalent ratio was 1.66. In southern China, planting in the east-west row direction can better demonstrate the advantages of maize-soybean relay strip intercropping systems.
-
在中国耕地资源紧缺与大豆(Glycine max L.)供需矛盾突出的背景下, 玉米(Zea mays L.)−大豆带状复合种植有利于提高土地利用率, 扩大大豆生产面积, 提高大豆产量[1-2]。这种模式下, 大豆受高位作物玉米的荫蔽胁迫是限制大豆产量的主要原因[3]; 但轻微的荫蔽胁迫会提高大豆对弱光利用能力和转化效率, 实现了光能高效利用[4]。研究表明, 紧凑型玉米−耐荫性大豆组合套作, 大豆带的通风透光条件较好[5]; 合理的玉米−大豆宽窄行配置以及适当的田间管理技术对系统产量形成有重要作用[6-8]。
适宜的行向种植可以减缓光照不足对作物生长发育的影响[9]。早期研究指出, 东-西行向种植作物较南-北行向好[10]。小麦(Triticum aestivum L.)与棉花(Gossypium spp.)套作的共生期间, 与南-北行向种植相比, 东-西行向种植棉花的日均辐射量和累计光照时间分别显著高出42.8%和43.2%[11]。冯永祥等[12]证明东-西行向种植的小麦株高高于南-北行向。在玉米-大豆间作模式下, 东-西行向种植的大豆较南-北行向株高显著更高, 分枝数平均增加1~2个, 更有利于大豆冠层结构及光形态的建成[13]。与南-北行向种植相比, 东-西行向种植水稻(Oryza sativa L.)能显著增加一次枝梗实粒数, 提高结实率[14]。东-西行向处理的玉米[15]、花生(Arachis hypogaea L.) [16]荚果和大豆[13]产量分别比南-北行向处理提高4.5%、8.4%和52.77%。但目前也有研究证明, 南-北行向种植烤烟(Nicotiana tabacum L.)株间光照和土壤温度优于东-西行向[17]。山东省南-北行向种植葡萄(Vitis vinifera L.)维持了植株两侧光合性能与温度的平衡[18]。在云南香格里拉地区, 低海拔南-北行向、中高海拔东-西行向更有利于葡萄还原糖含量的提高[19]。因此, 作物种类、种植模式以及种植地区不同, 最优种植行向不同, 但大多数研究指出东-西行向种植有利于改善作物的光环境、优化作物的形态建成和提高作物的最终产量。
目前, 作物种植的最佳行向研究集中在东-西及南-北行向, 对作物其他种植行向的研究不够深入。此外, 先前作物最佳行向的研究以其形态特征、营养物质和最终产量为主, 对作物不同行向的叶片结构、光合特性研究较少。本研究在玉米−大豆带状套作种植模式下, 设置东-西、南-北、西北-东南及东北-西南4种行向处理, 以期揭示两种作物共生期荫蔽及玉米收获后复光的环境转变时, 大豆形态、生理特性及物质积累与分配的响应, 最终探明种植行向与大豆产量的关系, 为中国南方地区玉米−大豆带状复合套作种植模式的推广提供理论依据和参考资料。
1. 材料与方法
1.1 试验材料
玉米品种选用‘登海605’ (紧凑型玉米品种), 大豆品种选用‘南豆12’ (西南地区农业生产中适宜与其他作物间套作的大豆主栽品种)。
1.2 试验设计
试验采用单因素随机区组设计, 共6个处理: 净作玉米西北-东南行向(四川省崇州市传统种植行向)种植(CKm)、净作大豆西北-东南行向种植(CKs)以及4种玉米−大豆带状套作处理[东-西(A1)、南-北(A2)、西北-东南(A3)、东北-西南(A4)行向]。套作带宽2 m, 宽行1.6 m, 窄行0.4 m, 每带种植2行玉米2行大豆(图1)。套作模式每个小区面积为12 m×6 m; 净作玉米、大豆每个小区面积为10 m×5 m。每个处理3次重复, 共计18个小区。
试验于2019年和2020年在四川农业大学现代研发基地崇州示范基地进行。玉米播种密度为6万株∙hm−2, 大豆播种密度为10万株∙hm−2, 行向依靠指南针确定。2020年玉米4月7日播种, 7月30日收获; 大豆于6月11日播种(此时玉米处于抽雄期), 10月30日收获。大豆从出苗到第5片复叶展开期(V5期)为玉米和大豆共生期。玉米施用氮肥种类为尿素(含氮量46%), 全生育期共计施纯氮240 kg∙hm−2, 按底肥、拔节肥、攻苞肥为3∶2∶5的比例施肥; 底肥每公顷另配施过磷酸钙600 kg (含12% P2O5), 氯化钾150 kg (含60% K2O)。大豆基肥分别为尿素、过磷酸钙、氯化钾, 施用量依次为75 kg∙hm−2、600 kg∙hm−2、60 kg∙hm−2, 在大豆的初花期追施尿素75 kg∙hm−2。各处理播种的时间、施肥水平及其余田间日常管理均保持一致。
1.3 试验指标与方法
1.3.1 大豆光环境测定
在大豆V5时期(大豆第5片复叶展开期, 玉米大豆共生期), 选择晴朗的一天, 在9:00、11:00、13:00、15:00和17:00进行光合有效辐射(PAR)分布的测定。在水平方向, 宽行大豆种植带上方每隔16 cm定一个位点, 每个玉米种植带间共11个位点; 垂直方向共4个位点: 平行于大豆冠层的玉米高度(A)、玉米穗位部(B)、距离玉米穗位部20 cm (C)、距离玉米穗位部40 cm (D), 如图2所示。测定时使用HR-350手持式光谱计(中国台湾HiPoint公司), 在每个小区逐个记录每个位点的PAR值, 每个位点测定3次, 取平均值作为PAR。为消除时间误差, 每次均采用往返观测法。
图 2 玉米−大豆带状复合种植体系光合有效辐射(PAR)的测量位点示意图垂直高度测定位点(A、B、C、D)依据玉米高度测定。The vertical height measurement sites (A, B, C and D) are determined according to the height of the maize.Figure 2. Diagrammatic map for measuring the photosynthetically active radiation (PAR) of maize−soybean relay strip intercropping system1.3.2 大豆形态特征测定
各小区随机选取长势均匀的大豆植株, 定点定株挂牌(保证植物样本生育期一致), 于大豆V5 (大豆第5片复叶展开期)、R1 (始花期, 套作大豆复光初期)和R5 (始粒期, 套作大豆复光期)取样, 测定株高, 每个小区5次重复; 将茎、叶、柄分装在牛皮纸袋, 在105 ℃下杀青30 min后, 于80 ℃烘至恒重, 测定干物质量[20]。叶面积的测定采用打孔称重法[21], 再据此公式计算叶面积指数(LAI):
$$ {\rm{LAI}}=A_{{\rm{l}}}{\rm{/}}A_{{\rm{s}}} $$ (1) 式中: Al为测定点内植株的总叶面积, As为测定点所占土地面积。
1.3.3 大豆光合特性测定
在大豆的V5 (第5片复叶展开期)、R1 (始花期)和R5 (始粒期)时期, 每个小区挑选5株长势均匀的大豆植株, 选取功能叶(倒二复叶的中间小叶), 避开叶片主脉, 用打孔器打2孔, 剪成细条状放入10 mL装有80%丙酮溶液试管中, 置于室温环境中完全黑暗浸提24 h至叶片发白。双光束紫外分光光度计设置波长分别为663 nm、645 nm、470 nm, 测定溶液各波长下吸光值, 然后通过公式计算光合色素含量(叶绿素a、叶绿素b、类胡萝卜素、叶绿素总含量、光合色素总含量以及叶绿素a/b值)[22]。
在大豆的V5 (第5片复叶展开期)、R1 (始花期)、R5 (始粒期)时期, 选择天气晴朗无风少云的上午9:00—11:00, 使用便携式光合仪LI-COR公司生产的Li-6400 (美国Li-COR公司)在每个小区中选取5株叶片长势一致, 无病虫害的健壮植株, 测定功能叶(倒二复叶的中间小叶)的净光合速率(Pn)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)和蒸腾速率(Tr)[23]。
1.3.4 大豆叶片结构测定
气孔特征测定参考战吉宬等[24]方法, 在大豆V5 (第5片复叶展开期)和R1 (始花期)时期, 每个小区挑选5株具有代表性大豆植株, 选取功能叶(倒二复叶的中间小叶), 在靠近主脉基部的1/3处取材(2 mm×2 mm左右), 用甲醛-乙酸-乙醇固定液(FAA)固定保存, 经乙醇系列梯度脱水脱色, 使用番红染色并制作成临时玻片, 使用尼康公司生产的倒置荧光显微镜(日本Nikon公司)观察10倍、20倍和40倍视野照相并使用ACT-2U成像系统拍照, 测定气孔密度、气孔开度、气孔长和宽、气孔周长和气孔面积。
在大豆V5 (第5片复叶展开期)和R1 (始花期)时期, 每个小区挑选5株长势均匀的大豆植株, 在晴天上午9:00—11:00, 选取功能叶(倒二复叶的中间小叶), 在靠近主脉基部的1/3处避开叶脉剪取5 mm×3 mm大小的叶片, 放在预先配置的FAA标准固定液(70%无水乙醇90 mL、38%甲醛5 mL、冰醋酸5 mL)固定保存于4 ℃冰箱24 h以上且不超过1个月。用酒精和正丁醇系列逐级脱水, 石蜡包埋, 使用 Leica 切片机切片, 横切片厚度为 10 μm, 用松节油脱蜡、乙醇复水后进行番红溶液和固绿溶液染色,2步正丁醇透明。中性树胶封片后待自然晾干,放置于尼康公司生产的倒置荧光显微镜(日本Nikon公司)观察切片组织和细胞排列情况,并用 ACT-2U 成像系统显微照相及分析叶片解剖结构,每个小区观察20个视野[25]。
1.3.5 大豆粒叶比测定
测定参考张伟等[26]的方法, 在大豆R7 (叶片保持绿色的成熟期)时期每小区取6株, 用打孔法测定主茎每节位叶片的叶面积; 在大豆R8 (结荚变黄的完熟期)时期每小区取6株, 分枝和主茎不同节位分开考种, 得到各主茎节位的籽粒重量,并根据此公式计算主茎节位粒叶比:
$$ \begin{split} &\qquad 主茎节位粒叶比({\rm{g}} \cdot {\rm{m}}^{-2})={节}{位}{籽}{粒}{重}/{对}{应}{节}{位}\\ & {的}{叶}{面}{积} \end{split} $$ (2) 1.3.6 玉米、大豆产量及土地当量比测定
在玉米成熟期, 收获前记录每个小区的有效穗数, 收获后计算实际产量。各处理每个小区连续选20株玉米, 自然风干后考种。在大豆成熟期, 收获前记录各个小区的有效株数, 收获后计算实际产量。每个小区连续取10株大豆, 自然风干后考种。
土地当量比(LER)参照蔡承智等[27]的方法计算。
$$ {\rm{LER}}={\rm{LER}} \,({\rm{s}})+{\rm{LER}} \,({\rm{m}})$$ (3) $$ {{\rm{LER}}}\,({\rm{s}})={\rm{Y P}}\,({\rm{s}}) / {\rm{Y M}}\,({\rm{s}})$$ (4) $$ {\rm{LER}} \,({\rm{m}})={\rm{Y P}}\,({\rm{m}}) / {\rm{Y M}}\,({\rm{m}})$$ (5) 式中: LER(s)、LER(m)分别为大豆和玉米的相对土地当量比, YP(s) 为套作大豆产量(kg∙hm−2), YM(s)为净作大豆产量(kg∙hm−2), YP(m) 为套作玉米产量(kg∙hm−2), YM(m)为净作玉米产量(kg∙hm−2)。LER>1, 表明套作具有优势。
1.4 数据处理与分析
试验数据采用IBM SPSS 25.0软件进行单因素方差分析, 处理之间的差异显著性通过LSD在0.05水平下进行分析。图表采用Microsoft Excel 2016、Origin 2018软件处理。
