Effects of combined application of chemical and organic fertilizer on soil bulk density, pH, and carbon and nitrogen metabolism in ratooning rice fields
-
摘要: 再生稻模式在我国粮食生产中具有重要地位, 研究化肥与有机肥配施对再生稻稻田土壤肥力性状的影响, 可为土壤肥力维持和再生稻高效生产提供科学依据。大田试验于2020—2021年进行, 各试验处理磷(P2O5)、钾(K2O)养分施用量分别为75 kg∙hm−2和150 kg∙hm−2, 氮(N)施用量200 kg∙hm−2 (不包括不施氮处理N0)。按化肥与有机肥施用情况分为5种基肥处理: 不施氮肥(N0); 基肥氮(N 75 kg∙hm−2)全部来自常规尿素(CK); 两种物料配施时, 基肥氮由2种物料各提供一半, 两种物料配施包括缓释尿素与常规尿素(T1)、生物炭与常规尿素(T2)、畜牧粪便与常规尿素(T3)。T2处理区在2021年不再施入生物炭, 施肥与CK处理相同。结果表明: T2和T3处理均可降低土壤容重, 以T2处理效果更佳; T2处理第1年, 土壤pH、有机碳和总氮显著提高; 在第1年头季稻分蘖期、抽穗期和再生稻抽穗期, 土壤无机氮含量分别以CK、T1和T3处理最高; T3和T2处理可提高土壤微生物量碳和微生物量氮含量, 其中在头季稻拔节期前T2处理的效果较好, 拔节期后以T3处理的效果较好。此外, 在T3处理下, β-葡萄糖苷酶和脲酶活性较高。比较而言, T3处理在降低土壤容重、提高有机碳和总氮的效果上次于T2处理, 在提高无机氮、微生物生物量和土壤酶活性上效果优于T2处理, 因此, 建议基肥采用畜牧粪便与化肥配施, 由畜牧粪便取代其中50%的化肥氮。Abstract: Ratooning rice has the advantages of saving production costs and improving grain yield. However, there are less reports on the effect of the combination of nitrogen fertilizer and organic materials on the soil in the ratooning rice mode. This study compared the effects of different nitrogen fertilizer combinations with organic materials on the soil properties of ratooning rice paddy fields to provide a reference for the sustainable development of ratooning rice models. A two-year (2020–2021) single-factor experiment was conducted in Jingzhou, Hubei, China. The experiment included five base fertilizer treatments: no nitrogen fertilizer (N0), base fertilizer nitrogen from conventional urea (CK), 50% base fertilizer nitrogen from conventional urea and 50% from slow-release urea (T1), biochar (T2), or animal manure (T3). The fertilization mode of T2 was only conducted in 2020, which was the same as that of CK in 2021; The fertilization modes of the other treatments were the same for both years. Compared with N0, the bulk density (BD) in the 0–20 cm soil layer at the heading stage of the main season rice and at the heading stage of the ratooning season rice decreased by 3.92%–6.15% in CK and by 4.38%–6.74% in T1, whereas the BD at the 0–40 cm soil layer during the whole growth period decreased by 9.82%–17.87% in T2 and by 9.48%–14.21% in T3. The order of soil pH in 2020 was T2>T3>N0>T1>CK. Compared with CK, pH in 2020 increased by 0.51−0.68 in T2. The order of soil pH in 2021 was T3>T2>N0>T1>CK. Compared with CK, the pH in 2021 increased by 0.14−0.32 in T3. The content of soil organic carbon (SOC) and total nitrogen (TN) in the 0–20 cm and 20–40 cm soil layers were T2>T3>T1>CK>N0. Compared with N0, other treatments increased the content of SOC and TN in the 0−20 cm soil layer by 4.79%−29.12% and 11.36%−28.49%, respectively; and they increased the contents of SOC and TN in the 20−40 cm soil layer by 5.43%−30.79% and 6.08%−20.02%, respectively. The contents of NH4+ and NO3− at the tillering and heading stages of the main season rice and the heading stage of the ratooning season rice were the highest under the CK, T1, and T3 treatments. Compared with N0, the contents of NH4+ and NO3− at the tillering stage of the main season rice increased by 131.26% and 153.59% under the CK treatment, respectively; the contents NH4+ and NO3− at the heading stage of the main season rice increased by 217.15% and 153.91%, respectively, under the T1 treatment; and the contents of NH4+ and NO3− at the heading stage of ratooning season rice increased by 246.76% and 126.70%, respectively, under the T3 treatment. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and urease (UR) activity in T2 and T3 were higher than in the other treatments. Compared with N0, MBC content increased by 18.29%−45.18% in T2 and 21.46%−46.10% in T3, MBN content increased by 49.25%−140.37% in T2 and 59.62%−142.57% in T3, and UR activity increased by 31.45%−225.04% in T2 and 60.83%−246.65% in T3. The β-glucosidase (BG) activity was the highest in the T3 treatment. Compared with N0, the BG activity increased by 21.26%−44.87% under the T3 treatment. A comparative analysis showed that the effect of animal manure on reducing BD and improving SOC and TN was similar to that of biochar, and its effect on improving inorganic nitrogen, microbial biomass, and soil enzyme activity was better than that of biochar. Therefore, animal manure and chemical fertilizers should be used as base fertilizers, and animal manure should replace 50% of the chemical fertilizer nitrogen.
-
