Research progress of rural regional system carbon effect from the perspective of Dual Carbon
-
摘要: 乡村是国土空间的重要组成部分, 乡村减排增汇是实现双碳目标的关键举措。乡村碳效应包括碳排放效应和碳汇效应, 因核算范畴、方法、指标等不同, 各研究结果间差异较大, 尚未达成一致结论。本文基于人地关系地域系统理论构建乡村碳循环体系, 使用Meta分析方法综述乡村碳效应定量研究成果, 以期为形成乡村空间碳效应的系统认知提供参考。结果表明: 1)农业生产碳排放占乡村碳排放总量的20%, 作物种植和禽畜养殖碳排放分别占农业碳排放的30%和70%。少施1 t氮肥可减排9.526 t CO2, 相当于节约9555 kWh电, 可用于生产27 t大米; 减少1%的牛羊数量可减少4.48%的养殖业碳排放。2)乡村居民生活碳排放占乡村碳排放总量的80%, 其碳减排潜力高于农业生产; 燃煤占直接碳排放的80%, 若将1%煤炭消费替换为生物质能, 乡村生活将减排3624.8万t CO2, 节电3636 kWh。3)1990—2022年间, 我国乡村净碳汇呈增长态势, 乡村年均净碳汇50 025.8万t, 相当于节约7.36亿 t 标准煤, 123亿元固碳成本。建议增加新型长效肥料研发投资, 推广种养一体化生态农业模式, 加大低碳生活理念宣传力度, 推进乡村数字化能源系统建设, 以充分发挥乡村减排增汇潜力。Abstract: As an important constituent of national land space, rural carbon emission reduction and sink increase are crucial for achieving the Dual Carbon goal. The rural carbon effect involves carbon emissions and sinks, and the estimation results vary widely between studies, with no consistent conclusions owing to different accounting scopes, methods, indicators, and other factors. First, this study constructed a rural carbon cycle system based on the human-earth system theory. Second, a meta-analysis was used to integrate previous quantitative studies on rural carbon effects and estimate the overall effect size. Finally, factors influencing the rural carbon effect were summarized and suggestions for rural governance were proposed. This study aims to provide a reference for a quantitative understanding of the carbon effect of the rural regional system. The results show that 1) carbon emissions from agricultural production account for approximately 20% of the total rural carbon emissions, while carbon emissions from agriculture account for 10.37% of the total average annual carbon emissions in China, with approximately 30% originating from crop cultivation and approximately 70% from livestock farming. Fertilizer application accounts for 58.23% of crop cultivation carbon emissions, whereas 67.40% of livestock farming carbon emissions originats from animal enteric fermentation. Applying 1 t less nitrogen fertilizer can reduce carbon emissions by 9.526 t CO2, which is equivalent to an electricity saving of 9555 kWh and can be used to produce 27 t of rice. Improving nitrogen use efficiency by 1% conserves 375 000 t of raw coal, and reducing the number of cattle and sheep by 1% can reduce carbon emissions from livestock farming by 4.48%. 2) Approximately 80% of rural carbon emissions originates from residential living, which has a higher carbon reduction potential than agricultural production. Nearly 65% of residential living carbon emissions are indirectly generated, with housing construction accounting for 45.32%. Coal burning contributes to approximately 80% of direct carbon emissions, and replacing coal consumption by 1% with biomass energy can reduce residential living carbon emissions by 36 248 000 t CO2, corresponding to an electricity saving of 3636 kWh. Additionally, in the process of urbanization, the cost of eliminating 91.54 million tons of increased carbon emissions from a 1% rural-to-urban population shift would account for at least 6.1 billion Yuan. 3) Between 1990 and 2022, the net carbon sink of rural China assumed a growth trend, and the average annual rural net carbon sink was 500 258 200 t·a−1, equivalent to saving 736 million tons of standard coal and 12.3 billion Yuan in carbon sequestration costs. Net rural carbon emissions in China increased from 1990 to 2022; however, the carbon sequestration potential of farmland protection cultivation has not yet been fully exploited. Increasing the rural environmental governance level by 2% using emerging technologies can reduce the carbon emissions from rural agricultural production by 2%. Therefore, it is proposed to increase investment in the research and development of new long-acting fertilizers, promote an ecological agriculture model that integrates planting and breeding, enhance efforts to publicize the low-carbon living concept, and advance the construction of rural digital energy systems to fully utilize the potential for rural emission reduction and sink increase.