2. 结果与分析
2.1 不同行向处理对大豆光环境的影响
如图3所示, 带状套作大豆光空间分布在11:00—13:00时间段PAR高, 受光面积大。水平方向上, 随着向右移动(远离左侧的玉米行) PAR呈先快速升高后迅速降低趋势, 其中40~140 cm处PAR最大, 0~40 cm和140~160 cm处的PAR较小; 垂直方向上, PAR随玉米高度的增加呈先增加后趋于平缓的趋势, 高度越高, PAR越高, 靠近玉米叶片一侧PAR降低。各处理的PAR在水平方向40~140 cm、垂直方向在60 cm以上, 达到最大值。其中东-西行向处理(A1)一天5个时间点光照强度均高于其他处理。
图 3 行向对与玉米带状套作的大豆的光分布的影响图中横坐标为套作大豆距玉米行的距离; 纵坐标为套作大豆冠层上方玉米株高, 以40 cm为起点; 所有测定均为光空间分布。试验于晴天的9:00、11:00、13:00、15:00和17:00进行光合有效辐射(PAR)测定。A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。The abscissa in the figure is the horizontal distance from maize of the soybeans strip, and the ordinate is the maize plant height over the soybean canopy with 40 cm as the starting point. The photosynthetically active radiation (PAR) distribution was measured at five times of 9:00, 11:00, 13:00, 15:00 and 17:00 on a sunny day. A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping.Figure 3. Effect of row orientation on the photosynthetically active radiation (PAR) distribution of soybean in relay strip intercropping systems of soybean−maize2.2 不同行向处理对大豆形态特征的影响
如图4所示, 在前期荫蔽和大豆复光初期环境下(V5和R1), 大豆株高缓慢增长, 处理间差异显著(P<0.05); 大豆复光后期(R5), 株高迅速增高, 处理间差异减小。株高总体趋势表现为东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4)>净作大豆西北-东南行向处理(CKs)。V5、R1及R5时期, 株高最大值均出现在东-西行向处理, 分别为41.25 cm、65.43 cm及110.60 cm。
图 4 行向对与玉米带状套作的大豆形态特征的影响CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期, R5为大豆始粒期。不同大写字母代表同一生育时期不同处理间差异显著(P<0.05), 不同小写字母代表同一器官生物量不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seeding stage of soybean. Different capital letters represent significant differences among different treatments at the same growth stage (P<0.05), and different lowercase letters represent significant differences in biomass of the same organ among different treatments (P<0.05).Figure 4. Effect of row orientation on morphological characteristics of soybean in relay strip intercropping systems of soybean−maize与净作大豆西北-东南行向处理(CKs)相比, 带状套作显著降低了大豆LAI; 且前期受到玉米荫蔽而缓慢增加, 后期复光后明显提高。在R5时期, 各处理LAI均达到最大, 且各处理间差异显著(P<0.05); LAI总体趋势表现为净作大豆西北-东南行向处理(CKs)>东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4); 套作处理中LAI最大值出现在东-西行向处理(A1), 值为5.31; 最小出现在东北-西南行向处理(A4)。
带状套作大豆茎、叶、柄、单株地上部生物量在大豆荫蔽前期和复光初期缓慢增加, 在R5时期迅速增加, 且均显著低于净作处理, 各处理间差异显著(P<0.05)。在不同生育时期, 大豆单株地上部生物量变化趋势为净作大豆西北-东南行向处理(CKs)>东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4)。在R5时期, 带状套作处理单株地上部生物量达到最高值, 其中东-西行向处理(A1)大豆单株地上部生物量最大, 达到90.44 g∙株−1。
2.3 不同行向处理对大豆光合特性的影响
大豆叶片叶绿素a、叶绿素b及类胡萝卜素含量在大豆前期荫蔽(V5)到复光初期(R1)缓慢增加; 在R5迅速增加。在大豆3个生育时期, 叶片光合色素含量变化趋势均为净作大豆西北-东南行向处理(CKs)>东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4), 且在V5时期达到显著(P<0.05)水平。在大豆V5时期, 与净作大豆西北-东南行向处理(CKs)相比, 东-西行向(A1)、南-北行向(A2)、西北-东南行向(A3)和东北-西南行向处理(A4)叶绿素总含量[Chl(a+b)]分别降低4.99%、18.28%、12.19%和24.65%, 光合色素总含量[Chl(a+b)+Car]分别降低7.14%、20.20%、14.04%和27.34% (表1)。随着大豆的生长发育, 带状套作大豆类胡萝卜素含量逐渐增加。在R1和R5时期, 带状套作大豆处理中东西行向处理(A1)类胡萝卜素含量最高, 分别为0.48 mg·dm−2和0.82 mg·dm−2。
表 1 行向对与玉米带状套作的大豆光合色素含量的影响Table 1. Effects of row orientation on the photosynthetic pigment content of soybean in relay strip intercropping systems of soybean−maize时期
Growth stage处理
Treatment叶绿素a
Chlorophyll a
(mg∙dm−2)叶绿素b
Chlorophyll b
(mg∙dm−2)类胡萝卜素
Carotenoids
(mg∙dm−2)叶绿素总含量
Chlorophyll content
(mg∙dm−2)光合色素总含量
Photosynthetic pigment content
(mg∙dm−2)叶绿素a/b
Chlorophyll a/
Chlorophyll bV5 CKs 2.65±0.20a 0.96±0.06a 0.45±0.02a 3.61±0.27a 4.06±0.28a 2.76±0.03a A1 2.48±0.08ab 0.95±0.04a 0.34±0.03b 3.43±0.09ab 3.77±0.10ab 2.61±0.13ab A2 2.11±0.20cd 0.84±0.06bc 0.29±0.06bc 2.95±0.25cd 3.24±0.30cd 2.51±0.15b A3 2.29±0.12bc 0.88±0.05ab 0.32±0.03b 3.17±0.17bc 3.49±0.19bc 2.60±0.07ab A4 1.95±0.10d 0.77±0.03c 0.23±0.02c 2.72±0.14d 2.95±0.16d 2.53±0.05b R1 CKs 3.07±0.63a 1.18±0.13a 0.51±0.12a 4.25±0.22a 4.76±0.22a 2.60±0.19a A1 2.92±0.05a 1.15±0.08ab 0.48±0.02ab 4.07±0.05a 4.55±0.07a 2.54±0.19a A2 2.73±0.36a 1.08±0.10ab 0.44±0.07ab 3.81±0.16ab 4.25±0.15ab 2.54±0.12a A3 2.88±0.19a 1.09±0.01ab 0.45±0.03ab 3.97±0.46ab 4.42±0.43ab 2.64±0.19a A4 2.50±0.21a 0.97±0.10b 0.37±0.05b 3.47±0.29b 3.84±0.33b 2.58±0.20a R5 CKs 3.89±0.32a 1.49±0.08a 0.99±0.13a 5.38±0.35a 6.37±0.45a 2.61±0.23b A1 3.85±0.42a 1.24±0.11b 0.82±0.05b 5.09±0.40a 5.91±0.40a 3.10±0.54a A2 3.71±0.48ab 1.17±0.13bc 0.75±0.11bc 4.88±0.61a 5.63±0.71a 3.17±0.07a A3 3.71±0.22ab 1.21±0.12b 0.79±0.06b 4.92±0.24a 5.71±0.25a 3.07±0.38a A4 3.17±0.37b 1.02±0.13c 0.64±0.10c 4.19±0.50b 4.83±0.59b 3.11±0.08a CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期, R5为大豆始粒期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seeding stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05). 由图5可知, 与玉米套作导致大豆叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)降低, 胞间二氧化碳浓度(Ci)增加。在V5时期, 各套作处理间Pn差异不显著。在R1和R5时期, 套作处理间大豆叶片Pn差异显著(P<0.05), 趋势为东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4); 在R1和R5时期,各套作处理间大豆Pn
最大值均在东-西行向处理(A1), 分别为21.22 (μmol·m−2·s−1)和21.97 (μmol·m−2·s−1)。 图 5 行向对与玉米带状套作的大豆光合参数的影响CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期, R5为大豆始粒期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seeding stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05).Figure 5. Effect of row orientation on photosynthetic parameters of soybean in relay strip intercropping systems of soybean−maize2.4 不同行向处理对大豆叶片结构的影响