生产成本增加、劳动力短缺、口粮需求增加和环境污染加剧是我国水稻(Oryza sativa L.)生产面临的重要问题[1]。再生稻是减少生产投入、提高复种指数和产量的稻作模式, 主要在我国种植一季水稻温光有余而种植双季水稻温光不足的地区种植[2]。与单季稻或双季稻相比, 再生稻具有更高的经济效益和环境收益, 因此受到广泛关注和研究[3]。目前, 再生稻的研究主要集中在品种改良和栽培耕作等对再生稻产量和品质的影响[4-5], 关于再生稻土壤的报道较少。土壤是植物生长的物质基础和水分养分吸收的介质, 健康的土壤是提高水稻产量和农业可持续的基石[6], 因此有必要对再生稻土壤展开系统的调查研究。
氮是植物生长所必需的营养元素[7]。尿素是最常用的氮肥类型, 具有氮含量高, 释放速率快, 不残留有害物质等优点[8]。然而, 长期施用常规尿素会导致土壤板结、酸化、养分失衡和稻米产量降低[9]。缓释尿素是通过在尿素颗粒表面涂抹树脂或硫磺等聚合物, 延缓尿素中氮的释放, 使其与水稻吸收效率相匹配, 促进水稻对氮的吸收, 提高水稻产量, 减少无机氮对土壤的负面影响[10]。畜牧粪便有机肥和生物炭有机肥作为基肥施用, 不仅可以替代部分氮素, 而且可提高土壤中碳、磷、钾等元素含量, 改善土壤质量[11-12]。关于缓释尿素、生物炭和畜牧粪便对稻田土壤的影响已有大量报道, 但主要在单/双季稻模式中。
再生稻由于特殊的管理模式, 土壤与单/双季稻不同, 如: 1)再生稻模式在再生季无法耕作, 导致土壤受到更长时间的自然压实和头季稻机械收获时的机械压实, 土壤容重比传统耕作下单/双季稻更大; 2)头季稻—再生稻全生育期更长, 土壤长期淹水使土壤化学环境与单/双季稻存在差异; 3)头季稻秸秆只能覆盖还田, 这与单/双季稻秸秆伴随耕作还田存在差异; 4)再生稻模式水肥用量也与单/双季稻不同。以上不同稻作模式间的差异势必导致氮肥类型对土壤影响的结果存在差异。因此, 不同氮肥类型对单/双季稻的结果在再生稻模式上并不能一概而论。有必要系统地比较不同类型氮肥对再生稻土壤物理、化学和微生物性状以及土壤酶活性的影响。本研究在湖北江汉平原展开大田试验, 以未施氮肥为空白对照, 研究了4种类型氮肥对再生稻系统土壤容重、pH、有机碳和总氮含量、无机氮形态、微生物碳和微生物氮含量、β-葡萄糖苷酶和脲酶活性的影响, 为再生稻绿色生态可持续发展提供理论依据。
1. 材料与方法
1.1 试验地点与材料
试验地点位于湖北省荆州市长江大学试验基地(112°8′19′′E, 30°21′19′′N)。该地区属于亚热带季风气候, 年日照时数1500~1900 h, 年平均气温16.5 ℃, 无霜期242~263 d, 年降雨量1100~1300 mm, 年平均降雨量为1094.5 mm。土壤类型属于灰潮土, 试验前0~20 cm土壤的沙土∶壤土∶黏土=27.5∶58.4∶14.1, pH 5.83, 0~20 cm土壤有机质21.15 g∙kg−1、总氮1.86 g∙kg−1、总磷0.55 g∙kg−1、总钾3.58 g∙kg−1、碱解氮79.42 mg∙kg−1、有效磷48.24 mg∙kg−1、速效钾112.23 mg∙kg−1, 20~40 cm土壤有机质14.82 g∙kg−1、总氮1.35 g∙kg−1。试验开始前的种植模式为水稻-小麦(Triticum aestivum L.)轮作。
水稻品种为‘Y两优911’ (具有较强的再生能力, 头季稻+再生季稻全生育期为205~220 d)。缓释尿素、生物炭和畜牧粪便有机肥均由中化现代农业有限公司提供。缓释氮肥为树脂包膜缓释尿素, 含氮量42%, 释放期90 d。生物炭是由水稻秸秆在抽屉式厌氧炭化炉中500 ℃下厌氧热解1 h制成, 其中总碳(C) 452.2 g∙kg−1, 总氮(N) 7.5 g∙kg−1, 总磷(P2O5) 3.5 g∙kg−1, 总钾(K2O) 15.2 g∙kg−1, pH 9.72, 密度 0.23 g∙cm−3。畜牧粪便采用条垛式堆肥, 先将85%牛粪与15%秸秆(鲜重)混匀, 然后堆置成高1~1.2 m、宽2.5 m、长20 m的条垛状。每2 d翻堆一次, 使物料持续混匀并保持堆体呈好氧状态, 该过程大约为20 d; 后停止翻堆, 堆体进入后熟阶段(20~30 d), 即获得试验中所用的条垛堆肥, 含总碳(C) 342.5 g∙kg−1、总氮(N) 15.3 g∙kg−1、总磷(P2O5) 11.7 g∙kg−1、总钾(K2O) 12.5 g∙kg−1, pH为7.58, 条堆肥的容重为0.71 g∙cm−3。
1.2 试验设计
试验于2020年和2021年水稻生长季进行, 采取单因素试验设计。各试验处理的磷(P2O5)、钾(K2O)养分用量均分别为75 kg∙hm−2和150 kg∙hm−2, 除不施氮处理(N0)外的各处理氮(N)施用总量为200 kg∙hm−2, 其中基肥N施用量为75 kg∙hm−2, 按化肥与有机肥施用情况分为5种基肥处理: 不施氮肥处理(N0)、基肥N全部来自常规尿素处理(CK); 两种物料配施时, 基肥N由2种物料各提供一半, 分别是缓释尿素与常规尿素(46% N)配施处理(T1), 生物炭与常规尿素配施处理(T2), 畜牧粪便与常规尿素配施处理(T3)。上述试验材料中, 生物炭中N、P2O5、K2O含量分别为0.75%、0.35%和1.52%, 常规尿素与缓释尿素含N均为46%, 畜牧粪便N、P2O5、K2O含量分别为1.53%、1.18%和1.26%。试验中, 磷肥全部做基肥施用, 钾肥按照基肥∶穗肥=1∶1施用; 追肥N来自尿素, 在头季稻分蘖期、抽穗期和灌浆初期分别施N 45 kg∙hm−2、30 kg∙hm−2和50 kg∙hm−2。T2和T3处理中, 生物炭和畜牧粪便含有一定N、P2O5和K2O, 其用量按需要配施的基肥N用量确定, 相应地P2O5和K2O不足部分用过磷酸钙(含12% P2O5)和氯化钾(含60% K2O)补充。由于生物炭在土壤中存在时间较长, 仅在2020年施用了生物炭, 2021年在2020年T2处理区不再施入生物炭, 施肥同CK。具体施肥方式见表1。试验小区为矩形(4 m×12 m), 小区之间用覆有薄膜的田埂隔开, 以防止串肥。每处理设3次重复。
表 1 2020年肥料施用方式Table 1. Application method of fertilizer in 2020kg∙hm−2 处理
Treatment肥料类型
Type of fertilizer头季稻基肥
Base fertilizer for main season rice头季稻分蘖肥
Tiller fertilizer for main season rice头季稻穗肥
Spike fertilizer for main season rice再生稻促芽肥
Shoot fertilizer for ratoon season riceN0 过磷酸钙
Superphosphate625 (P2O5 75) — — — 氯化钾
Potassium chloride125 (K2O 75) — 125 (K2O 75) — CK 常规尿素
Conventional urea163 (N 75) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate625 (P2O5 75) — — — 氯化钾
Potassium chloride125 (K2O 75) — 125 (K2O 75) — T1 缓释尿素
Slow-release urea89 (N 37.5) — — — 常规尿素
Conventional urea82 (N 37.5) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate625 (P2O5 75) — — — 氯化钾
Potassium chloride125 (K2O 75) — 125 (K2O 75) — T2 生物炭
Biochar5000 (N 37.5, P2O5 17.5, K2O 76) — — — 常规尿素
Conventional urea82 (N 37.5) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate478 (57.5) — — — 氯化钾
Potassium chloride— — 125 (K2O 75) — T3 畜牧粪便
Livestock manure2450 (N 37.5, P2O5 29, K2O 31) — — — 常规尿素
Conventional urea82 (N 37.5) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate383 (P2O5 46) — — — 氯化钾
Potassium chloride73 (K2O 44) — 125 (K2O 75) — N0、CK、T1、T2和T3分别表示不施氮肥处理、常规尿素处理、缓释尿素与常规尿素配施处理、生物炭与常规尿素配施处理和畜牧粪便与常规尿素配施处理。2021年N0、CK、T1和T3处理与2020年一致, 2021年T2处理与CK一致。N0, CK, T1, T2 and T3 are no nitrogen fertilizer application treatment, conventional urea applicaiton treatment, slow-release urea and conventional urea combined application treatment, biochar and conventional urea combined application treatment, and livestock manure and conventional urea combined application treatment, respectively. The treatment N0, CK, T1 and T3 in 2021 are consistent with those in 2020, and the treatment T2 in 2021 is consistent with CK in 2020. 水稻于4月1日旱育秧, 5月5日人工移栽至大田, 8月15日收获头季稻, 10月15日收获再生稻。株行距为16 cm×30 cm, 每穴种植2株。稻田冬季空闲。水管理参照当地灌溉模式, 即一次中期排水(头季稻分蘖末期)和水稻收获前7 d排水。及时防控病虫草害, 避免产量损失。
1.3 样本收集与检测方法