-
二氧化碳、甲烷等温室气体排放导致全球气候变化、极端气候事件频发, 严重威胁全球可持续发展[1]。我国是世界第一大碳排放国, 2020年我国提出力争于2030年前达到峰值, 2060年前实现碳中和, 为应对全球变暖贡献中国力量。2022年10月, 党的二十大再次强调生态优先、节约集约、绿色低碳的发展理念, 明确提出推动形成绿色低碳的生产方式和生活方式的发展要求。
乡村占我国国土面积的94%以上, 具备生产、生活、生态等多种功能, 兼有碳源、碳汇两类属性[2-3]。乡村以农业为本, 农业碳排放约占全球碳排放总量的30%[4]; 在我国, 乡村振兴战略的提出加快了农业现代化进程和乡村居民消费结构转型, 乡村农业生产和居民生活所需的能源消费增加, 乡村碳排放呈加速增长态势[5-6]。乡村亦被视为重要碳汇, WRI (World Resources Institute, 世界资源研究所)报告指出农业是唯一可能在短期内转化为净碳汇的国民经济部门, 农作物和土壤微生物的呼吸作用可以吸收大气二氧化碳, 若通过改善农业生产技术和作物种植模式等途径使农业碳汇年均增长4‰, 2035年全球变暖态势即可扭转[7-8]。推进乡村减排固碳, 是助力实现双碳目标的重要途径和乡村高质量发展的关键环节。
乡村碳效应包括乡村碳排放效应和乡村碳汇效应[9]。乡村碳排放效应源于农业生产活动和居民生活能源消费两方面, 由于缺少统一的核算标准, 采用不同计算范围、方法、指标等测算得到的乡村碳排放总量差异较大; 以2008年的测算结果为例, 采用能值转换法、排放参数法、农田碳排放综合核算法等不同方法, 乡村碳排放计算结果差别可达7568万t[10-14]。乡村生活碳排放包括直接碳排放和间接碳排放, 直接碳排放指电力、煤炭等能源商品消费所造成的碳排放, 通常使用碳排放系数法核算; 间接碳排放指居民衣食住行等行动造成的碳排放, 多使用投入产出模型分析[15-16]。当前, 以对比城乡居民生活碳排放差异及其变化特征为重点的研究相对丰富, 单独聚焦乡村生活碳排放的研究较少。快速城镇化进程中, 城乡居民生活直接碳排放差距缩小, 但间接碳排放差距扩大[17-19]。如果同时考虑直接和间接碳排放, 使用生命周期法和排放系数法计算得出的乡村生活碳排放变化趋势相反[20-21]。
碳汇指从大气中消除碳量的过程, 乡村碳汇效应主要依靠农业生产过程中的农作物固碳和农田土壤固碳[9, 22]。省域尺度尤其农业大省的乡村碳汇研究关注度较高, 而从宏观层面反映全国乡村碳汇情况的研究尚不充分。王喜等[23]、邢燕燕等[24]、吕斯涵等[25]分别测算了河南、陕西、山东等省份的农业碳汇; 就全国而言, 近几十年来我国乡村农业碳汇具有波动式增长的特征[26-27]。陈罗烨等[28]、杨果等[29]同时考虑了农业生产碳排放和农业碳汇, 但未将居民生活碳排放纳入核算范畴, 其研究结果仍不能全面反映我国乡村碳效应现状。
综上所述, 现有的乡村碳效应研究大都单独讨论乡村农业生产碳排放、居民生活碳排放或乡村农业碳汇, 鲜有研究将乡村生产、生活碳排放与乡村碳汇置于同一框架中进行分析。此外, 采取不同计算方法、指标等得出的乡村碳效应核算结果差异较大, 仍未达成一致结论。同时, 多数乡村碳效应研究在中小尺度进行, 基于宏观视角揭示我国乡村碳效应现状的研究较为欠缺。
鉴于此, 本文首先基于乡村地域系统理论构建涵盖乡村农业生产碳排放、居民生活碳排放、农业碳汇的乡村碳循环体系, 定性分析乡村人口、土地、产业与乡村碳效应间的相互作用机制。其次, 汇总现有的乡村碳排放和乡村农业碳汇定量研究结果, 使用Meta分析方法评价结果的差异性, 并合并得到综合效应量。最后, 归纳乡村碳效应的主要影响因素及其影响机制, 整合乡村减排增汇措施, 提出“双碳”目标导向下的乡村治理建议。研究可以从系统视角定量认知乡村地域碳效应, 对乡村地区探索低碳发展模式、制定低碳发展策略具有科学参考。
1. 理论基础与研究方法
1.1 乡村地域碳效应理论认知
乡村地域系统是在特定乡村范围内, 由人文、经济、资源、环境相互作用构成的、具有一定结构、功能、区际联系的复杂开放系统, 为系统分析乡村碳效应提供理论视角[30]。依据核心要素的差异, 乡村地域系统可划分为农业系统、村庄系统、乡域系统、城镇系统等子系统, 各子系统通过物质、能量、信息的交换产生紧密联系, 成为相互依存的有机整体[31]。
农业系统内, 牲畜养殖和作物种植等农业生产活动最为活跃[32]。动物体内的瘤胃微生物发酵作用和动物粪便处理均会产生CH4, 乡村牲畜养殖造成的碳排放全球占比近15%, 是碳排放的主要来源之一[33]。作物种植过程中化肥、农药、农膜的生产与使用, 农业机械燃油和农田灌溉耗电, 翻耕导致的农田土壤暴露与侵蚀会使乡村农业碳排放增加[32]; 同时, 农作物光合作用和农田土壤中固碳自养微生物的同化作用能将大气CO2转化为有机碳, 将其固定在植物体和土壤内[34]。
村庄系统、乡域系统和城镇系统是人类衣、食、住、行等生活活动的集中地[15]。直接消耗炭、电力、天然气等化石能源的乡村居民行为包括烹饪、供暖、交通等, 间接造成碳排放的活动以食品、服装、文娱产品等商品为主[35]。与城市相比, 乡村居民生活直接碳排放核算通常不包括清洁卫生活动[20]。
碳循环是碳元素借助自然过程和人类活动在大气和土壤碳库中不断交换的过程[35]。由上文可知, 在乡村地域系统内, 作物种植、家畜养殖和居民生活碳排放是大气碳库的主要来源; 伴随作物生长, 大气碳库中CO2以有机碳的形式被固定在农田土壤和植物体内, 并在进行新一轮翻耕、灌溉等耕作活动后再次进入大气碳库, 碳元素在各乡村子系统间不断循环, 形成乡村碳循环体系(图1), 该体系可作为梳理、综述现有乡村碳效应研究的基本框架。
1.2 分析方法
Meta分析方法是对具有相似主题的实证研究结果进行定量合并的文献分析方法。对某特定主题研究而言, 各项独立研究的权重等于该研究样本量与全部同主题研究总样本量的比值, 各项研究结果的加权平均值即为该主题定量研究结果的合并值[36]。与传统的叙述性文献综述相比, Meta分析能有效减少综述者主观偏好对研究结论的影响, 提高综述结论的真实性和准确性[37]。本文使用Stata 17.0软件进行Meta分析与制图。