由图6及表2可知, 荫蔽下, 大豆叶片的气孔长度、气孔开度的变化规律与气孔密度相同, 整体趋势呈净作大豆西北-东南行向处理(CKs)>东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4); 但气孔宽度、气孔周长及气孔面积的变化规律与气孔密度大体相反。在V5时期, 与净作大豆西北-东南行向处理(CKs)相比, 东-西行向(A1)、南-北行向(A2)、西北-东南行向(A3)及东北-西南行向(A4)处理气孔密度分别显著降低2.09%、4.53%、2.30%及5.34%; 在R1时期, 东-西行向(A1)、南-北行向(A2)、西北-东南行向(A3)和东北-西南行向(A4)处理气孔密度与净作大豆西北-东南行向处理(CKs)相比分别降低1.29%、5.57% (P<0.05)、3.05% (P<0.05)和6.36% (P<0.05)。在带状套作种植中, 气孔长度、气孔开度和气孔密度最大值均出现在东-西行向处理(A1)。
图 6 行向对与玉米带状套作的大豆叶片气孔特征的影响图A-E为大豆第5片复叶展开期CKs、A1、A2、A3、A4处理, 图a-e为大豆始花期CKs、A1、A2、A3、A4处理。CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。Fig. A-E show treatments of CKs, A1, A2, A3 and A4 at the fifth trifoliolate stage of soybean. Fig. a-e show treatments of CKs, A1, A2, A3 and A4 at the beginning bloom stage of soybean. Treatments of CKs, A1, A2, A3 and A4 are northwest-southeast direction soybean monocropping, east-west direction maize and soybean intercropping, south-north direction maize and soybean intercropping, northwest-southeast direction maize and soybean intercropping, and northeast-southwest direction maize and soybean intercropping, respectively.Figure 6. Effect of row orientation on stomatal characteristics of soybean in relay strip intercropping systems of soybean−maize表 2 行向对与玉米带状套作的大豆叶片气孔参数的影响Table 2. Effects of row orientation on the stomatal parameters of soybean in relay strip intercropping systems of soybean−maize时期
Growth stage处理
Treatment气孔长度
Stomata length
(μm)气孔宽度
Stomata width
(μm)气孔开度
Stomata aperture
(μm)气孔周长
Stomata circumference
(μm)气孔面积
Stomata area (μm2)气孔密度
Stomata density
(stomatas∙mm−2)V5 CKs 35.56±2.26a 23.67±1.34a 4.16±0.47a 90.29±6.43a 43.43±1.77a 493.23±6.28a A1 35.44±1.25ab 21.88±1.22b 3.32±0.72b 79.17±5.69b 40.96±2.45b 482.90±5.80b A2 33.21±1.46c 23.02±1.00ab 2.89±0.64b 82.34±5.87b 42.48±1.79b 470.89±7.06c A3 33.53±2.55bc 22.10±2.16b 2.89±0.77b 81.52±3.97b 41.53±0.80ab 481.91±6.34b A4 33.06±2.72c 23.55±1.33a 2.72±0.66b 91.44±5.27a 42.58±1.78ab 466.91±5.41c R1 CKs 31.28±1.81a 23.45±2.31a 3.61±0.39a 95.18±5.36a 38.93±1.74a 510.28±11.75a A1 30.43±3.35ab 15.56±7.30c 2.48±0.31b 90.69±4.18bc 33.61±2.00b 503.71±25.81ab A2 28.01±1.68cd 21.29±0.75ab 2.03±0.44c 91.32±2.83bc 35.03±1.48b 481.88±12.50cd A3 28.84±1.54bc 19.63±1.64b 2.19±0.59bc 88.23±1.54c 33.73±1.61b 494.71±9.25bc A4 26.66±2.20d 21.85±0.93a 1.95±0.54c 93.28±2.27ab 38.42±1.46a 477.82±15.84d CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05). 如图7所示, 大豆叶片类型属于异面叶, 叶肉组织分化为明显的栅栏组织和海绵组织, 叶片解剖结构在净作和套作下差异明显。与净作大豆西北-东南行向处理(CKs)相比, 套作大豆叶片栅栏组织和海绵组织细胞排列较松散, 其厚度也有所降低。根据表3可知, 大豆叶片解剖结构指标总体规律均表现为净作大豆西北-东南行向处理(CKs)>东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4), 套作显著降低了大豆叶片厚度以及栅栏组织厚度(P<0.05)。
图 7 行向对与玉米带状套作的大豆叶片解剖结构的影响图A-E为大豆第5片复叶展开期CKs、A1、A2、A3、A4处理, 图a-e为大豆始花期CKs、A1、A2、A3、A4处理。CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。Fig. A-E show treatments of CKs, A1, A2, A3 and A4 at the fifth trifoliolate stage of soybean. Fig. a-e show treatments of CKs, A1, A2, A3 and A4 at he beginning bloom stage of soybean. Treatments of CKs, A1, A2, A3 and A4 are northwest-southeast direction soybean monocropping, east-west direction maize and soybean intercropping, south-north direction maize and soybean intercropping, northwest-southeast direction maize and soybean intercropping, and northeast-southwest direction maize and soybean intercropping, respectively.Figure 7. Effect of row orientation on the anatomical structure of soybean in relay strip intercropping systems of soybean−maize表 3 行向对与玉米带状套作的大豆叶片解剖结构参数的影响Table 3. Effects of row orientation on the parameters of anatomical structure of soybean in relay strip intercropping systems of soybean−maizeμm 时期
Growth stage处理
Treatment叶片厚度
Leaf thickness上表皮厚度
Upper epidermis下表皮厚度
Lower epidermis栅栏组织厚度
Palisade tissue海绵组织厚度
Sponge tissueV5 CKs 138.84±2.87a 12.15±1.32a 11.64±1.20a 59.25±5.53a 32.34±5.00a A1 132.70±4.71b 10.23±0.85b 10.21±2.91b 54.13±2.62b 29.23±3.24b A2 123.86±4.16c 8.86±1.28b 8.45±1.55cd 44.09±3.15c 25.93±2.19c A3 124.18±5.18c 10.07±2.73b 8.86±1.66bc 46.98±3.17c 26.71±3.17bc A4 123.13±6.31c 7.37±2.10c 7.16±0.67d 39.29±4.04d 25.69±2.45c R1 CKs 173.49±5.44a 15.93±1.44a 13.75±2.32a 68.62±3.85a 33.51±4.30a A1 133.31±5.79b 12.05±1.63b 13.03±1.79ab 57.47±3.38b 30.83±1.90b A2 129.75±4.71bc 10.57±1.24cd 10.09±1.63cd 50.68±3.64c 26.36±1.89c A3 130.93±6.80b 10.76±1.28c 11.45±2.31bc 51.02±4.16c 27.84±1.46c A4 126.15±4.36c 9.55±1.28d 8.63±2.38d 50.40±2.54c 25.95±3.78c CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05). 2.5 不同行向处理对大豆粒叶比的影响
由图8可知, 各处理大豆均表现为第2节位叶面积最大、粒重最小; 叶面积与对应节位的粒重并不成对应关系, 可能是‘南豆12’品种受顶端结荚优势影响较大所致。与净作大豆西北-东南行向处理(CKs)相比, 东-西行向(A1)、南-北行向(A2)、西北-东南行向(A3)、东北-西南行向(A4)处理第2节位叶面积降低65.76%、40.65%、47.75%和34.76%。南-北行向(A2)、西北-东南行向(A3)和东北-西南行向(A4)处理第2节位粒重分别降低10.72%、9.71%和16.09%; 东-西行向处理(A1)粒重增加32.90%。大豆顶节位叶片粒叶比最大, 第2节位最小, 说明‘南豆12’的顶端结荚优势十分明显, 第2节位叶片的光合产物大部分供应给了顶端荚。