在头季稻分蘖期、抽穗期和再生季稻抽穗期, 每个小区使用100 m3的标准切割环收集3个0~20 cm和3个20~40 cm土层的土壤样品, 土壤样品在105 ℃下烘干至恒重以确定容重(BD), 3个样品的平均值作为该小区容重[13]。
分别在2020年和2021年的头季稻和再生季稻收获后, 以及2021年水稻移栽前, 按照5点取样法在每个小区收集5个0~20 cm和5个20~40 cm土层的土壤样品, 同一土层5个土壤样品混合成一个土壤样品用于测定土壤有机碳(SOC)和总氮(TN)。按照5点取样法在每个小区取表层(0~20 cm)土壤样品, 其中, 在头季稻分蘖期和抽穗期和再生季水稻抽穗期取土样用于测定氨态氮和硝态氮含量, 在头季稻分蘖期、拔节期、抽穗期、灌浆期和再生季水稻的拔节期、抽穗期和灌浆期取土样用于测定土壤酸碱度(pH)。参考《土壤农业化学分析方法》进行土壤化学性质分析[14]。pH使用LD-QX6580土壤氧化还原电位仪现场原位测定。土壤有机质含量采用重铬酸钾氧化-浓硫酸外加热法测定, 通过转换系数1.724计算有机质。土壤总氮含量采用凯氏法消解、AA3型流动分析仪测定。2 mol∙L−1 KCl浸提土壤, 用Alliance-Futura Ⅱ连续流动分析仪测定铵态氮和硝态氮。
在头季稻分蘖期、抽穗期、灌浆期和再生季水稻抽穗期、灌浆期, 按照5点取样法在每个小区收集5个0~20 cm土层的土壤样品用于测定土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)含量, β-葡萄糖苷酶(BG)和脲酶(UR)活性。土壤微生物生物量测定采用氯仿熏蒸提取法, 微生物生物量碳、氮的换算系数分别取0.38和0.45[15]。土壤BG活性采用对硝基酚比色法测定, 以4-对硝基-β-D-吡喃葡萄糖苷为底物, 土壤于37 ℃条件下培养1 h, 在410 nm处比色测定[16]。UR活性采用苯酚钠-次氯酸钠比色法, 以尿素为底物, 37 ℃培养箱培养2 h, 在625 nm处比色测定[16]。
1.4 数据分析
使用SPSS 21.0分析数据, 采用独立样本t检验比较2020年和2021年间数据差异, 采用方差分析比较不同氮素处理间数据差异, 通过新复极差法(Duncan法)进行多重比较, 采用双因素方差分析比较年份和氮素处理的交互作用对数据的影响, 两个显著性水平分别设定为P<0.05和P<0.01。用Origin Pro 2018软件作图。
2. 结果与分析
2.1 化肥与有机肥配施对土壤容重的影响
由表2可知, 与N0相比, CK和T1显著降低了头季稻和再生稻抽穗期0~20 cm土层容重, CK处理下分别降低3.91%和6.15%, T1处理下分别降低4.38%和6.71%; T2和T3显著降低了3个时期两个土层的土壤容重, 在T2处理下降低9.82%~17.87%, T3处理下降低9.48%~14.21%。CK和T1处理始终显著高于T2和T3处理。在头季稻分蘖期, T2处理下土壤容重显著低于T3处理; 头季稻抽穗期, T2处理2021年0~20 cm土层、2020年和2021年20~40 cm土层容重显著低于T3处理; 再生稻抽穗期, T2处理2020年0~20 cm土层容重显著低于T3处理。
表 2 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤不同土层的容重变化Table 2. Variation of soil bulk densities of different layers at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021g∙cm−3 年份
Year处理
Treatment头季稻分蘖期
Tillering stage of main season rice头季稻抽穗期
Heading stage of main season rice再生稻抽穗期
Heading stage of ratoon rice0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 2020 N0 1.003±0.016a 1.301±0.042a 1.063±0.014a 1.344±0.024a 1.092±0.015a 1.374±0.017a CK 0.993±0.009a 1.296±0.010a 1.013±0.006b 1.317±0.024a 1.027±0.008b 1.392±0.039a T1 1.013±0.011a 1.311±0.029a 1.008±0.033b 1.308±0.027a 1.016±0.017b 1.363±0.028a T2 0.829±0.009c 1.161±0.033c 0.876±0.012c 1.152±0.021c 0.916±0.015d 1.191±0.026b T3 0.896±0.023b 1.226±0.045b 0.952±0.030c 1.217±0.021b 0.970±0.010c 1.208±0.022b 2021 N0 1.014±0.013a 1.293±0.058a 1.061±0.014a 1.371±0.025a 1.104±0.019a 1.428±0.023a CK 1.030±0.028a 1.290±0.047a 1.028±0.016b 1.338±0.029ab 1.034±0.038b 1.411±0.013a T1 0.999±0.015a 1.308±0.035a 1.023±0.024b 1.302±0.011b 1.032±0.013b 1.390±0.067a T2 0.865±0.007c 1.178±0.014c 0.869±0.009d 1.180±0.012d 0.940±0.001c 1.179±0.037b T3 0.928±0.017b 1.217±0.010b 0.971±0.016c 1.223±0.015c 0.955±0.006c 1.194±0.026b 年份 Year (Y) ns ns ns ns ns ns 处理 Treatment (T) ** ** ** ** ** ** 年份×处理 Y×T ns ns ns ns ns ns 各处理介绍见表1。同列不同字母表示同年不同处理间差异显著(P<0.05)。“ns”和“**”分别表示无差异和P<0.01水平显著差异。Details of the treatments can be seen in Table 1. Different letters in the same column indicate significant differences among treatments in the same year (P<0.05). “ns” and “**” indicate no difference and significant differences at P<0.01 level, respectively. 2.2 化肥与有机肥配施对土壤pH的影响
由图1可知, 随着水稻的生长, 各处理土壤pH先增加后降低。平均而言, 从水稻移栽至分蘖期和分蘖期至拔节期, pH分别增加0.29和0.15, 从拔节期至再生稻收获, 持续下降0.39。在2020年, 除头季稻分蘖期T2与T3间pH无显著差异外, T2处理下pH始终显著高于其他处理。除头季抽穗期T3处理高于N0外, T3与N0间pH无显著差异, 且T3处理下pH始终显著高于T1和CK (2020年再生稻拔节期除外)。N0处理下pH始终高于T1和CK, 并在头季稻拔节期和灌浆期以及再生稻灌浆期差异显著。T1和CK间pH差异始终不显著。具体来说, T2处理下pH始终最高(6.50), T3次之(6.12), N0再次之(6.02), T1 (5.90)和CK (5.89)最低。除T2外, 2021年其他处理间规律与2020年一致。在2021年T2处理下pH介于T3和N0之间。
图 1 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤pH各处理介绍见表1。S1~S7分别表示头季稻分蘖期、头季稻拔节期、头季稻抽穗期、头季稻灌浆期、再生稻拔节期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S7 indicate the tillering stage, jointing stage, heading stage and filling stage of the main season rice, and jointing stage, heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).Figure 1. Soil pH at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 20212.3 化肥与有机肥配施对土壤有机碳和土壤总氮含量的影响
由图2可知, T2和T3处理下土壤有机碳含量(SOC)显著高于其他处理, T2和T3间SOC在2021年头季稻和再生稻收获期无显著差异, 在2020年头季稻收获至2021年水稻移栽前, T2处理下SOC高于T3。2020年再生稻收获期, N0处理下20~40 cm土层SOC显著低于CK和T1; 2021年头季稻收获期, N0处理下SOC显著低于T1, 其余时期N0、T1和T2间SOC无显著差异。整体而言, 0~20 cm和20~40 cm)>T土层SOC的大小顺序均为T2 (27.04 mg∙kg−1和18.70 mg∙kg−1)>T3 (25.34 mg∙kg−1和17.09 mg∙kg−1)>T1 (22.31 mg∙kg−1和15.47 mg∙kg−1)>CK (21.94 mg∙kg−1和15.07 mg∙kg−1)>N0 (20.94 mg∙kg−1和14.30 mg∙kg−1)。