本文遵循文献检索—文献筛选—数据提取—结果分析的基本思路, 通过中国知网数据库, 利用“乡村碳排放” “农业碳排放” “乡村生活碳排放” “城乡居民生活碳排放” “农业碳汇” “乡村碳汇”等多个关键词检索文献, 并遵循如下标准进行筛选: 1)研究性质是定量的实证研究, 并以列表形式给出了具体核算结果; 2)研究区为中国, 研究尺度为全国尺度; 3)各研究核算的温室气体均包括CO2、CH4和NO2; 4)生活碳排放核算需包括直接和间接碳排放。最终, 乡村农业生产碳排放、居民生活碳排放和乡村农业碳汇各有16篇、5篇和6篇文献纳入Meta分析范畴(表1)。
表 1 中国乡村碳排放与碳汇相关文献的筛选结果Table 1. Screening results of literatures concerning rural carbon emission and carbon sink in China核算内容
Accounting content文献的作者, 出版时间
Author and publishing date of literature碳核算时期
Carbon accounting period节点年份数
Number of node years乡村农业生产碳排放
Carbon emission of rural agricultural production广义农业
(种植业和养殖业)
Generalized agriculture
(planting and breeding industry)田成诗等, 2021 TIAN C S, et al., 2021 2006—2016 3 江艳军等, 2019 JIANG Y J, et al., 2019 2008—2016 9 田云等, 2012 TIAN Y, et al., 2012 1995—2010 16 徐嘉琦, 2022 XU J Q, 2022 2004—2020 17 韦沁, 2018 WEI Q, 2018 1997—2015 19 张俊飚等, 2014 ZHANG J B, et al., 2014 2002—2011 4 狭义农业
(种植业)
Narrow agriculture
(planting industry)张颂心, 2021 ZHANG S X, 2021 2000—2018 19 杨雪, 2022 YANG X, 2022 2003—2020 18 黄晓慧等, 2022 HUANG X H, et al., 2022 2007—2019 13 贺青等, 2021 HE Q, et al., 2021 2003—2018 16 田云等, 2011 TIAN Y, et al., 2011 1993—2008 16 戴小文等, 2020 DAI X W, et al., 2020 2007—2016 10 养殖业
Breeding industry田云等, 2012 TIAN Y, et al., 2012 1995—2010 16 陈瑶, 2016 CHEN Y, 2016 2001—2013 13 姚成胜等, 2017 YAO C S, et al., 2017 2000—2014 15 胡向东等, 2010 HU X D, et al., 2010 2000—2007 8 张金鑫等, 2020 ZHANG J X, et al., 2020 1997—2017 21 苏旭峰等, 2022 SU X F, et al., 2022 2000—2018 19 乡村居民生活碳排放
Carbon emission of rural residential living朱琳, 2018 ZHU L, 2018 2005—2014 10 黄芳等, 2013 HUANG F, et al., 2013 2000—2010 11 张咪咪, 2011 ZHANG M M, 2011 1997—2007 11 凤振华等, 2010 FENG Z H, et al., 2010 2005—2007 3 万文玉等, 2017 WAN W Y, et al., 2017 2001—2013 13 乡村农业碳汇
Carbon sink of rural agriculture曹执令等, 2022 CAO Z L, et al., 2022 2007—2022 14 陈罗烨等, 2016 CHEN L Y, et al., 2016 1991—2011 21 田云等, 2015 TIAN Y, et al., 2015 2000—2012 4 张俊飚等, 2013 ZHANG J B, et al., 2013 1995—2010 16 李强等, 2022 LI Q, et al., 2022 2005—2020 16 李翠菊, 2012 LI C J, 2012 1990—2010 21 2. 乡村碳效应定量研究进展
2.1 乡村农业生产碳排放
乡村农业生产碳排放核算的界定形式可概括为两类: 1)仅核算种植业生产中化肥、农药、农膜、翻耕、农地灌溉和农机利用造成的碳排放; 2)以第1类为基础, 同时核算禽畜养殖过程中禽畜肠道发酵和粪便管理造成的碳排放。依据Meta分析方法对各类定量研究结果进行合并。结果表明, 1995—2020年我国年均乡村农业生产碳排放总量约53 552.13万t CO2 (若无特殊说明, 下文中碳排放均指CO2量)(图2), 已超美国农业碳排放峰值(WRI报告显示, 美国于2007年实现碳达峰, 当年农业碳排放总量约47 820万t)。OECD (Organization for Economic Co-operation and Development, 经济合作与发展组织)数据显示1949年以来我国年均碳排放总量约516 479万t, 由此可知农业(指本文核算的种植业与养殖业)碳排放占我国年均碳排放总量的10.37%。