图 8 行向对与玉米带状套作的大豆主茎节位叶面积、粒重及粒叶比的影响大豆主茎节位自冠层由上至下依次为1~5节位。CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。The main stem nodes from top to bottom of canopy of soybeans are 1−5 nodes. CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping.Figure 8. Effect of row orientation on nodal leaf area, grain weight and grain-leaf ratio of the main stem of soybean in relay strip intercropping systems of soybean−maize粒叶比可衡量各节位叶片的生产能力[26]。对主茎上层各节位粒叶比进行累加, 求得植株上部各节位叶片生产能力的累加值(1~5节位求和)。为了使大豆叶片生产能力的结果更具有代表性, 选择各处理下大豆的第3和第4节位的粒叶比之和进行计算, 排除顶端优势、短果枝和分枝对叶片生产能力的干扰。本研究中, 1~5节位粒叶比、3~4节位粒叶比及全株大豆粒叶比均可表现大豆整体叶片生产能力的强弱。结果均表明, 3种评价方式总体规律均为净作大豆西北-东南行向处理(CKs)>东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4)。不同评价方式下, 各处理生产能力差异均达显著水平(P<0.05) (图9)。
图 9 行向对与玉米带状套作的大豆生产能力的影响CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。不同小写字母代表不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. Different lowercase letters represent significant differences among different treatments (P<0.05).Figure 9. Effect of row orientation on leaf productivity of soybean in relay strip intercropping systems of soybean−maize2.6 不同行向处理对作物产量和土地当量比的影响
如表4所示, 与净作大豆西北-东南行向处理(CKs)相比, 不同行向处理大豆的单株荚数、单株粒数、单株粒重、百粒重等参数均明显降低, 其中, 东-西行向(A1)、南-北行向(A2)、西北-东南行向(A3)与东北-西南行向(A4)处理的百粒重分别较净作大豆西北-东南行向处理(CKs)显著降低8.90%、10.27%、9.87%与11.29%。
表 4 行向对与玉米带状套作的大豆产量构成因素和产量的影响Table 4. Influence of row orientation on yield components and yield of soybean in relay strip intercropping systems of soybean−maize处理
Treatment单株荚数
Pods number per plant单株粒数
Grains number per plant单株产量
Yield per plant (g)百粒重
100-grain weight (g)实际产量
Actual yield (kg∙hm−2)CKs 167.57±7.04a 256.14±7.69a 63.45±3.19a 19.66±0.32a 3013.42±260.08a A1 119.71±11.61b 178.14±3.76b 26.77±0.64b 17.91±0.19b 1932.66±7.35b A2 102.14±7.97c 163.71±2.81c 25.76±1.26b 17.64±0.15cd 1846.08±39.65b A3 104.43±5.68c 168.43±4.43c 26.20±1.18b 17.72±0.06bc 1861.06±29.81b A4 101.00±10.61c 157.57±6.29d 25.48±0.84b 17.44±0.15d 1818.82±31.52b CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。不同小写字母代表不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. Different lowercase letters represent significant differences among different treatments (P<0.05). 如表5所示, 东-西行向处理(A1)玉米的千粒重显著大于其他处理; 玉米的穗长、穗粗和秃尖长度在4种套作行向处理间无显著差异。东-西行向(A1)、南-北行向(A2)与西北-东南行向处理(A3)的千粒重分别较净作玉米西北-东南行向处理(CKm)显著增加19.72%、12.95%与12.79%, 东北-西南行向处理(A4)千粒重与CKm处理无显著差异。
表 5 行向对玉米产量构成因素和产量的影响Table 5. Influence of row orientation on yield components and yield of maize处理
Treatment穗长
Ear length
(cm)秃尖长度
Length of the
ear barren (cm)穗粗
Ear diameter
(mm)穗粒重
Grain weight
(g)千粒重
1000-grain
weight (g)实际产量
Actual yield
(kg∙hm−2)CKm 15.10±2.78a 1.30±0.79b 49.81±4.63a 145.95±15.55a 291.97±0.06d 7345.19±236.41a A1 14.93±1.96a 2.32±0.56a 49.50±2.74b 144.85±35.68a 349.56±0.31a 7467.76±222.41a A2 14.76±1.93a 2.21±0.65a 48.70±2.22b 130.94±20.94a 329.32±0.17b 6645.92±401.66b A3 14.84±1.27a 2.24±0.74a 49.07±1.81b 140.38±29.91a 329.78±0.16c 7183.86±184.90ab A4 13.51±1.64a 1.80±0.73a 48.18±1.57b 106.56±20.98b 294.57±0.15d 5418.41±424.44c CKm为净作玉米西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。不同小写字母代表不同处理间差异显著(P<0.05)。CKm is northwest-southeast direction maize monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. Different lowercase letters represent significant differences among different treatments (P<0.05). 如表4所示, 带状套作大豆实际产量呈现东-西行向处理(A1)>西北-东南行向处理(A3)>南-北行向处理(A2)>东北-西南行向处理(A4)的趋势, 但处理间差异不显著。与净作玉米西北-东南行向处理(CKm)相比, 南-北行向(A2)、西北-东南行向(A3)和东北-西南行向(A4)处理玉米实际产量分别降低9.52%、2.20%和26.23%, 东-西行向处理(A1)玉米实际产量与净作玉米西北-东南行向处理(CKm)无显著差异(表5)。从产量贡献率来比较, 在带状套作模式下, 玉米在东-西行向处理(A1)表现最高, 达79.44%; 大豆在东北-西南行向处理(A4)表现最高, 达25.12%。通过计算土地当量比, 东-西行向处理(A1)系统土地当量比最高, 达1.66 (表6)。
表 6 行向对玉米与大豆套作系统作物产量贡献及土地当量比的影响Table 6. Influence of row orientation on yield contribution rate of crops and land equivalent ratio of soybean−maize intercropping systems处理
Treatment产量贡献率
Contribution rate to yield (%)土地当量比
Land equivalent ratio玉米
Maize大豆
SoybeanA1 79.44 20.56 1.66 A2 78.26 21.74 1.52 A3 79.42 20.58 1.60 A4 74.88 25.12 1.34 CKm 100.00 0 1.00 CKs 0 100.00 1.00 CKs为净作大豆西北-东南行向处理, CKm为净作玉米西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。CKs is northwest-southeast direction soybean monocropping, CKm is northwest-southeast direction maize monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. 3. 讨论
3.1 行向配置对带状复合种植系统光分布及大豆形态的影响
作物合适的行向种植可以明显增强作物群体光照度, 提高带状套作作物的受光面积[9]。本研究结果表明, 各处理的光照强度在40~140 cm水平方向、60 cm以上垂直方向达到最大值, 且东-西行向处理一天5个时间点光照强度均高于其他处理(图3)。陈舒炜等[28]研究发现, 冠层内直射光合有效辐射强度与太阳高度角随时间呈正相关, 呈先升后降的单峰型曲线, 在12:00时, 太阳高度角最大, 冠层内直射光合有效辐射强度最大。因此, 推测在本研究中, 11: 00—13: 00时间段大豆冠层因受到阳光直射, 光照强度达到峰值, 此时套作行向对大豆受光量影响较小, 其余时间段太阳以不同角度照射行间大豆, 带状套作行向对大豆受光量有显著影响。与其他套作处理相比, 在玉米大豆共生期, 东-西行向带状套作可使大豆一天中受到的总光照量最大, 高位作物玉米对大豆荫蔽作用最弱, 有利于大豆光合作用与物质积累。
在玉米−大豆带状套作模式下大豆为了捕获更多的光能, 通过增加株高、改变地上部生物量分配比例及LAI来适应弱光环境[29]。在本研究中, 套作大豆株高相较于净作处理均显著增加以捕获套作环境中更多的光能, 且各套作处理下大豆无明显倒伏。带状套作大豆叶面积指数总体规律表现为东-西行向处理>西北-东南行向处理>南-北行向处理>东北-西南行向处理; 这和叶面积指数与产量呈正相关的结论一致[30]。大豆茎秆、叶片、叶柄生物量所占比例与光合有效辐射密切相关。带状套作大豆在玉米和大豆共生时期, 单株生物量较低; 大豆复光后, 通过快速增加LAI和叶片生物量所占比例以获得更多的光能, 迅速恢复正常生长, 这与吴雨珊等[31]试验结果一致。在套作光照恢复期能积累更多干物质、形成较大叶面积有利于提高大豆产量[32]。在本研究中, 与其他套作处理相比, 东-西行向套作大豆生长前期受到荫蔽胁迫较小, 后期光照恢复后大豆叶面积指数、叶片生物量和地上部生物量显著增加。因此, 东-西行向套作大豆具有较大的生产潜力。
3.2 行向配置对带状套作大豆光合特性的影响