图 2 2020年和2021年不同施肥处理下再生稻模式不同生育期不同土层有机碳和总氮含量各处理介绍见表1。S1~S5分别表示2020年头季稻收获期、2020年再生稻收获期、2021年头季稻移栽前、2021年头季稻收获期和2021年再生稻收获期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represents the main season rice harvest stage in 2020, the ratooning rice harvest stage in 2020, before the main season rice transplanting in 2021, the main season rice harvest stage in 2021 and the ratooning rice harvest stage in 2021, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).Figure 2. Soil organic carbon and total ntirogne contents in different soil layers at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 20210~20 cm土层, 在2020年头季稻收获至2021年水稻移栽前, T2处理总氮含量(TN)显著高于其他处理; 2021年头季稻和再生稻收获期, T2处理下TN显著高于除T3以外的其他处理; 2020年再生稻收获期, T3、CK和T1间TN无显著差异; 2021年头季稻移栽前T3与T1间、2020年再生稻收获期T3与CK和T1间均无显著差异, 其他时期T3处理下TN显著高于CK和T1处理; 各时期CK和T1处理间TN始终无显著差异, N0处理下TN始终显著最低。20~40 cm土层, 各处理间的大小顺序总体与0~20 cm土层一致。整体而言, 0~20 cm土层和20~40 cm土层TN的大小顺序为T2 (2.11 mg∙kg−1和1.50 mg∙kg−1)>T3 (2.01 mg∙kg−1和1.44 mg∙kg−1)>T1 (1.90 mg∙kg−1和1.38 mg∙kg−1)>CK (1.83 mg∙kg−1和1.33 mg∙kg−1)>N0 (1.64 mg∙kg−1和1.25 mg∙kg−1)。
2.4 化肥与有机肥配施对土壤无机氮的影响
由图3可知, 在2020年头季稻分蘖期, CK处理下铵态氮和硝态氮含量显著高于其他处理; 2020年T1和T3处理铵态氮和硝态氮含量显著高于T2处理。 2021年头季稻分蘖期T2处理下铵态氮含量显著高于T1和T3处理, 硝态氮含量顺序为T2>T1>T3, 且各处理间差异显著; N0处理下各生育期铵态氮和硝态氮含量显著低于其他处理。在头季稻抽穗期, 铵态氮和硝态氮含量顺序均为T1>T3>CK≈T2>N0; 再生稻抽穗期, 铵态氮含量顺序为T3>T1>CK≈T2>N0, 硝态氮含量顺序为T3≈T1>T2≈CK>N0。
图 3 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤无机氮含量各处理介绍见表1。S1~S3分别表示头季稻分蘖期、头季稻抽穗期和再生稻抽穗期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S3 indicate the tillering stage and heading stage of the main season rice, and the heading stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same gorwth stage (P<0.05).Figure 3. Soil inorganic nitrogen contents at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 20212.5 化肥与有机肥配施对土壤微生物生物量碳和生物量氮的影响
由图4可知, 土壤微生物生物量碳(MBC)和生物量氮(MBN)均随着水稻生育进程变化而变化。头季稻分蘖期至灌浆期, MBC和MBN分别平均下降0.66 mg∙g−1和0.62 mg∙g−1; 头季稻灌浆期至再生稻抽穗期, MBC和MBN分别平均增加0.27 mg∙g−1和0.05 mg∙g−1; 再生稻抽穗期至再生稻灌浆期, MBC和MBN分别平均下降0.13 mg∙g−1和0.29 mg∙g−1。
图 4 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤微生物生物量含量各处理介绍见表1。S1~S5分别表示头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represent the tillering stage, heading stage and filling stage of the main season rice, and the heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).Figure 4. Soil microbial biomass at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 20212020年, T2和T3的MBC始终显著高于其他处理, N0的MBC始终显著低于其他处理(头季稻抽穗期除外)。2020年头季稻分蘖期, T2的MBC显著高于T3, 头季稻抽穗期和灌浆期反之, 后两个生育期差异不显著。T1的MBC在头季稻灌浆期显著高于CK。
2020年, T2和T3的MBN显著高于其他处理, 除头季稻灌浆期外, T3的MBN显著高于T2。2021年, 头季稻分蘖期, T2的MBN显著高于其他处理; 头季稻抽穗期至再生稻灌浆期, T3的MBN显著高于其他处理。N0的MBN始终显著低于其他处理。
2.6 化肥与有机肥配施对土壤β-葡萄糖苷酶和脲酶活性的影响
由图5可知, 土壤β-葡萄糖苷酶(BG)活性随水稻生育进程变化与微生物生物量基本一致。头季稻分蘖期至灌浆期, BG活性平均下降8.36 g(pNP)∙g−1(soil)∙h−1, 头季稻灌浆期至再生稻抽穗期BG活性平均增加3.83 g(pNP)∙g−1(soil)∙h−1, 再生稻抽穗期至灌浆期, BG活性平均下降2.42 g(pNP)∙g−1(soil)∙h−1。T3的BG活性始终最高, N0的BG活性始终最低。2020年, 头季稻分蘖期至再生稻抽穗期, T1和CK间BG活性无显著差异; 再生稻灌浆期, T1的BG活性显著高于CK。2020年, 再生稻抽穗期和灌浆期T2的BG活性显著低于CK。2021年, 头季稻分蘖期和再生稻灌浆期, CK、T1和T2的BG活性无显著差异; 头季稻抽穗期, T1的BG活性显著高于T2; 头季稻灌浆期和再生稻抽穗期, T1的BG活性显著高于CK和T2。
图 5 2020年和2021年不同施肥处理下再生稻模式不同生 育期的土壤酶活性各处理介绍见表1。S1~S5分别表示头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represent the tillering stage, heading stage and filling stage of the main season rice, and the heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).Figure 5. Soil enzyme activity at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021N0处理下土壤脲酶(UR)活性的变化规律与BG活性基本一致。而4个施氮处理下, 头季稻分蘖期至灌浆期UR活性平均增加3.84 μg(NH4+)∙g−1(soil)∙h−1, 但是头季稻灌浆期至再生稻灌浆期, UR活性降低0.85 μg(NH4+)∙g−1(soil)∙h−1。2020年和2021年, T2和T3的UR活性显著高于其他处理, 其中2020年头季稻抽穗期至再生稻抽穗期, T2的UR活性显著高于T3; 2021年, T3的UR活性始终显著高于T2。N0的UR活性基本上显著低于其他处理。2020年和2021年头季稻分蘖期T1的UR活性高于CK, 随后反之或二者间无显著差异。
3. 讨论
3.1 化肥与有机肥配施对土壤容重的影响
土壤容重是衡量土壤结构的重要指标, 反映了土壤的通透性[17]。本研究发现, T2和T3处理均显著降低了土壤容重, 这与之前的结论一致[9,18]。这主要是因为畜牧粪便和生物炭的密度均低于土壤。此外, 施用畜牧粪便和生物炭为土壤提供了大量碳源, 碳是微生物群落增殖的底物[19], 同时碳促进土壤之间的结合, 使分散的土壤颗粒形成团聚体[20], 微生物和团聚体可以维持土壤良好的结构和稳定性, 降低土壤容重[21]。生物炭降低土壤容重的效果优于畜牧粪便, 原因可能是生物炭的密度(0.1~0.3 g∙cm−3)比畜牧粪便(0.6~0.8 g∙cm−3)更低和提供的碳源更多有关。然而, 在再生稻抽穗期, 20~40 cm处容重在T2和T3处理间无显著差异, 原因可能是长时间的土壤自然压实增加了深层土壤处的容重, 掩盖了生物炭和畜牧粪便降低容重的作用[22]。此外, 由于长期淹水, 深层土壤处有机质分解缓慢, 限制了高碳投入对容重降低的效果[1]。施氮降低了头季稻和再生稻抽穗期0~20 cm处土壤容重, 原因可能是施氮促进了水稻根系发育, 以此降低土壤容重[8]。
3.2 化肥与有机肥配施对土壤化学性质的影响
土壤pH是影响土壤养分有效性的重要指标[23]。土壤pH随水稻生长进程呈先增加后降低的趋势。据报道, 淹水导致酸性土壤pH增加[24]。原因主要是土壤在淹水条件下, 厌氧形成的还原性碳酸铁和碳酸锰呈碱性, 增加了土壤pH[25]。此外, 淹水稀释了土壤电解质, 使更多阳离子进入溶液中, 提高了土壤pH[26]。土壤pH下降的原因主要是, 分蘖末期排水以控制无效分蘖和头季稻成熟期排水以便于收获, 使土壤短期处于氧化态, 降低了pH[27]。此外, 随着根系发育, 根系分泌的酸性物质增加, 使pH下降[28]。本研究发现, T2处理提高了土壤pH, 这与生物炭自身呈碱性有关。生物炭中含有大量的碳酸盐、结晶碳酸盐和−COO−等阴离子, 添加至土壤后可提高土壤pH[29]。T3处理提升土壤pH的效果仅次于生物炭, 原因可能是畜牧粪便自身的pH低于生物炭, 且施入土壤总量低于生物炭。畜牧粪便通过碱性阳离子和碳酸根离子来中和土壤酸性[30]。