1993—2020年我国种植业(狭义农业)年均碳排放总量为8128.14万t, 不同研究核算结果的差异可达3888.07万t (图2); 1995—2018年养殖业年均碳排放总量为18 286.55万t, 是种植业的2.25倍, 不同研究核算结果的差异为31 011.72万t, 约是种植业的8倍(图2)。参考国家统计局公开数据和现有研究成果[38-39], 我国种植业和养殖业碳排放强度(单位产值排放的CO2)分别为0.15 t(CO2)∙(万元)−1和0.88 t(CO2)∙(万元)−1, 碳减排成本分别为557.18元∙t−1和1352.80元∙t−1, 意味碳排放量每减少1万t, 种植业和养殖业总产值分别减少6.67亿元和1.14亿元, 减排成本各增加0.06亿元和0.14亿元, 碳减排贡献率(即碳减排量在全国碳排放总量中的占比)仅0.0002%, 而农业经济增长贡献率的降幅分别是其42.5倍和8.00倍。
禽畜养殖总产值低于种植业, 但单位产值碳排放量更多, 减排效果相同时减排成本更高, 因此, 为兼顾生态和经济效益, 应将减少禽畜养殖碳排放作为乡村农业生产碳减排的重点。如果仅考虑动物肠道发酵和粪便管理两类养殖业碳排放源, 动物肠道发酵年均碳排放占养殖业碳排放的67.40%, 为5428.82万t, 约为粪便管理碳排放的2倍(图3)。牛羊等反刍动物贡献了肠道发酵碳排放的66.71%, 即养殖业碳排放的44.96%[40-41], 减少牛羊养殖能有效减少肠道发酵碳排放。
种植业中, 化肥是最主要的碳排放源, 年均碳排放为4864.83万t, 占种植业碳排放的58.23%, 其次是农机(14.17%)、农膜(13.65%)和农药(9.64%)(图3)。如果考虑化肥的生产、运输、包装及使用全过程中的碳排放, 氮肥是单位施用量碳排放最多的化肥类型, 少施1 t氮肥能减排9.526 t CO2 (表2), 相当于节电9555 kWh (《中国能源统计年鉴2005》规定1 kWh=0.4 kg 标准煤; 国家发改委能源研究所规定1 kg 标准煤=2.493 kg CO2), 可用于生产27 t大米(国家电网报计算得到粮食生产耗电约为0.36 kWh∙kg−1)。如果氮肥施用总量不变, 其利用效率每提高1%, 可节约37.5万t原煤或2500万m3天然气[45]。减少化肥尤其氮肥施用量、提高利用率是种植业碳减排的重点内容。
表 2 化肥碳排放系数Table 2. Fertilizers carbon emission factorst(CE)∙t−1 化肥类型
Fertilizer type生产、运输、包装过程
Production, transportation and pack process使用过程
Utilization process总量
Gross来源
Source氮肥 Nitrogen fertilizer 7.759 1.767 9.526 [42-43] 磷肥 Phosphate fertilizer 2.332 0.733 3.065 [42-44] 钾肥 Potash fertilizer 0.660 0.550 1.210 [42-44] 对参考文献中的数据进行了单位换算, 统一为t(CE)∙t−1。数量关系为: CE=(12/44)×CO2, CE为碳当量。 The unit of data in the reference is converted to CE. The quantitative relationship is CE=(12/44)×CO2 and CE is carbon equivalent. 2.2 乡村居民生活碳排放
乡村居民生活年均碳排放总量约230 000万t, 约是乡村农业生产碳排放的4倍, 约占乡村碳排放总量的80% (图2); 其中, 为生产居民衣食住行所需商品和服务而造成的间接碳排放约占65%, 年均碳排放量约150 000万t, 电力等商品性能源消费造成的直接碳排放仅约占35% (图2)。快速城镇化进程中, 乡村居民的生活水平和需求不断变化, 使乡村间接碳排放构成更为复杂, 不同研究核算结果间的差异可达457 517.47万t (图2), 乡村生活碳排放主要来源/影响因素识别成为该主题研究的重点内容[15-20]。
乡村生活碳排放影响因素可归纳为经济增长、技术进步、能源结构调整、产业结构调整、城镇化5类。城镇化进程中, 人口由乡到城流动, 意味着经济社会发展水平不断提高, 乡村建设与生活需求多样化, 对能源的需求增加。乡村人口总数每减少1%, 乡村生活碳排放将增加3.98% (合9154万t CO2, 现有的技术水平下, 消除这部分新增温室气体至少需9亿美元[46], 约61亿元(依据国家外汇管理局公布的2022年人民币与美元平均汇率折算) (表3)。能源结构调整显著影响乡村碳排放, 将1%煤炭消费占比替换为生物质能, 将使乡村生活减排3624.8万 t CO2 (表3), 约节电3636 kWh。技术进步和产业结构调整有利于乡村碳减排, 能源利用效率和第一产业产值占比每增加1%, 乡村生活碳排放分别减少2.12%和1.99% (表3)。经济增长是乡村碳减排的主要阻碍因素, 乡村人均收入每增加1%, 乡村生活碳排放量增加0.43% (表3)。
表 3 乡村居民生活碳排放的影响因素及其作用效果Table 3. Influencing factors and their effects of rural residential living carbon emission影响因素
Influencing factor可量化指标
Quantifiable index每提升1%所带来的碳排放变化
Change in carbon emission resulting from 1% uplift (%)来源