叶绿素是植物吸收与利用光能的主要色素, 其含量的变化反映植物光合作用原初反应优劣[33]。植物光合色素含量与光合能力呈正比[20], 在本研究中, 套作降低了大豆叶片光合色素含量, 总体规律表现为东-西行向处理>西北-东南行向处理>南-北行向处理>东北-西南行向处理; 东-西行向处理较其他套作处理大豆荫蔽程度轻, 光合能力较强。类胡萝卜素是植物光合系统中的辅助天线色素和非酶类的抗氧化合物, 它能捕获和转换光能, 缓冲单线态氧对植物的损伤, 还能维持捕光叶绿素a/b蛋白复合体(
LHCP)的稳定[34]。本研究中, 净作大豆的类胡萝卜素含量最高, 带状套作大豆叶片类胡萝卜素含量与荫蔽程度呈负相关, 荫蔽下大豆通过增加类胡萝卜素含量捕获更多的蓝紫光以适应弱光环境[35]。光合速率是作物产量和品质的决定因素之一, 光照强度和光合速率直接相关[36]。荫蔽会使大豆叶片的净光合速率、气孔导度和蒸腾速率降低; 胞间二氧化碳浓度升高[6], 净光合速率下降的原因可能是叶肉细胞光合活性下降[37], 本研究结果与前人结果一致。在玉米大豆共生期, 套作大豆均受到玉米荫蔽, 净光合速率降低; 后期光照恢复以后, 套作大豆迅速对光环境做出反应, 光合参数指标均有所提升。同时, 东-西行向种植大豆透光率较好, 总光合有效辐射最大, 其净光合速率在前期荫蔽及后期复光期均最大, 而南-北行向与东北-西南行向处理由于前期遮阴严重, 整体光环境处于劣势, 所以即便后期光照恢复, 其净光合速率仍然较弱。 3.3 行向配置对带状套作大豆叶片结构的影响
大豆叶片结构对其最终物质积累的影响是多样且复杂的, 包括气孔特性、解剖特征及超微结构[38]。本研究结果表明, 套作荫蔽程度高的处理(南-北行向和东北-西南行向处理), 气孔面积、气孔周长和气孔宽度大, 荫蔽程度较轻的处理(东-西行向和西北-东南行向处理)气孔密度、气孔长度和气孔开度均较高。有研究表明, 气孔形状间存在显著的异速生长关系。气孔面积主要由气孔长度与宽度决定, 而气孔密度也会制约气孔面积的扩增[39]。荫蔽程度大, 大豆气孔宽度的生长速率大于气孔长度, 气孔趋于“圆”发展, 气孔面积增大; 同时荫蔽程度与大豆气孔密度呈显著的负相关关系, 荫蔽程度高, 气孔密度降低, 气孔面积愈大。本研究中荫蔽程度较轻的处理维持着较高的气孔密度和气孔开度, 保证了大豆叶片正常的CO2摄入和高效的光合作用。李盛蓝等[40]研究结果表明, 气孔密度与大豆叶片净光合速率呈极显著正相关, 因此, 在一定的程度上, 气孔密度越大, 叶片净光合速率越大; 这与本研究中东-西行向处理大豆的净光合速率和气孔密度显著高于其他行向处理的结果一致。
本研究中, 荫蔽前期套作大豆叶片厚度、栅栏组织厚度以及海绵组织厚度均显著降低; 在套作大豆复光期, 大豆叶片厚度增加。荫蔽下套作大豆叶片厚度变薄的主要原因是栅栏组织的厚度显著降低, 这一试验结果与前人研究叶片变薄是由于细胞层数减少的结果不一致[41]。正常光照下, 大豆叶片的上表皮细胞大小均匀排列, 栅栏组织细胞呈圆柱状且排列紧密, 且叶片较厚; 套作荫蔽下大豆叶片的栅栏组织细胞呈圆锥状, 分化程度降低、排列较疏松且细胞之间的间隙较大, 表皮细胞的细胞壁弧形弯曲趋于凸透形, 与范元芳等[38]研究结果一致; 这是植物对弱光环境的一种适应, 可以降低散射光的反射, 增强叶肉组织对光的捕获能力, 有利于提高光合能力。叶片厚度和栅栏组织厚度与叶片光合能力密切相关[42], 东-西行向处理大豆叶片厚度与栅栏组织厚度高于其他套作处理, 说明东-西行向处理下套作大豆的栅栏组织更发达, 有较好的叶片结构来容纳更多的叶绿体, 降低荫蔽对其光合作用的影响。
3.4 行向配置对带状套作系统个体和群体产量的影响
粒叶比表示大豆植株上部各节位粒重与对应节位叶面积比值, 常用来衡量各节位叶片的生产能力[43]。本研究结果显示, 套作大豆的粒叶比显著低于净作大豆, 各处理下大豆的顶节位叶片生产能力最大, 第2节位最小, 可能的原因是‘南豆12’顶端结荚优势突出, 顶节位库的活力较强, 顶端叶片不能完全满足顶端荚的营养需要, 因此第2节位叶片的光合产物大部分供应给了顶端荚, 这与张伟等[26]对有限结荚型大豆的研究结果一致。整株大豆叶片粒叶比、1~5节位粒叶比与3~4节位粒叶比(排除了叶片生产能力由顶端优势、短果枝和分枝产生的干扰)均可反映整体叶片生产能力, 并且与产量呈正相关关系。3种不同评估方式均表现为东-西行向处理>西北-东南行向处理>南-北行向处理>东北-西南行向处理的显著趋势, 因此东-西行向套作大豆叶片具有更大的生产潜能。
带状套作大豆实际产量表现为东-西行向处理>西北-东南行向处理>南-北行向处理>东北-西南行向处理, 其产量变化是大豆产量构成因素均有显著差异的综合结果。玉米实际产量表现为东-西行向处理>西北-东南行向处理>南-北行向处理>东北-西南行向处理, 东-西行向处理实际产量较高的主要原因是千粒重显著增加。带状套作种植的土地当量比范围为1.34~1.66, 且东-西行向处理土地当量比最高, 表明东-西行向带状套作具有明显的优势, 并提高了土地利用效率。
4. 结论
玉米−大豆带状套作模式的行向配置直接影响作物的形态和产量。通过综合比较4种行向处理下套作大豆光环境、形态和生理参数的变化, 发现东-西行向处理的大豆荫蔽程度较轻, 叶片厚度、气孔密度、光合色素含量和叶片净光合速率最大, 光合潜力高; 同样, 东-西行向处理的大豆叶面积指数、地上部生物量以及粒叶比最大, 大豆植株总体生产能力强。东-西行向处理下大豆和玉米产量分别为1932.66 kg∙hm−2和7467.76 kg∙hm−2; 土地当量比为1.66, 显著高于其他行向配置。因此, 在中国南方地区, 东-西行向种植能显著发挥玉米−大豆带状套作种植模式的优势。
-
图 2 玉米−大豆带状复合种植体系光合有效辐射(PAR)的测量位点示意图
垂直高度测定位点(A、B、C、D)依据玉米高度测定。The vertical height measurement sites (A, B, C and D) are determined according to the height of the maize.
Figure 2. Diagrammatic map for measuring the photosynthetically active radiation (PAR) of maize−soybean relay strip intercropping system
图 3 行向对与玉米带状套作的大豆的光分布的影响
图中横坐标为套作大豆距玉米行的距离; 纵坐标为套作大豆冠层上方玉米株高, 以40 cm为起点; 所有测定均为光空间分布。试验于晴天的9:00、11:00、13:00、15:00和17:00进行光合有效辐射(PAR)测定。A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。The abscissa in the figure is the horizontal distance from maize of the soybeans strip, and the ordinate is the maize plant height over the soybean canopy with 40 cm as the starting point. The photosynthetically active radiation (PAR) distribution was measured at five times of 9:00, 11:00, 13:00, 15:00 and 17:00 on a sunny day. A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping.
Figure 3. Effect of row orientation on the photosynthetically active radiation (PAR) distribution of soybean in relay strip intercropping systems of soybean−maize
图 4 行向对与玉米带状套作的大豆形态特征的影响
CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期, R5为大豆始粒期。不同大写字母代表同一生育时期不同处理间差异显著(P<0.05), 不同小写字母代表同一器官生物量不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seeding stage of soybean. Different capital letters represent significant differences among different treatments at the same growth stage (P<0.05), and different lowercase letters represent significant differences in biomass of the same organ among different treatments (P<0.05).
Figure 4. Effect of row orientation on morphological characteristics of soybean in relay strip intercropping systems of soybean−maize
图 5 行向对与玉米带状套作的大豆光合参数的影响
CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期, R5为大豆始粒期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seeding stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05).
Figure 5. Effect of row orientation on photosynthetic parameters of soybean in relay strip intercropping systems of soybean−maize
图 6 行向对与玉米带状套作的大豆叶片气孔特征的影响
图A-E为大豆第5片复叶展开期CKs、A1、A2、A3、A4处理, 图a-e为大豆始花期CKs、A1、A2、A3、A4处理。CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。Fig. A-E show treatments of CKs, A1, A2, A3 and A4 at the fifth trifoliolate stage of soybean. Fig. a-e show treatments of CKs, A1, A2, A3 and A4 at the beginning bloom stage of soybean. Treatments of CKs, A1, A2, A3 and A4 are northwest-southeast direction soybean monocropping, east-west direction maize and soybean intercropping, south-north direction maize and soybean intercropping, northwest-southeast direction maize and soybean intercropping, and northeast-southwest direction maize and soybean intercropping, respectively.