SOC是体现土壤肥力和碳固存能力的重要指标[31]。本研究中, T2处理下SOC始终最高, T3处理次之, 碳投入总量差异是主要原因(在2020年, 施入生物炭的处理投入碳2.26 t∙hm−2, 施入畜牧粪便的处理投入碳0.84 t∙hm−2, 其他处理无碳投入)。值得注意的是, T3处理下, 2021年再次投入畜牧粪便后, 消除了生物炭和畜牧粪便间SOC差异。与N0相比, CK和T1处理提高了SOC, 原因可能是施氮增加了水稻秸秆和根系的生物量, 提高了还田的秸秆和土壤残根中的碳总量[20]。但该现象并未在所有时期和土层处体现, 原因可能是施氮一方面增加了还田的碳总量, 另一方面促进了秸秆和残根的分解, 导致土壤中有机碳被分解而从土壤中流失[18]。
TN、铵态氮和硝态氮含量体现了土壤氮素水平及生物有效性。本研究中, 5个时期的TN顺序均为T2>T3>T1>CK>N0。氮的释放速率和土壤保留能力可能是主要原因。生物炭和畜牧粪便中的部分氮以有机的形式存在, 释放速度比无机氮更慢, 因此有机肥处理的土壤中储存的氮更多[18,32]。而与生物炭相比, 畜牧粪便中不稳定碳和来源于畜牧排泄物的营养元素更多, 比生物炭容易分解, 有机氮更容易转化为无机氮而流失[31,33]。同时, 生物炭的碳氮比大于畜牧粪便, 生物炭分解时可能吸收土壤无机氮维持分解代谢活动, 阻碍了无机氮流失到环境[34], 同时限制了秸秆分解, 进而通过减少热量释放和降低脲酶活性减缓尿素速率, 减少氮的损失[35]。此外, 生物炭由于其疏松多孔的结构, 将氮吸附在植物根际的生物炭孔隙中, 减少了氮的浸出和无机氮的流失[9,18]。缓释尿素中氮的释放速率与水稻养分吸收速率更协同一致, 减少了氮的流失, 同时促进了水稻对氮的吸收, 提高了还田的秸秆和残根中氮总量[36]。
与CK处理相比, T2处理第1年降低了铵态氮含量, 这与之前的结论一致[37], 主要归因于生物炭的高碳氮比提高了土壤对氮的固定作用和高表面积的生物炭对氮的吸附作用[12]。然而, 与CK相比, T2处理第1年并未显著降低头季稻抽穗期和再生稻抽穗期硝态氮含量, 原因可能是生物炭降低土壤容重, 增加土壤透气性, 提高了土壤pH, 同时, 50%基施尿素和追施的尿素为硝化作用提供充足的铵态氮底物, 多方面共同促进了硝化作用。此外, 生物炭还通过限制反硝化作用增加硝态氮含量[37]。T2处理第2年, 铵态氮和硝态氮含量与CK处理间无显著差异, 说明生物炭对氮的吸附和固定作用随着时间推移而降低。CK处理下头季稻分蘖期的铵态氮和硝态氮含量最高, 原因主要是常规尿素做基肥和分蘖肥施用, 在分蘖期快速释放大量无机氮。随后CK处理下铵态氮和硝态氮含量低于T1和T3, 原因主要是常规尿素中氮源提前释放。T1处理下头季稻抽穗期的铵态氮和硝态氮含量高于T3处理, 在再生稻抽穗期反之。原因主要与畜牧粪便中有机氮的释放周期比缓释尿素中树脂包膜缓释氮素长有关。
3.3 化肥与有机肥配施对土壤微生物生物量碳和生物量氮的影响
5种施肥处理下, MBC和MBN随水稻生长进程的动态变化基本一致。在2020年, 头季稻分蘖期MBC和MBN最高, 原因可能是基肥和分蘖肥的施用以及根系的高渗出率为微生物活动提供了底物[38]。头季稻抽穗期和灌浆期, MBC和MBN持续下降, 原因可能是土壤中某些元素的缺乏, 导致微生物群落增殖存在阈值[39]。此外, 分蘖末期晒田以控制无效分蘖, 导致土壤从厌氧状态过渡到有氧状态, 这对微生物群落, 尤其是厌氧微生物群落造成破坏[40]。再生稻抽穗期, MBC和MBN增加, 原因可能是头季稻秸秆直接覆盖还田, 在适宜的温度和水分条件下迅速分解, 为微生物增殖和活动提供了底物[41]。随后, 由于底物的消耗, MBC和MBN在再生稻灌浆期降低。2年间MBC和MBN的周年变化一致。
在所有测定的时期, T2和T3处理下MBC始终高于其他处理, 这与前人结论一致[42], 有机肥为微生物群落增殖提供更多的碳源和其他养分[43]。2020年头季稻分蘖期T2处理下的MBC高于T3, 头季稻抽穗期和灌浆期反之。生物炭处理投入的碳含量更多, 生物炭中不稳定碳在进入土壤后快速分解[11], 使生物炭处理下头季稻分蘖期MBC高于畜牧粪便。随后生物炭中顽固碳缓慢分解, 延缓了有机碳向微生物碳的转化[44], 使生物炭处理下头季稻抽穗期和灌浆期MBC低于畜牧粪便。而2021年, 新一轮的畜牧粪便投入使畜牧粪便处理下的MBC始终高于生物炭。在头季稻生长中后期, T1处理下的MBC显著高于CK, 原因可能是缓释尿素促进了根系发育, 使水稻根系分泌物更多[10], 为微生物提供更多的底物。
T2和T3处理始终提高MBN, 这与之前的结论一致[6-7, 45-47]。生物炭的多孔隙结构和吸附性使氮和营养元素吸附在生物炭表面, 创造一个养分密集且通透性高的微环境, 为微生物群落增殖提供空间和底物, 促进各类微生物增殖[7]。刘杰云等[48]在土壤室内培养试验中发现, 生物炭在培养初期提高了MBN, 但在后期由于氮素限制, 降低了MBN含量。本研究以及之前的研究, 均为生物炭结合无机肥料同时施用, 尿素为土壤提供了大量氮源。Huo等[49]对187篇文章进行Meta分析发现, 畜牧粪便增加了土壤38.5%的MBN, 主要通过改善土壤团聚体结构, 增加速效氮和pH实现。本研究发现, 在2020年, T3处理提高MBN的效果高于T2处理。原因可能是畜牧粪便通过动物肠道消化处理后, 细菌真菌的丰富性和生物多样性高于经高温处理的生物炭[50-51]。在2021年, 头季稻分蘖期T2处理的MBN高于T3处理, 原因主要是常规尿素在分蘖期快速分解释放无机氮源, 随后生物炭处理下MBN始终低于畜牧粪便, 但高于常规尿素处理, 说明生物炭改善土壤的效果在第2年仍能提高MBN。分蘖期, CK处理下MBN高于T1, 随后反之或无显著差异。这与常规尿素中氮素集中在分蘖期释放、缓释尿素氮素释放滞后有关[10]。
3.4 化肥与有机肥配施对土壤酶活性的影响
BG的动态变化基本与MBC和MBN一致, 这与之前的结论一致[52], 酶的合成同样需要底物和适宜的土壤环境, 此外, 微生物对葡萄糖和无机氮的需求调控BG和UR的活性[40]。4种施氮处理下, UR活性的动态变化主要与氮肥施用时间有关, 基肥、分蘖肥和灌浆肥(再生稻促芽肥)施用后在头季稻分蘖期和再生稻抽穗期检测UR活性, 导致大量无机氮释放而限制了UR活性[53]。
与CK相比, T2降低了土壤BG活性, 这与之前部分报道结论一致[6,54-55], 但也存在不一致的报道[56]。本研究发现生物炭提高了土壤pH, 据报道, pH从4.5增加至8.5时, BG活性降低[57]。Chen等[6]观察到添加生物炭后, 土壤呼吸降低, 导致BG活性下降。Bhattacharjya等[54]认为生物炭的吸附作用改变或阻断了BG合成底物的结合位点。然而, Ali等[56]发现生物炭与无机肥料结合提高了BG活性, 原因可能是无机肥料为酶合成提供了底物, 并促进生物炭分解。本研究同样是生物炭与无机肥料结合做基肥, 因此生物炭改变pH可能是本研究中生物炭降低BG活性的主要原因。但T2处理第2年, BG活性与常规尿素处理间差异不显著。T3处理下BG活性最高, 这与前人的结论一致[30,47]。畜牧粪便可以降低土壤容重和增加土壤养分含量, 为BG活性提供良好的土壤环境和养分来源[58]; 另一方面, 畜牧粪便施入和秸秆还田刺激了参与碳水解的BG的活性, 加速土壤有机物的降解[57]。在头季稻分蘖期CK处理下BG活性高于T1, 而拔节期和抽穗期反之, 这与尿素的释放速率有关。
T2和T3处理提高了土壤UR活性, 这与之前的结论一致[7,47], 有机肥能够增加土壤养分含量、降低土壤容重, 多孔隙的土壤也能为微生物的生存提供适宜的载体, 促进微生物增殖[38], 加速了土壤中碳氮代谢, 刺激酶活性的提高[19]。几项土壤培养试验发现, 添加生物炭可以提高土壤中多种氮利用酶活性, 提高氮转化[59-61]。一关于141份报道的Meta分析显示, 添加畜牧粪便可提高UR活性23.5%[62]。本研究中, 在2020年, T2提高UR活性的效果高于T3, 这与Yang等[12]的结论一致。原因可能是生物炭中有机物分解需要氮, 而且生物炭会加速铵态氮的硝化作用, 增加了土壤中无机氮的消耗, 刺激了UR活性[37]。T2处理第2年, UR活性介于T3和CK之间, 说明生物炭施用第2年仍有提高UR活性的作用。T1处理下头季稻分蘖期的UR活性高于CK, 原因可能是大量常规尿素施入土壤后, 快速水解释放大量铵态氮, 限制了土壤UR活性[53], 随着缓释尿素的分解, 缓释尿素处理下UR活性低于常规尿素。
4. 结论
1)生物炭与常规尿素配施处理和畜牧粪便与常规尿素配施处理均降低了土壤容重, 其中生物炭效果更佳。
2)生物炭与常规尿素配施处理和畜牧粪便与常规尿素配施处理均提高了土壤pH、SOC和TN含量, 其中仅第1年施用生物炭时, 生物炭提高土壤pH、SOC和TN含量的效果高于畜牧粪便。
3)头季稻分蘖期、抽穗期和再生稻抽穗期土壤的无机氮含量分别以常规尿素处理、缓释尿素与常规尿素配施处理和畜牧粪便与常规尿素配施处理最高。
4)生物炭与常规尿素配施处理和畜牧粪便与常规尿素配施处理下MBC较高, 畜牧粪便与常规尿素配施处理下MBN最高。
5)畜牧粪便与常规尿素配施处理下β-葡萄糖苷酶活性最高, 畜牧粪便与常规尿素配施处理和生物炭与常规尿素配施处理下脲酶活性较高。
综合分析表明, 畜牧粪便与常规尿素配施可以降低土壤容重, 提高土壤pH、SOC和TN含量, 延长土壤无机氮的供应, 提高土壤微生物量和酶活性, 对再生稻模式下土壤肥力维持有积极作用。
-
图 1 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤pH
各处理介绍见表1。S1~S7分别表示头季稻分蘖期、头季稻拔节期、头季稻抽穗期、头季稻灌浆期、再生稻拔节期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S7 indicate the tillering stage, jointing stage, heading stage and filling stage of the main season rice, and jointing stage, heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).