Source经济增长 Economic growth 乡村居民人均收入 Income per rural inhabitant 0.43 [47] 技术进步 Technological progress 能源利用效率 Energy efficiency −2.12 [48] 能源结构 Energy structure 煤炭消费占比 Coal consumption percentage 0.26 [49] 生物质能消费占比 Biomass energy consumption percentage −1.50 [50] 产业结构 Industrial structure 第一产业产值占比 Primary industry output percentage −1.99 [51] 人口规模 Population size 乡村人口总数 Rural population −3.98 [47] 乡村生活碳排放的主要贡献者为住房(45.32%)、交通(20.45%)和烹饪(19.62%)[52]; 直接碳排放中煤炭的贡献量最大, 尤其在传统工业城市, 其占比接近80%(散煤76%, 蜂窝煤2%), 其次是电(10%)和液化气(5%)[53]。以生物质能替代煤炭, 降低交通和住房活动的碳排放强度将有利于减少乡村生活碳排放。有学者指出, 在当前应对气候变化的政策下, 2050年我国乡村生活碳排放量为104亿t, 且未出现下降趋势; 若提出乡村生活专门性减排政策, 实现低碳生产、消费、交易, 则乡村生活碳排放将于2046年达峰, 峰值为17亿t[54-55]。
2.3 乡村碳汇
由乡村碳汇核算研究合并结果可知, 1990—2022年间我国年均乡村净碳汇为50 025.82万t (图4), 相当于节约了7.36亿 t 标准煤, 123亿元固碳成本。不同的乡村碳汇研究虽然计算所得数值差异较大(差值可达33 148.51万t), 但反映的变化趋势相同, 长时间尺度下我国乡村碳汇呈增长态势(图5)。2004年起我国围绕农业现代化建设、农业发展方式转型、扶助农民增收等目标持续发力, 刺激农民生产积极性, 粮食作物产量持续增长, 2003年后乡村碳汇大幅增加(图5)。
我国是农业大国, 农作物固碳是乡村碳汇的重要组成部分, 三大主要粮食作物中, 水稻(Oryza sativa)固碳能力最强[4.32 t(C)∙hm−2], 每公顷水稻年均固定15.83 t大气CO2; 其次为玉米[Zea mays, 3.98 t(C)∙hm−2], 年均固定14.58 t大气CO2; 小麦固碳能力最弱, 每公顷小麦年均固定13.28 t大气CO2 (表4)。在考虑粮食作物生态效益的同时不应忽视其经济效益, 每公顷玉米的年均固碳量为水稻的92%, 投入成本仅为水稻的64%, 意味着若均抵消1万t大气CO2, 与水稻相比种植玉米可节约5万元生产成本。
表 4 中国主要粮食作物年均碳汇量及碳投入价值Table 4. Average annual carbon sink and carbon input value of major grain crops in China作物
Crop固碳量
Carbon sequestration
[t(C)∙hm−2∙a−1]大气CO2吸收量
Absorption of atmospheric CO2
[t(C)∙hm−2∙a−1]碳投入价值
Carbon input value
[¥∙hm−2∙a−1]来源
Source小麦 Wheat 3.62 13.28 245 [56–57] 玉米 Maize 3.98 14.58 162 [56–57] 水稻 Rice 4.32 15.83 254 [56–57] 1)大气CO2吸收量=单位面积作物固碳量×作物种植面积; 2)面积数据来源于《2021年中国统计年鉴》; 3)碳投入价值指作物种植耗能和化肥、农药等生产资料使用造成的碳排放量与碳价格的乘积。1) Atmospheric CO2 absorption = carbon sequestration per unit area multiplied by crop area; 2) Crops area data from China Statistical Yearbook (2021). 3) Carbon input value refers to the multiplication of the total carbon emission caused by the consumption of energy (diesel, electricity, etc.) and production materials (fertilizers, pesticides, etc.) in the cultivation of crops and the price of carbon. 除作物自身的固碳能力外, 农田管理是影响乡村碳汇能力的重要方面。保护性耕作指能够增加土壤碳汇、减少水土流失并提高作物产量的耕作方式, 是农田管理固碳的主要途径[58]。国际层面, 若采取保护性耕作措施, 我国农田固碳速率为941 kg(C)∙hm−2∙a−1, 超过世界平均水平34.43%[59]。然而, 该固碳水平与发达国家相比仍有差距, 仅为美国的66.50% (表5); 北美保护性耕作农田面积全球占比60%, 是我国保护性耕作农田面积全球占比的10倍, 充分发挥保护性耕作的固碳潜力, 需适度扩大保护性耕作农田规模[59]。
表 5 不同估算条件下的乡村农田土壤碳汇潜力(中国、美国与全球)Table 5. Soil carbon sink potential of rural farmland under different assessment conditions (China, USA and world)研究区
Study area固碳潜力
Carbon sequestration potential
[108 t(C)∙a−1)]估算条件
Assessment condition来源
Source中国
China0.25~0.37 综合养分管理, 作物轮作及有效的保护系统
Comprehensive nutrient management, rotation of crops and effective protection system[60] 0.110~0.365 作物产量提高且作物残茬清除量减少
Crop yield increased and crop residue removal reduced[61] 0.325 50%的免耕以及50%秸秆还田
50% no-tillage and 50% straw returning[62] 0.16~0.20 保护性耕作和水土流失综合治理
Conserving cultivation and soil erosion comprehensive harness[63] 0.20~0.25 改善土壤管理和农田经营机制