Figure 6. Effect of row orientation on stomatal characteristics of soybean in relay strip intercropping systems of soybean−maize
图 7 行向对与玉米带状套作的大豆叶片解剖结构的影响
图A-E为大豆第5片复叶展开期CKs、A1、A2、A3、A4处理, 图a-e为大豆始花期CKs、A1、A2、A3、A4处理。CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。Fig. A-E show treatments of CKs, A1, A2, A3 and A4 at the fifth trifoliolate stage of soybean. Fig. a-e show treatments of CKs, A1, A2, A3 and A4 at he beginning bloom stage of soybean. Treatments of CKs, A1, A2, A3 and A4 are northwest-southeast direction soybean monocropping, east-west direction maize and soybean intercropping, south-north direction maize and soybean intercropping, northwest-southeast direction maize and soybean intercropping, and northeast-southwest direction maize and soybean intercropping, respectively.
Figure 7. Effect of row orientation on the anatomical structure of soybean in relay strip intercropping systems of soybean−maize
图 8 行向对与玉米带状套作的大豆主茎节位叶面积、粒重及粒叶比的影响
大豆主茎节位自冠层由上至下依次为1~5节位。CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。The main stem nodes from top to bottom of canopy of soybeans are 1−5 nodes. CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping.
Figure 8. Effect of row orientation on nodal leaf area, grain weight and grain-leaf ratio of the main stem of soybean in relay strip intercropping systems of soybean−maize
图 9 行向对与玉米带状套作的大豆生产能力的影响
CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。不同小写字母代表不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. Different lowercase letters represent significant differences among different treatments (P<0.05).
Figure 9. Effect of row orientation on leaf productivity of soybean in relay strip intercropping systems of soybean−maize
表 1 行向对与玉米带状套作的大豆光合色素含量的影响
Table 1 Effects of row orientation on the photosynthetic pigment content of soybean in relay strip intercropping systems of soybean−maize
时期
Growth stage处理
Treatment叶绿素a
Chlorophyll a
(mg∙dm−2)叶绿素b
Chlorophyll b
(mg∙dm−2)类胡萝卜素
Carotenoids
(mg∙dm−2)叶绿素总含量
Chlorophyll content
(mg∙dm−2)光合色素总含量
Photosynthetic pigment content
(mg∙dm−2)叶绿素a/b
Chlorophyll a/
Chlorophyll bV5 CKs 2.65±0.20a 0.96±0.06a 0.45±0.02a 3.61±0.27a 4.06±0.28a 2.76±0.03a A1 2.48±0.08ab 0.95±0.04a 0.34±0.03b 3.43±0.09ab 3.77±0.10ab 2.61±0.13ab A2 2.11±0.20cd 0.84±0.06bc 0.29±0.06bc 2.95±0.25cd 3.24±0.30cd 2.51±0.15b A3 2.29±0.12bc 0.88±0.05ab 0.32±0.03b 3.17±0.17bc 3.49±0.19bc 2.60±0.07ab A4 1.95±0.10d 0.77±0.03c 0.23±0.02c 2.72±0.14d 2.95±0.16d 2.53±0.05b R1 CKs 3.07±0.63a 1.18±0.13a 0.51±0.12a 4.25±0.22a 4.76±0.22a 2.60±0.19a A1 2.92±0.05a 1.15±0.08ab 0.48±0.02ab 4.07±0.05a 4.55±0.07a 2.54±0.19a A2 2.73±0.36a 1.08±0.10ab 0.44±0.07ab 3.81±0.16ab 4.25±0.15ab 2.54±0.12a A3 2.88±0.19a 1.09±0.01ab 0.45±0.03ab 3.97±0.46ab 4.42±0.43ab 2.64±0.19a A4 2.50±0.21a 0.97±0.10b 0.37±0.05b 3.47±0.29b 3.84±0.33b 2.58±0.20a R5 CKs 3.89±0.32a 1.49±0.08a 0.99±0.13a 5.38±0.35a 6.37±0.45a 2.61±0.23b A1 3.85±0.42a 1.24±0.11b 0.82±0.05b 5.09±0.40a 5.91±0.40a 3.10±0.54a A2 3.71±0.48ab 1.17±0.13bc 0.75±0.11bc 4.88±0.61a 5.63±0.71a 3.17±0.07a A3 3.71±0.22ab 1.21±0.12b 0.79±0.06b 4.92±0.24a 5.71±0.25a 3.07±0.38a A4 3.17±0.37b 1.02±0.13c 0.64±0.10c 4.19±0.50b 4.83±0.59b 3.11±0.08a CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期, R5为大豆始粒期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, R1 is the beginning bloom stage of soybean, and R5 is the beginning seeding stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05). 表 2 行向对与玉米带状套作的大豆叶片气孔参数的影响
Table 2 Effects of row orientation on the stomatal parameters of soybean in relay strip intercropping systems of soybean−maize
时期
Growth stage处理
Treatment气孔长度
Stomata length
(μm)气孔宽度
Stomata width
(μm)气孔开度
Stomata aperture
(μm)气孔周长
Stomata circumference
(μm)气孔面积
Stomata area (μm2)气孔密度
Stomata density
(stomatas∙mm−2)V5 CKs 35.56±2.26a 23.67±1.34a 4.16±0.47a 90.29±6.43a 43.43±1.77a 493.23±6.28a A1 35.44±1.25ab 21.88±1.22b 3.32±0.72b 79.17±5.69b 40.96±2.45b 482.90±5.80b A2 33.21±1.46c 23.02±1.00ab 2.89±0.64b 82.34±5.87b 42.48±1.79b 470.89±7.06c A3 33.53±2.55bc 22.10±2.16b 2.89±0.77b 81.52±3.97b 41.53±0.80ab 481.91±6.34b A4 33.06±2.72c 23.55±1.33a 2.72±0.66b 91.44±5.27a 42.58±1.78ab 466.91±5.41c R1 CKs 31.28±1.81a 23.45±2.31a 3.61±0.39a 95.18±5.36a 38.93±1.74a 510.28±11.75a A1 30.43±3.35ab 15.56±7.30c 2.48±0.31b 90.69±4.18bc 33.61±2.00b 503.71±25.81ab A2 28.01±1.68cd 21.29±0.75ab 2.03±0.44c 91.32±2.83bc 35.03±1.48b 481.88±12.50cd A3 28.84±1.54bc 19.63±1.64b 2.19±0.59bc 88.23±1.54c 33.73±1.61b 494.71±9.25bc A4 26.66±2.20d 21.85±0.93a 1.95±0.54c 93.28±2.27ab 38.42±1.46a 477.82±15.84d CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05). 表 3 行向对与玉米带状套作的大豆叶片解剖结构参数的影响
Table 3 Effects of row orientation on the parameters of anatomical structure of soybean in relay strip intercropping systems of soybean−maize
μm 时期
Growth stage处理
Treatment叶片厚度
Leaf thickness上表皮厚度
Upper epidermis下表皮厚度
Lower epidermis栅栏组织厚度
Palisade tissue海绵组织厚度
Sponge tissueV5 CKs 138.84±2.87a 12.15±1.32a 11.64±1.20a 59.25±5.53a 32.34±5.00a A1 132.70±4.71b 10.23±0.85b 10.21±2.91b 54.13±2.62b 29.23±3.24b A2 123.86±4.16c 8.86±1.28b 8.45±1.55cd 44.09±3.15c 25.93±2.19c A3 124.18±5.18c 10.07±2.73b 8.86±1.66bc 46.98±3.17c 26.71±3.17bc A4 123.13±6.31c 7.37±2.10c 7.16±0.67d 39.29±4.04d 25.69±2.45c R1 CKs 173.49±5.44a 15.93±1.44a 13.75±2.32a 68.62±3.85a 33.51±4.30a A1 133.31±5.79b 12.05±1.63b 13.03±1.79ab 57.47±3.38b 30.83±1.90b A2 129.75±4.71bc 10.57±1.24cd 10.09±1.63cd 50.68±3.64c 26.36±1.89c A3 130.93±6.80b 10.76±1.28c 11.45±2.31bc 51.02±4.16c 27.84±1.46c A4 126.15±4.36c 9.55±1.28d 8.63±2.38d 50.40±2.54c 25.95±3.78c CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。V5为大豆第5片复叶展开期, R1为大豆始花期。不同小写字母代表同一生长期不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. V5 is the fifth trifoliolate stage of soybean, and R1 is the beginning bloom stage of soybean. Different lowercase letters represent significant differences among different treatments at the same growth stage (P<0.05). 表 4 行向对与玉米带状套作的大豆产量构成因素和产量的影响
Table 4 Influence of row orientation on yield components and yield of soybean in relay strip intercropping systems of soybean−maize
处理
Treatment单株荚数
Pods number per plant单株粒数
Grains number per plant单株产量
Yield per plant (g)百粒重
100-grain weight (g)实际产量
Actual yield (kg∙hm−2)CKs 167.57±7.04a 256.14±7.69a 63.45±3.19a 19.66±0.32a 3013.42±260.08a A1 119.71±11.61b 178.14±3.76b 26.77±0.64b 17.91±0.19b 1932.66±7.35b A2 102.14±7.97c 163.71±2.81c 25.76±1.26b 17.64±0.15cd 1846.08±39.65b A3 104.43±5.68c 168.43±4.43c 26.20±1.18b 17.72±0.06bc 1861.06±29.81b A4 101.00±10.61c 157.57±6.29d 25.48±0.84b 17.44±0.15d 1818.82±31.52b CKs为净作大豆西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。不同小写字母代表不同处理间差异显著(P<0.05)。CKs is northwest-southeast direction soybean monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. Different lowercase letters represent significant differences among different treatments (P<0.05). 表 5 行向对玉米产量构成因素和产量的影响