Figure 1. Soil pH at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021
图 2 2020年和2021年不同施肥处理下再生稻模式不同生育期不同土层有机碳和总氮含量
各处理介绍见表1。S1~S5分别表示2020年头季稻收获期、2020年再生稻收获期、2021年头季稻移栽前、2021年头季稻收获期和2021年再生稻收获期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represents the main season rice harvest stage in 2020, the ratooning rice harvest stage in 2020, before the main season rice transplanting in 2021, the main season rice harvest stage in 2021 and the ratooning rice harvest stage in 2021, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).
Figure 2. Soil organic carbon and total ntirogne contents in different soil layers at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021
图 3 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤无机氮含量
各处理介绍见表1。S1~S3分别表示头季稻分蘖期、头季稻抽穗期和再生稻抽穗期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S3 indicate the tillering stage and heading stage of the main season rice, and the heading stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same gorwth stage (P<0.05).
Figure 3. Soil inorganic nitrogen contents at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021
图 4 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤微生物生物量含量
各处理介绍见表1。S1~S5分别表示头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represent the tillering stage, heading stage and filling stage of the main season rice, and the heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).
Figure 4. Soil microbial biomass at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021
图 5 2020年和2021年不同施肥处理下再生稻模式不同生 育期的土壤酶活性
各处理介绍见表1。S1~S5分别表示头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represent the tillering stage, heading stage and filling stage of the main season rice, and the heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).
Figure 5. Soil enzyme activity at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021
表 1 2020年肥料施用方式
Table 1 Application method of fertilizer in 2020
kg∙hm−2 处理
Treatment肥料类型
Type of fertilizer头季稻基肥
Base fertilizer for main season rice头季稻分蘖肥
Tiller fertilizer for main season rice头季稻穗肥
Spike fertilizer for main season rice再生稻促芽肥
Shoot fertilizer for ratoon season riceN0 过磷酸钙
Superphosphate625 (P2O5 75) — — — 氯化钾
Potassium chloride125 (K2O 75) — 125 (K2O 75) — CK 常规尿素
Conventional urea163 (N 75) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate625 (P2O5 75) — — — 氯化钾
Potassium chloride125 (K2O 75) — 125 (K2O 75) — T1 缓释尿素
Slow-release urea89 (N 37.5) — — — 常规尿素
Conventional urea82 (N 37.5) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate625 (P2O5 75) — — — 氯化钾
Potassium chloride125 (K2O 75) — 125 (K2O 75) — T2 生物炭
Biochar5000 (N 37.5, P2O5 17.5, K2O 76) — — — 常规尿素
Conventional urea82 (N 37.5) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate478 (57.5) — — — 氯化钾
Potassium chloride— — 125 (K2O 75) — T3 畜牧粪便
Livestock manure2450 (N 37.5, P2O5 29, K2O 31) — — — 常规尿素
Conventional urea82 (N 37.5) 98 (N 45) 65 (N 30) 108 (N 50) 过磷酸钙
Superphosphate383 (P2O5 46) — — — 氯化钾
Potassium chloride73 (K2O 44) — 125 (K2O 75) — N0、CK、T1、T2和T3分别表示不施氮肥处理、常规尿素处理、缓释尿素与常规尿素配施处理、生物炭与常规尿素配施处理和畜牧粪便与常规尿素配施处理。2021年N0、CK、T1和T3处理与2020年一致, 2021年T2处理与CK一致。N0, CK, T1, T2 and T3 are no nitrogen fertilizer application treatment, conventional urea applicaiton treatment, slow-release urea and conventional urea combined application treatment, biochar and conventional urea combined application treatment, and livestock manure and conventional urea combined application treatment, respectively. The treatment N0, CK, T1 and T3 in 2021 are consistent with those in 2020, and the treatment T2 in 2021 is consistent with CK in 2020. 表 2 2020年和2021年不同施肥处理下再生稻模式不同生育期土壤不同土层的容重变化
Table 2 Variation of soil bulk densities of different layers at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021
g∙cm−3 年份
Year处理
Treatment头季稻分蘖期
Tillering stage of main season rice头季稻抽穗期
Heading stage of main season rice再生稻抽穗期
Heading stage of ratoon rice0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 2020 N0 1.003±0.016a 1.301±0.042a 1.063±0.014a 1.344±0.024a 1.092±0.015a 1.374±0.017a CK 0.993±0.009a 1.296±0.010a 1.013±0.006b 1.317±0.024a 1.027±0.008b 1.392±0.039a T1 1.013±0.011a 1.311±0.029a 1.008±0.033b 1.308±0.027a 1.016±0.017b 1.363±0.028a T2 0.829±0.009c 1.161±0.033c 0.876±0.012c 1.152±0.021c 0.916±0.015d 1.191±0.026b T3 0.896±0.023b 1.226±0.045b 0.952±0.030c 1.217±0.021b 0.970±0.010c 1.208±0.022b 2021 N0 1.014±0.013a 1.293±0.058a 1.061±0.014a 1.371±0.025a 1.104±0.019a 1.428±0.023a CK 1.030±0.028a 1.290±0.047a 1.028±0.016b 1.338±0.029ab 1.034±0.038b 1.411±0.013a T1 0.999±0.015a 1.308±0.035a 1.023±0.024b 1.302±0.011b 1.032±0.013b 1.390±0.067a T2 0.865±0.007c 1.178±0.014c 0.869±0.009d 1.180±0.012d 0.940±0.001c 1.179±0.037b T3 0.928±0.017b 1.217±0.010b 0.971±0.016c 1.223±0.015c 0.955±0.006c 1.194±0.026b 年份 Year (Y) ns ns ns ns ns ns 处理 Treatment (T) ** ** ** ** ** ** 年份×处理 Y×T ns ns ns ns ns ns 各处理介绍见表1。同列不同字母表示同年不同处理间差异显著(P<0.05)。“ns”和“**”分别表示无差异和P<0.01水平显著差异。Details of the treatments can be seen in Table 1. Different letters in the same column indicate significant differences among treatments in the same year (P<0.05). “ns” and “**” indicate no difference and significant differences at P<0.01 level, respectively. -
[1] CHU G, WANG Z Q, ZHANG H, et al. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation[J]. Food and Energy Security, 2015, 4(3): 238−254 doi: 10.1002/fes3.66
[2] WANG W Q, HE A B, JIANG G L, et al. Ratoon rice technology: a green and resource-efficient way for rice production[J]. Advances in Agronomy, 2020, 159: 135−167
[3] FIROUZI S, NIKKHAH A, AMINPANAH H. Rice single cropping or ratooning agro-system: which one is more environment-friendly?[J]. Environmental Science and Pollution Research, 2018, 25(32): 32246−32256 doi: 10.1007/s11356-018-3076-x
[4] ZHENG C, WANG Y C, YUAN S, et al. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system[J]. The Crop Journal, 2022, 10(1): 280−285 doi: 10.1016/j.cj.2021.06.003
[5] ZHANG S L, HUANG G F, ZHANG J, et al. Genotype by environment interactions for performance of perennial rice genotypes (Oryza sativa L./Oryza longistaminata) relative to annual rice genotypes over regrowth cycles and locations in southern China[J]. Field Crops Research, 2019, 241: 107556 doi: 10.1016/j.fcr.2019.107556
[6] CHEN J, SUN X, LI L, et al. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar[J]. European Journal of Soil Science, 2016, 67(6): 857−867 doi: 10.1111/ejss.12388