Improving soil management and farmland management mechanism[64] 0.33 20世纪80年代农业生产条件
On the basis of agricultural production condition in the 1980s[65] 0.121~0.344 施氮与100%秸秆还田
Nitrogen fertilizer and 100% straw returning[66] 美国
USA0.75~2.08 RMP(资源管理计划)和优化土地利用
Resource Management Plans and land use optimization[67] 0.9~1.8 退耕还草
Restoring farmland to grassland[68] 0.6~0.7 IPCC(联合国政府间气候变化专门委员会)推荐方法
Intergovernmental Panel on Climate Change recommended methods[69] 全球
World4.0~8.0 RMP(资源管理计划)与保护性耕作
Resource Management Plans and conserving cultivation[70] 5.0~20.0 应用土壤管理新技术
Applying new soil management technologies[68] 3.0~15.0 土地利用/土地覆被变化研究和氮沉降
Land use/land cover change studies and nitrogen deposition[71] 国内层面, 保护性耕作措施类型可归纳为秸秆还田模式(改变地表覆被)、耕作模式(改变物理性质)和施肥模式(改变生化性质) 3类。实施秸秆还田措施的农田平均固碳速率最低, 为700.97 kg(C)∙hm−2∙a−1, 但粉碎翻压还田后农田土壤固碳速率仍达1740 kg(C)∙hm−2∙a−1 (表6)。我国地域面积广阔, 各自然地理区域的土壤类型和作物熟制不同, 相同耕作措施的实施效果区域差异显著。南方地区水稻土免耕水稻-小麦轮作农田土壤固碳速率为2333.71 kg(C)∙hm−2∙a−1, 华北地区砂壤土免耕一熟制玉米固碳速率是其6.17%, 仅为144 kg(C)∙hm−2∙a−1 (表6); 在西北地区, 深松可使农田土壤固碳速率达到1048.9 kg(C)∙hm−2∙a−1, 约为翻耕农田固碳速率的14倍(表6)。若混施有机肥化肥, 华中地区两熟制稻田土壤固碳率可达3120 kg(C)∙hm−2∙a−1 (表6), 是单施化肥最高值的2倍; 东北地区混施有机肥化肥后, 其农田土壤固碳率[489 kg(C)∙hm−2∙a−1]约为单施化肥的21倍(表6)。
表 6 不同农田管理措施下农田土壤固碳率的区域差异Table 6. Regional differences in soil carbon sequestration rate under various farmland management measures in China农田管理方式
Farmland management method具体措施
Concrete measure研究区
Study area土壤类别
Soil type作物熟制
Crop cropping system固碳率
Carbon sequestration
[kg(C)∙hm−2∙a−1]来源
Source秸秆还田模式
Straw returning pattern堆沤还田
Composting return华东地区
East China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system447.05 [72] 华中地区
Central China麦田土
Wheat soil小麦一熟制
Wheat single cropping system676.8 [73] 覆盖还田
Straw mulching return华东地区
East China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system118.63 [72] 华中地区
Central China麦田土
Wheat soil小麦一熟制
Wheat single cropping system410.4 [73] 华南地区
South China水稻土
Paddy soil水稻两熟制
Double rice cropping system906.8 [74] 东北地区
Northeast China中层黑土
Middle layer black soil玉米一熟制
Maize single cropping system770 [75] 西北地区
Northwest China黄壤
Yellow soil两年三熟制
Two-year triple cropping system160 [76] 过腹还田
Straw return after livestock digestion华东地区
East China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system604.44 [72] 华中地区
Central China麦田土
Wheat soil小麦一熟制
Wheat single cropping system758.4 [73] 炭化还田
Carbonization returning华南地区
South China水稻土
Paddy soil水稻两熟制
Double rice cropping system1118.2 [74] 粉碎翻压还田
Breaking and ploughing return东北地区
Northeast China中层黑土
Middle layer black soil玉米一熟制
Maize single cropping system1740 [75] 耕作模式
Cultivation
pattern翻耕
Plough tillage华北地区