Table 5 Influence of row orientation on yield components and yield of maize
处理
Treatment穗长
Ear length
(cm)秃尖长度
Length of the
ear barren (cm)穗粗
Ear diameter
(mm)穗粒重
Grain weight
(g)千粒重
1000-grain
weight (g)实际产量
Actual yield
(kg∙hm−2)CKm 15.10±2.78a 1.30±0.79b 49.81±4.63a 145.95±15.55a 291.97±0.06d 7345.19±236.41a A1 14.93±1.96a 2.32±0.56a 49.50±2.74b 144.85±35.68a 349.56±0.31a 7467.76±222.41a A2 14.76±1.93a 2.21±0.65a 48.70±2.22b 130.94±20.94a 329.32±0.17b 6645.92±401.66b A3 14.84±1.27a 2.24±0.74a 49.07±1.81b 140.38±29.91a 329.78±0.16c 7183.86±184.90ab A4 13.51±1.64a 1.80±0.73a 48.18±1.57b 106.56±20.98b 294.57±0.15d 5418.41±424.44c CKm为净作玉米西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。不同小写字母代表不同处理间差异显著(P<0.05)。CKm is northwest-southeast direction maize monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. Different lowercase letters represent significant differences among different treatments (P<0.05). 表 6 行向对玉米与大豆套作系统作物产量贡献及土地当量比的影响
Table 6 Influence of row orientation on yield contribution rate of crops and land equivalent ratio of soybean−maize intercropping systems
处理
Treatment产量贡献率
Contribution rate to yield (%)土地当量比
Land equivalent ratio玉米
Maize大豆
SoybeanA1 79.44 20.56 1.66 A2 78.26 21.74 1.52 A3 79.42 20.58 1.60 A4 74.88 25.12 1.34 CKm 100.00 0 1.00 CKs 0 100.00 1.00 CKs为净作大豆西北-东南行向处理, CKm为净作玉米西北-东南行向处理, A1为东-西行向玉米与大豆套作处理, A2为南-北行向玉米与大豆套作处理, A3为西北-东南行向玉米与大豆套作处理, A4为东北-西南行向玉米与大豆套作处理。CKs is northwest-southeast direction soybean monocropping, CKm is northwest-southeast direction maize monocropping, A1 is east-west direction maize and soybean intercropping, A2 is south-north direction maize and soybean intercropping, A3 is northwest-southeast direction maize and soybean intercropping, and A4 is northeast-southwest direction maize and soybean intercropping. -
[1] 刘梅芳, 樊琦. 中国大豆消费、生产和进口现状及存在的问题[J]. 粮食科技与经济, 2021, 46(6): 28−35 LIU M F, FAN Q. Study on the current situation and problems of soybean consumption, production and import in China[J]. Grain Science and Technology and Economy, 2021, 46(6): 28−35
[2] DU J B, HAN T F, GAI J Y, et al. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17(4): 747−754 doi: 10.1016/S2095-3119(17)61789-1
[3] CHANG T G, ZHU X G. Source-sink interaction: a century old concept under the light of modern molecular systems biology[J]. Journal of Experimental Botany, 2017, 68(16): 4417−4431 doi: 10.1093/jxb/erx002
[4] 罗晓峰, 孟永杰, 刘卫国, 等. 大豆响应荫蔽胁迫的形态及生理机制研究[J]. 分子植物育种, 2018, 16(3): 979−988 LUO X F, MENG Y J, LIU W G, et al. Research of architectural and physiological mechanisms in response to shade stress in soybean[J]. Molecular Plant Breeding, 2018, 16(3): 979−988
[5] 崔亮, 苏本营, 杨峰, 等. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响[J]. 中国农业科学, 2014, 47(8): 1489−1501 CUI L, SU B Y, YANG F, et al. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems[J]. Scientia Agricultura Sinica, 2014, 47(8): 1489−1501
[6] 杨峰, 娄莹, 廖敦平, 等. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响[J]. 作物学报, 2015, 41(4): 642−650 doi: 10.3724/SP.J.1006.2015.00642 YANG F, LOU Y, LIAO D P, et al. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4): 642−650 doi: 10.3724/SP.J.1006.2015.00642
[7] YANG F, HUANG S, GAO R C, et al. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio[J]. Field Crops Research, 2014, 155: 245−253 doi: 10.1016/j.fcr.2013.08.011
[8] 刘小明, 雍太文, 苏本营, 等. 减量施氮对玉米-大豆套作系统中作物产量的影响[J]. 作物学报, 2014, 40(9): 1629−1638 doi: 10.3724/SP.J.1006.2014.01629 LIU X M, YONG T W, SU B Y, et al. Effect of reduced N application on crop yield in maize-soybean intercropping system[J]. Acta Agronomica Sinica, 2014, 40(9): 1629−1638 doi: 10.3724/SP.J.1006.2014.01629
[9] 余利, 刘正, 王波, 等. 行距和行向对不同密度玉米群体田间小气候和产量的影响[J]. 中国生态农业学报, 2013, 21(8): 938−942 doi: 10.3724/SP.J.1011.2013.00938 YU L, LIU Z, WANG B, et al. Effects of different combinations of planting density, row spacing and row direction on field microclimatic conditions and grain yield of maize[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 938−942 doi: 10.3724/SP.J.1011.2013.00938
[10] 宋人. 农作物东西行向种植好[J]. 农技服务, 2001, 18(5): 45 SONG R. East-west directional sowing is good[J]. Agricultural Technology Service, 2001, 18(5): 45
[11] 郑国喜. 不同行向麦棉套种试验[J]. 安徽农业科学, 2007, 35(17): 5113−5114 ZHENG G X. Experiment on relay intercropping wheat and cotton in different row orientation[J]. Journal of Anhui Agricultural Sciences, 2007, 35(17): 5113−5114
[12] 冯永祥, 杨恒山, 李志刚, 等. 行向、行距对小麦田间光照及产量的影响[J]. 哲里木畜牧学院学报, 2000, 6(1): 21−24 FENG Y X, YANG H S, LI Z G, et al. Effect of row directions and row spacing on illumination and yield of wheat colonics[J]. Journal of Zhelimu Animal Husbantry College, 2000, 6(1): 21−24
[13] 巨鹏飞. 玉米大豆间作种植行向及田间配置研究[D]. 南京: 南京农业大学, 2019 JU P F. Study on planting direction and field allocation of corn and soybean intercropping[D]. Nanjing: Nanjing Agricultural University, 2019
[14] 于吉庆, 刘明贵, 张子军. 行向及插秧方式对水稻产量的影响[J]. 北方水稻, 2010, 40(5): 37−39 YU J Q, LIU M G, ZHANG Z J. Effect of the row direction and seedling transplanting pattern on yield of rice[J]. North Rice, 2010, 40(5): 37−39
[15] 鲍玉巧, 姚锐, 张子学. 不同玉米品种及行向对田间漏光率和产量的影响[J]. 安徽科技学院学报, 2015, 29(6): 18−22 doi: 10.3969/j.issn.1673-8772.2015.06.004 BAO Y Q, YAO R, ZHANG Z X. Effect on the field light-leaking rate and yield of different maize varieties and row direction[J]. Journal of Anhui Science and Technology University, 2015, 29(6): 18−22 doi: 10.3969/j.issn.1673-8772.2015.06.004
[16] 罗春芳, 魏云霞, 欧珍贵, 等. 种茎行向及芽向对间作木薯和花生产量及品质的影响[J]. 湖南农业大学学报(自然科学版), 2017, 43(5): 480−484, 550 LUO C F, WEI Y X, OU Z G, et al. Yield and quality effect of different row or bud direction of cassava cutting within cassava intercropping peanut[J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(5): 480−484, 550
[17] 张林, 祖朝龙, 解莹莹, 等. 行向与行距对烟田水、温和光照条件及烤烟生长的影响[J]. 中国烟草科学, 2013, 34(5): 7−12 ZHANG L, ZU C L, XIE Y Y, et al. Effects of row directions and row spacing on soil temperature, soil moisture, illumination and growth of flue-cured tobacco[J]. Chinese Tobacco Science, 2013, 34(5): 7−12
[18] WANG Z X, YIN H N, YANG N, et al. Effect of vineyard row orientation on microclimate, phenolic compounds, individual anthocyanins, and free volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) in a high-altitude arid valley[J]. European Food Research and Technology, 2022, 248(5): 1365−1378 doi: 10.1007/s00217-022-03961-9
[19] 尹海宁, 王兆祥, 王琳, 等. 海拔和行向对酿酒葡萄果实生长发育及品质的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(4): 93−101 YI H N, WANG Z X, WANG L, et al. Effects of altitude and row orientation on growth and quality of wine grape berries[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 93−101