[7] SUN J L, LI H B, WANG Y N, et al. Biochar and nitrogen fertilizer promote rice yield by altering soil enzyme activity and microbial community structure[J]. GCB Bioenergy, 2022, 14(12): 1266−1280 doi: 10.1111/gcbb.12995
[8] XIAO M, ZANG H, GE T, et al. Effect of nitrogen fertilizer on rice photosynthate allocation and carbon input in paddy soil[J]. European Journal of Soil Science, 2019, 70: 786−795
[9] OLADELE S, ADEYEMO A, AWODUN M, et al. Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in southwestern Nigeria[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8(3): 295−308 doi: 10.1007/s40093-019-0251-0
[10] YANG Y, LIU B M, YU L X, et al. Nitrogen loss and rice profits with matrix-based slow-release urea[J]. Nutrient Cycling in Agroecosystems, 2018, 110(2): 213−225 doi: 10.1007/s10705-017-9892-4
[11] JI M Y, WANG X X, USMAN M, et al. Effects of different feedstocks-based biochar on soil remediation: a review[J]. Environmental Pollution, 2022, 294: 118655 doi: 10.1016/j.envpol.2021.118655
[12] YANG Z B, YU Y, HU R J, et al. Effect of rice straw and swine manure biochar on N2O emission from paddy soil[J]. Scientific Reports, 2020, 10(1): 1−11 doi: 10.1038/s41598-019-56847-4
[13] 黄国勤, 杨滨娟, 王淑彬, 等. 稻田实行保护性耕作对水稻产量、土壤理化及生物学性状的影响[J]. 生态学报, 2015, 35(4): 1225−1234 HUANG G Q, YANG B J, WANG S B, et al. Effects of 8 years of conservational tillage on rice yield and soil physical, chemical and biological properties[J]. Acta Ecologica Sinica, 2015, 35(4): 1225−1234
[14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000 LU R K. Methods of Soil Agrochemical Analysis[M]. China Agriculture Science and Technology Press, 2000
[15] 罗佳琳, 赵亚慧, 于建光, 等. 麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1582−1591 LUO J L, ZHAO Y H, YU J G, et al. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582−1591
[16] 宋鹏, 杨振中, 万祖梁, 等. 水稻秸秆秋季湿耙还田对土壤酶活性和养分的影响[J]. 生态学杂志, 2023, 42(3): 569−576 SONG P, YANG Z Z, WAN Z L, et al. Effects of rice straw returned to the fields by wet harrow in autumn on soil enzyme activities and nutrients[J]. Chinese Journal of Ecology, 2023, 42(3): 569−576
[17] 孟祥宇, 冉成, 刘宝龙, 等. 秸秆还田配施氮肥对东北黑土稻区土壤养分及水稻产量的影响[J]. 作物杂志, 2021(3): 167−172 doi: 10.16035/j.issn.1001-7283.2021.03.025 MENG X Y, RAN C, LIU B L, et al. Effects of straw returning to field and nitrogen application on soil nutrients and rice yield in black soil areas of northeast China[J]. Crops, 2021(3): 167−172 doi: 10.16035/j.issn.1001-7283.2021.03.025
[18] IQBAL A, HE L, KHAN A, et al. Organic manure coupled with inorganic fertilizer: an approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency[J]. Agronomy, 2019, 9(10): 651 doi: 10.3390/agronomy9100651
[19] CARLOS F S, SCHAFFER N, MARCOLIN E, et al. A long-term no-tillage system can increase enzymatic activity and maintain bacterial richness in paddy fields[J]. Land Degradation & Development, 2021, 32(6): 2257−2268
[20] WANG X, QI J Y, ZHANG X Z, et al. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system[J]. Soil and Tillage Research, 2019, 194: 104339 doi: 10.1016/j.still.2019.104339
[21] BU R Y, REN T, LEI M J, et al. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system[J]. Agriculture, Ecosystems & Environment, 2020, 287: 106681
[22] JIANG X, WRIGHT A L, WANG J, et al. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates[J]. Catena, 2011, 87(2): 276−280 doi: 10.1016/j.catena.2011.06.011
[23] 曹巧滢, 詹曜玮, 丁尔全, 等. 分次施用碱性肥料对土壤pH及土壤镉有效性的影响[J]. 农业环境科学学报, 2022, 41(7): 1483−1489 doi: 10.11654/jaes.2021-0252 CAO Q Y, ZHAN Y W, DING E Q, et al. Influences of alkaline fertilizer application on soil pH and soil available cadmium[J]. Journal of Agro-Environment Science, 2022, 41(7): 1483−1489 doi: 10.11654/jaes.2021-0252
[24] DING C F, DU S Y, MA Y B, et al. Changes in the pH of paddy soils after flooding and drainage: modeling and validation[J]. Geoderma, 2019, 337: 511−513 doi: 10.1016/j.geoderma.2018.10.012
[25] 刘杰云, 张文正, 沈健林, 等. 水分管理及生物质炭对稻田土壤含水率及pH值的影响[J]. 灌溉排水学报, 2021, 40(7): 44−50 doi: 10.13522/j.cnki.ggps.2020385 LIU J Y, ZHANG W Z, SHEN J L, et al. The combined effects of water management and biochar amendment on soil water content and pH of paddy soil[J]. Journal of Irrigation and Drainage, 2021, 40(7): 44−50 doi: 10.13522/j.cnki.ggps.2020385
[26] XIAO W D, YE X Z, ZHU Z Q, et al. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.)[J]. Science of the Total Environment, 2021, 788: 147786 doi: 10.1016/j.scitotenv.2021.147786
[27] LI H L, YU Y, GUO J X, et al. Dynamics of the rice rhizosphere microbial community under continuous and intermittent flooding treatment[J]. Journal of Environmental Management, 2019, 249: 109326 doi: 10.1016/j.jenvman.2019.109326
[28] LUO W X, MA J W, MUHAMMAD A K, et al. Cadmium accumulation in rice and its bioavailability in paddy soil with application of silicon fertilizer under different water management regimes[J]. Soil Use and Management, 2021, 37(2): 299−306 doi: 10.1111/sum.12679
[29] SEYFFERTH A L, AMARAL D, LIMMER M A, et al. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice[J]. Environment International, 2019, 128: 301−309 doi: 10.1016/j.envint.2019.04.060
[30] DAS S, JEONG S T, DAS S, et al. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy[J]. Frontiers in Microbiology, 2017, 8: 1702 doi: 10.3389/fmicb.2017.01702
[31] BENBI D K, BRAR K, TOOR A S, et al. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system[J]. Pedosphere, 2015, 25(4): 534−545 doi: 10.1016/S1002-0160(15)30034-5
[32] DONG D, FENG Q B, MCGROUTHER K, et al. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field[J]. Journal of Soils and Sediments, 2015, 15(1): 153−162 doi: 10.1007/s11368-014-0984-3
[33] LIU Y X, YAO S, WANG Y Y, et al. Bio- and hydrochars from rice straw and pig manure: inter-comparison[J]. Bioresource Technology, 2017, 235: 332−337 doi: 10.1016/j.biortech.2017.03.103
[34] 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526−535 doi: 10.3724/SP.J.1011.2013.00526 PAN J L, DAI W A, SHANG Z H, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 526−535 doi: 10.3724/SP.J.1011.2013.00526
[35] SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512−518 doi: 10.1016/j.scitotenv.2018.12.450
[36] OLADELE S O, ADEYEMO A J, AWODUN M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J]. Geoderma, 2019, 336: 1−11 doi: 10.1016/j.geoderma.2018.08.025
[37] NGUYEN T T N, XU C Y, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis[J]. Geoderma, 2017, 288: 79−96 doi: 10.1016/j.geoderma.2016.11.004