North China潮褐土
Meadow cinnamon soil小麦-玉米两熟制
Wheat-maize cropping system615.5 [77] 南方地区
Southern China水稻土
Paddy soil水稻-小麦两熟制
Rice-wheat cropping system449.89 [78] 西北地区
Northwest China黑垆土
Black loessial soil小麦一熟制
Wheat single cropping system76.85 [79] 南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system1008 [74] 免耕
No-tillage华北地区
North China砂壤土
Sandy loam soil玉米一熟制
Maize single cropping system144 [80] 西北地区
Northwest China人为土
Anthropic soils小麦-玉米两熟制
Wheat-maize cropping system1090.7 [81] 华北地区
North China砂壤土
Sandy loam soil小麦一熟制
Wheat single cropping system410 [80] 华北地区
North China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system1137 [82] 华北地区
North China潮褐土
Meadow cinnamon soil小麦-玉米两熟制
Wheat-maize cropping system329.1 [77] 南方地区
Southern China水稻土
Paddy soil水稻-小麦两熟制
Rice-wheat cropping system2333.71 [78] 西北地区
Northwest China黑垆土
Black loessial soil小麦一熟制
Wheat single cropping system148.58 [79] 南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system888 [74] 旋耕
Rotary tillage西北地区
Northwest China人为土
Anthropic soils小麦-玉米两熟制
Wheat-maize cropping system877.2 [81] 耕作模式
Cultivation
pattern旋耕
Rotary tillage华北地区
North China潮褐土
Meadow cinnamon soil小麦-玉米两熟制
Wheat-maize cropping system1011.1 [77] 南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system1065.02 [74] 深松
Deep scarification西北地区
Northwest China人为土
Anthropic soil小麦-玉米两熟制
Wheat-maize cropping system1048.9 [81] 华北地区
North China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system959 [82] 施肥模式
Fertilization pattern单施化肥
Single application
of chemical
fertilizer南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system140 [83] 东北地区
Northeast China淋溶土
Alfisols— 23.5 [84] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system104.67 [85] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system76 [86] 南方地区
Southern China黄泥土
Yellow clayey soil水稻一熟制
Rice single cropping system950 [87] 南方地区
Southern China黄泥土
Yellow clayey soil水稻两熟制
Double rice cropping system620 [87] 南方地区
Southern China黄壤
Yellow soil玉米一熟制
Maize single cropping system839.05 [88] 华中地区
Central China水稻土
Paddy soil水稻两熟制
Double rice cropping system1525 [89] 西北地区
Northwest China壤土
Loam soil— 240.51 [90] 单施有机肥
Single application
of organic
fertilizer南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system100 [83] 东北地区
Northeast China淋溶土
Alfisols— 195.3 [84] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system1653 [86] 南方地区
Southern China黄壤
Yellow soil玉米一熟制
Maize single cropping system1300.48 [88] 西北地区
Northwest China壤土
Loam soil— 215.91 [90] 混施有机肥化肥
Mixed application
of organic and chemical fertilizers南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system170 [83] 东北地区