[20] 陈元凯, 冯铃洋, Muhammad Ali Raza, 等. 四川地区玉米/大豆带状套作对大豆形态、叶绿素荧光特征及系统产量的影响[J]. 中国生态农业学报(中英文), 2019, 27(6): 870−879 CHEN Y K, FENG L Y, RAZA M A, et al. Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 870−879
[21] 魏建军, 罗赓彤, 张力, 等. 高产大豆主要群体生理参数的变化及其对产量的影响[J]. 大豆科学, 2009, 28(3): 472−476 WEI J J, LUO G T, ZHANG L, et al. Changes of main physiological parameters of soybean population and influences on yield in different year[J]. Soybean Science, 2009, 28(3): 472−476
[22] PENG J F, FENG Y H, WANG X K, et al. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations[J]. Scientific Reports, 2021, 11: 7485 doi: 10.1038/s41598-021-86858-z
[23] WANG X C, WU X L, DING G H, et al. Analysis of grain yield differences among soybean cultivars under maize-soybean intercropping[J]. Agronomy, 2020, 10(1): 110 doi: 10.3390/agronomy10010110
[24] 战吉宬, 黄卫东, 王秀芹, 等. 弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J]. 植物生态学报, 2005, 29(1): 26−31 ZHAN J C, HUANG W D, WANG X Q, et al. Leaf transpiration and stomatal structure of young grape plants grown in a low light environment[J]. Acta Phytoecologica Sinica, 2005, 29(1): 26−31
[25] FAN Y F, CHEN J X, CHENG Y J, et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system[J]. PLoS One, 2018, 13(5): e0198159 doi: 10.1371/journal.pone.0198159
[26] 张伟, 谢甫绨, 宋显军, 等. 大豆上部节位叶片生产效率的初步研究[J]. 作物学报, 2007, 33(5): 853−856 ZHANG W, XIE F T, SONG X J, et al. Grain productivity from leaves at upper nodes of soybean[J]. Acta Agronomica Sinica, 2007, 33(5): 853−856
[27] 蔡承智, 高军, 陈阜. 土地当量比(LER)的计算校正探讨[J]. 耕作与栽培, 2003(5): 18−20 CAI C Z, GAO J, CHEN F. Discussion on calculation and correction of land equivalent ratio (LER)[J]. Tillage and Cultivation, 2003(5): 18−20
[28] 陈舒炜, 唐丽玉, 尹丹. 枇杷冠层内光分布模拟及光截获分析[J]. 福州大学学报(自然科学版), 2018, 46(5): 650−656 CHEN S W, TANG L Y, YIN D. Simulation of light distribution within loquat canopy and analysis of light interception[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(5): 650−656
[29] 任梦露, 刘卫国, 刘小明, 等. 荫蔽信号对大豆幼苗生长和光合特性的影响[J]. 中国生态农业学报, 2016, 24(4): 499−505 REN M L, LIU W G, LIU X M, et al. Effect of shading signal on growth and photosynthetic characteristics of soybean seedlings[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 499−505
[30] 徐强, 程智慧, 卢涛, 等. 线辣椒/玉米带状套作的光能截获和利用特征[J]. 中国生态农业学报, 2010, 18(5): 969−976 doi: 10.3724/SP.J.1011.2010.00969 XU Q, CHENG Z H, LU T, et al. Light interception and utilization of maize-capsicum strip relay intercrop[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 969−976 doi: 10.3724/SP.J.1011.2010.00969
[31] 吴雨珊, 龚万灼, 廖敦平, 等. 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响[J]. 作物学报, 2015, 41(11): 1740−1747 doi: 10.3724/SP.J.1006.2015.01740 WU Y S, GONG W Z, LIAO D P, et al. Effects of shade and light recovery on soybean cultivars (lines) and its relationship with yield in relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(11): 1740−1747 doi: 10.3724/SP.J.1006.2015.01740
[32] 龚万灼, 吴雨珊, 雍太文, 等. 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响[J]. 中国油料作物学报, 2015, 37(4): 475−480 GONG W Z, WU Y S, YONG T W, et al. Effects of shade and lighting recovery on growth and yield of soybean in maize-soybean relay strip intercropping[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 475−480
[33] NETTO A T, CAMPOSTRINI E, DE OLIVEIRA J G, et al. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves[J]. Scientia Horticulturae, 2005, 104(2): 199−209 doi: 10.1016/j.scienta.2004.08.013
[34] 高阳, 刘卫国, 李淑贤, 等. 荫蔽锻炼对大豆苗期光合特性的影响[J]. 作物学报, 2019, 45(1): 91−99 doi: 10.3724/SP.J.1006.2019.84061 GAO Y, LIU W G, LI S X, et al. Effect of shade priming on photosynthetic characteristics of soybean seedlings[J]. Acta Agronomica Sinica, 2019, 45(1): 91−99 doi: 10.3724/SP.J.1006.2019.84061
[35] POLÍVKA T, FRANK H A. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125−1134 doi: 10.1021/ar100030m
[36] 邹长明, 王允青, 曹卫东, 等. 不同品种小豆光合作用和生长发育对弱光的响应[J]. 应用生态学报, 2015, 26(12): 3687−3692 doi: 10.13287/j.1001-9332.20151016.014 ZOU C M, WANG Y Q, CAO W D, et al. Response of photosynthesis and growth to weak light regime in different adzuki bean (Vigna angularis) varieties[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3687−3692 doi: 10.13287/j.1001-9332.20151016.014
[37] HUANG D, WU L, CHEN J R, et al. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels[J]. Photosynthetica, 2011, 49(4): 611−618 doi: 10.1007/s11099-011-0076-1
[38] 范元芳, 杨峰, 何知舟, 等. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应[J]. 中国生态农业学报, 2016, 24(5): 608−617 FAN Y F, YANG F, HE Z Z, et al. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 608−617
[39] 杨克彤, 常海龙, 陈国鹏, 等. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2016, 24(5): 608−617 YANG K T, CHANG H L, CHEN G P, et al. Stomatal traits of main greening plant species in Lanzhou[J]. Chinese Journal of Plant Ecology, 2016, 24(5): 608−617
[40] 李盛蓝, 谭婷婷, 范元芳, 等. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响[J]. 中国农业科学, 2019, 52(21): 3782−3793 LI S L, TAN T T, FAN Y F, et al. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean[J]. Scientia Agricultura Sinica, 2019, 52(21): 3782−3793
[41] 刘凡值, 苟兴红, 傅生华, 等. 大豆耐阴性的研究Ⅴ−大豆叶片形态特征及解剖结构与耐阴性的关系[J]. 贵州农业科学, 1990, 18(3): 9−16 LIU F Z, GOU X H, FU S H, et al. Studies on shade-endurance of soybean [Glycine max (L.) Merr.] Ⅴ. a relation between the morphogical and anatomical characters of soybean leaf and the shade-endurance[J]. Guizhou Agricultural Sciences, 1990, 18(3): 9−16
[42] 谭婷婷, 范元芳, 李盛蓝, 等. 套作模式下玉米荫蔽对大豆叶片叶绿体结构及光合特性的影响[J]. 核农学报, 2020, 34(10): 2360−2367 TAN T T, FAN Y F, LI S L, et al. Effects of maize shading on chloroplast structure and photosynthetic characteristics of soybean leaves under intercropping pattern[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2360−2367
[43] 董钻, 那桂秋, 王荣先, 等. 大豆叶—粒关系的研究[J]. 大豆科学, 1993, 12(1): 1−7 DONG Z, NA G Q, WANG R X, et al. Correlative performance between leaf and seed in soybeans[J]. Soybean Science, 1993, 12(1): 1−7
-
期刊类型引用(8)
1. 钱玉平,宿兵兵,高吉星,阮粉花,李亚伟,茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响. 作物学报. 2025(01): 273-284 . 百度学术
2. 孔祥芸,曲宏辉,王丹. 未利用地宜耕评价模型研究——以烟台市为例. 现代园艺. 2025(05): 78-80 . 百度学术
3. 潘广元,杨森,李雪,张军,翟鹏飞,孔令娟. 安徽省大豆玉米带状复合种植示范推广. 浙江农业科学. 2025(04): 910-916 . 百度学术
4. 陈爽. 大豆—玉米带状套作对大豆形态特征和产量的影响. 基层农技推广. 2024(04): 14-17 . 百度学术
5. 李博宇,王阳峰,杨飞,赵建兴. 陕南马铃薯玉米大豆带状套作复合种植关键技术及推广建议. 基层农技推广. 2024(06): 101-105 . 百度学术
6. 王良全,李登炎,赵匆. 石泉县玉米/大豆带状复合种植模式下不同玉米品种筛选. 基层农技推广. 2024(08): 26-30 . 百度学术
7. 王小静. 间作对大豆农艺性状、光合特性以及产量的影响. 基层农技推广. 2024(11): 58-61 . 百度学术
8. 雷怡,高静,王琪,谢雨霏,谭先明,杨文钰,杨峰. 弱光对南北大豆品种叶片结构与光合特性的影响. 四川农业大学学报. 2023(05): 755-764 . 百度学术
其他类型引用(8)