[38] SINGH C, TIWARI S, GUPTA V K, et al. The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils[J]. Catena, 2018, 171: 485−493 doi: 10.1016/j.catena.2018.07.042
[39] WEI L, GE T D, ZHU Z K, et al. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers[J]. Agriculture, Ecosystems & Environment, 2022, 326: 107798
[40] PANDEY D, AGRAWAL M, BOHRA J S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation[J]. Soil and Tillage Research, 2014, 136: 51−60 doi: 10.1016/j.still.2013.09.013
[41] ZHANG J, HANG X N, LAMINE S M, et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system[J]. Agriculture, Ecosystems & Environment, 2017, 250: 37−43
[42] ZHAO Z H, GAO S F, LU C Y, et al. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice–wheat rotation system[J]. Soil and Tillage Research, 2021, 212: 105071 doi: 10.1016/j.still.2021.105071
[43] YUAN G Y, HUAN W W, SONG H, et al. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system[J]. Soil and Tillage Research, 2021, 209: 104958 doi: 10.1016/j.still.2021.104958
[44] YANG X C, LIU D P, FU Q, et al. Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model: regulation mechanism of biochar[J]. Environmental Research, 2022, 206: 112303 doi: 10.1016/j.envres.2021.112303
[45] WANG M H, FU Y X, WANG Y, et al. Pathways and mechanisms by which biochar application reduces nitrogen and phosphorus runoff losses from a rice agroecosystem[J]. Science of the Total Environment, 2021, 797: 149193 doi: 10.1016/j.scitotenv.2021.149193
[46] OLADELE S, ADEYEMO A, ADEGAIYE A, et al. Effects of biochar amendment and nitrogen fertilization on soil microbial biomass pools in an Alfisol under rain-fed rice cultivation[J]. Biochar, 2019, 1(2): 163−176 doi: 10.1007/s42773-019-00017-2
[47] IQBAL A, LIANG H, MCBRIDE S G, et al. Manure applications combined with chemical fertilizer improves soil functionality, microbial biomass and rice production in a paddy field[J]. Agronomy Journal, 2022, 114(2): 1431−1446 doi: 10.1002/agj2.20990
[48] 刘杰云, 邱虎森, 汤宏, 等. 生物质炭对双季稻水稻土微生物生物量碳、氮及可溶性有机碳氮的影响[J]. 环境科学, 2019, 40(8): 3799−3807 doi: 10.13227/j.hjkx.201901182 LIU J Y, QIU H S, TANG H, et al. Effects of biochar amendment on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in paddy soils[J]. Environmental Science, 2019, 40(8): 3799−3807 doi: 10.13227/j.hjkx.201901182
[49] HOU Q, NI Y M, HUANG S, et al. Effects of substituting chemical fertilizers with manure on rice yield and soil labile nitrogen in paddy fields of China: a meta-analysis[J]. Pedosphere, 2023, 33(1): 172−184 doi: 10.1016/j.pedsph.2022.09.003
[50] XIA Y H, CHEN X B, ZHENG S M, et al. Manure application accumulates more nitrogen in paddy soils than rice straw but less from fungal necromass[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107575
[51] HOU Q, LIN S, NI Y M, et al. Assembly of functional microbial communities in paddy soil with long-term application of pig manure under rice-rape cropping system[J]. Journal of Environmental Management, 2022, 305: 114374 doi: 10.1016/j.jenvman.2021.114374
[52] DOTANIYA M L, APARNA K, DOTANIYA C K, et al. Role of soil enzymes in sustainable crop production[M]//Enzymes in Food Biotechnology. Amsterdam: Elsevier, 2019: 569–589
[53] SAIKIA R, SHARMA S, THIND H S, et al. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system[J]. Ecological Indicators, 2019, 103: 383−394 doi: 10.1016/j.ecolind.2019.04.035
[54] BHATTACHARJYA S, CHANDRA R, PAREEK N, et al. Biochar and crop residue application to soil: effect on soil biochemical properties, nutrient availability and yield of rice (Oryza sativa L.) and wheat (Triticum aestivum L.)[J]. Archives of Agronomy and Soil Science, 2016, 62(8): 1095−1108
[55] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment, 2016, 571: 206−217 doi: 10.1016/j.scitotenv.2016.07.135
[56] ALI I, ADNAN M, ULLAH S, et al. Biochar combined with nitrogen fertilizer: a practical approach for increasing the biomass digestibility and yield of rice and promoting food and energy security[J]. Biofuels, Bioproducts and Biorefining, 2022, 16(5): 1304−1318 doi: 10.1002/bbb.2334
[57] GÜNAL E, ERDEM H, DEMIRBAŞ A. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures[J]. Archives of Agronomy and Soil Science, 2018, 64(14): 1963−1974 doi: 10.1080/03650340.2018.1471205
[58] WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology, 2017, 111: 65−72 doi: 10.1016/j.apsoil.2016.11.015
[59] YANG X, LIU J J, MCGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil[J]. Environmental Science and Pollution Research, 2016, 23(2): 974−984 doi: 10.1007/s11356-015-4233-0
[60] HUANG D L, LIU L S, ZENG G M, et al. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment[J]. Chemosphere, 2017, 174: 545−553 doi: 10.1016/j.chemosphere.2017.01.130
[61] KHAN M N, LI D C, SHAH A, et al. The impact of pristine and modified rice straw biochar on the emission of greenhouse gases from a red acidic soil[J]. Environmental Research, 2022, 208: 112676 doi: 10.1016/j.envres.2022.112676
[62] DU Y D, CUI B J, ZHANG Q, et al. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis[J]. CATENA, 2020, 193: 104617 doi: 10.1016/j.catena.2020.104617
-
期刊类型引用(15)
1. 孟愉欣,刘婉婷,王正文,王俊杰,陈新栋,王世林,曹文侠. 氮磷施肥对退化禾草混播草地生产力和土壤理化性质的影响. 生态学报. 2025(07): 3204-3217 . 百度学术
2. 胡春凤,黄世哲,刘春荣,张存柒,李素丽,李志刚. 糖厂滤泥炭基肥对柑橘土壤理化性质及叶片养分含量的影响. 中国土壤与肥料. 2025(03): 147-156 . 百度学术
3. 熊于斌,余顺平,杨娅,黄琳,俞海冰,汤利. 不同比例化肥减量配施有机肥对植烟土壤有机碳固存的影响. 中国生态农业学报(中英文). 2024(02): 262-272 . 本站查看
4. 田丽云,刘欢,盛海君. 有机肥部分替代化肥对培肥地力和水稻产量的影响. 江苏农业科学. 2024(04): 122-127 . 百度学术
5. 黄媛凤. 有机肥替代部分化肥对南方桉树人工林土壤肥力的影响. 现代农业科技. 2024(12): 88-90+102 . 百度学术
6. 金梅娟,王海候,顾俊荣,董明辉. “稻-羊肚菌”轮作下稻田消纳羊肚菌废弃物的减氮效应研究. 中国农学通报. 2024(20): 92-98 . 百度学术
7. 殷奥杰,张世文,周思雨,胡睿鑫,陈方可. 改性煤矸石对砂姜黑土物理结构及有机碳组分的影响. 农业环境科学学报. 2024(08): 1805-1814 . 百度学术
8. 肖柄政,郭兵,刘苹,高新昊,姚利,贾洪玉,孙涛,杜章留,赵自超. 粪肥部分替代氮肥对盐碱地冬小麦产量与土壤养分的影响. 山东农业科学. 2024(09): 157-163 . 百度学术
9. 韩鹏,刘环环,王立光,陶峰,康振宇,杨晓丽,宋亚辉,丁莉,杨志兵. 化肥减量及配施有机肥对冀花19号综合经济效益的影响. 四川农业大学学报. 2024(05): 986-991 . 百度学术
10. 徐晨瀛,胡启武,邹素珍,叶家飞,汪晓倩,薛文婧,廉欣,任琼,尧波. 鄱阳湖湿地剖面土壤碳氮磷化学计量比沿高程梯度的变化特征. 环境科学研究. 2024(11): 2514-2525 . 百度学术
11. 邵岩,刘名卉,王森杰,徐华清,李静,牛耕,马晓春,林雪冰,林威,郭晶鑫,郑晓伟. 外源菌剂加速好氧填埋初期稳定化速率及菌群演替分析. 环境科学研究. 2024(12): 2782-2791 . 百度学术
12. 李昉泽,黄占斌,毋振庆,门姝慧,刘洪超. 复合改良剂对粉煤灰土壤的改良效应研究. 煤炭加工与综合利用. 2023(07): 93-98 . 百度学术
13. 马雅莉,石长春,高荣,李剑,马存平,张锡唐,张晨晨,刘喜东,乔江波. 白于山区不同土层土壤密度的空间异质性. 东北林业大学学报. 2023(10): 86-91 . 百度学术
14. 黎日辉,钟晓敏,段鑫垚,颜亚赛,王琳,王华,李华. 极简化生态栽培模式对贵人香葡萄园土壤质量的影响. 河南农业科学. 2023(12): 127-135 . 百度学术
15. 邓帅帅,闫浩芳,张川,王国庆,张建云,梁少威,蒋建辉. 灌溉量与减氮配施有机肥模式对温室黄瓜及土壤的影响. 农业工程学报. 2023(19): 93-102 . 百度学术
其他类型引用(20)