Northeast China淋溶土
Alfisols— 489 [84] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system564 [85] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system798 [86] 南方地区
Southern China黄泥土
Yellow clayey水稻一熟制
Rice single cropping system1090 [87] 南方地区
Southern China黄泥土
Yellow clayey水稻两熟制
Double rice cropping system990 [87] 南方地区
Southern China黄壤
Yellow soil玉米一熟制
Maize single cropping system1153.33 [88] 华中地区
Central China水稻土
Paddy soil水稻两熟制
Double rice cropping system3120 [89] 2.4 乡村减排增汇途径
农业系统中, 作物种植所需的化肥施用及家畜养殖是碳减排的重点领域, 若同步实现秸秆炭化、沼气化利用, 秸秆燃烧每年有28.13 t碳减排空间。在实现秸秆全量利用的基础上, 对其进行氨化处理并加入营养添加剂用于饲养家畜, 将家畜粪便直接排入水压式沼气池或进行堆肥处理可有效减少牲畜养殖过程中的碳排放。
村庄、乡域和城镇子系统内, 居民生活碳减排潜力大, 区域经济发展水平、城镇化水平和经济规模每扩大1%, 新增CO2排放量分别为3718.88万 t、1897.23万 t、959.81万 t; 推动农业科技进步, 提高农业对外开放度是减少碳排放, 充分发挥居民生活碳减排潜力的重要途径。截至2020年, 我国农业科技支出379.65亿元[91], 增加10亿元农业科技支出可减少2%的乡村农业生产碳排放(图2, 表7); 扩大农产品进口渠道, 使进口农产品在粮食总产量中的占比提高1%, 减少307.4万 t碳排放量(表7)。
表 7 中国乡村减排增汇措施及其效果Table 7. Measures and their effects of rural emission reduction and sink increase in China乡村地域系统
Rural regional system活动
Activity属性
Attribute减排增汇重点
Emission reduction and sink increase focus途径
Approach具体措施
Concrete measure减排效果
Emission
reduction effect增汇效果
Sink increase effect来源
Source农业系统
Agricultural system种植业
Planting industry碳源/碳汇
Carbon source/
carbon sink肥料施用
Fertilizer application使用生物炭
Using biochar15 t∙hm−2生物碳
15 t∙hm−2 Biochar1322.34
kg(CO2)∙hm−2∙a−116.88
g(C)∙kg−1[92] 添加抑制剂
Adding inhibitors施用硝化抑制剂
Application of nitrification inhibitors2.42
kg(N2O)∙hm−2228.5
kg(C)∙hm−2[93] 改用长效肥料
Switching to slow-acting fertilizer施用长效碳酸氢铵
Application of long-effect ammonium bicarbonate0.03
kg(CO2)∙kg−14.53
g(C)∙kg−1[94] 测土配方培肥
Soil testing formula fertilization施用控释肥
Application of controlled-release fertilizer13.26
μg(C)∙m−2∙h−1617
kg(C)∙hm−2[95] 农田管理
Farmland management水分管理
Water
management间歇灌溉
Intermittent irrigation2854.5
kg(CO2)∙hm−22526.6
kg(C)∙hm−2[96] 烤田处理
Drying treatment469.9
kg(CH4)∙hm−2∙a−10.24
t(C)∙hm−2∙a−1[96] 肥料控制
Fertilizer control氮肥减量施用
Reducing nitrogen application1034
kg(CO2)∙hm−2570
kg(C)∙hm−2[86] 品种选育控制
Variety breeding control种植杂交水稻
Planting hybrid rice13.93
mg∙m−2∙h−17.66
g∙m−2∙d−1[97-98] 燃烧秸秆转化
Converting burning straw秸秆炭化
Straw carbonization602.82
kg(CO2)∙kg−1∙a−1164.45
kg(CO2)∙kg−1∙a−1[99] 秸秆沼气化
Straw biogasification27 530
kg(CO2)∙kg−1∙a−1— [100] 养殖业
Breeding industry碳源
Carbon sink肠道发酵
Enteric fermentation沼气工程
Biogas project秸秆全量利用技术
Whole straw utilization1.2634 ×108
t(CO2)∙a−1— [101] 8 m3水压式沼气池
Hydraulic biogas digester1612 g(CO2)∙a−1 — [102] 提高饲料消化率
Increasing digestibility of feed使用舔砖或营养添加剂
Utilization of lick block or nutritional additivesCH4减排25%
25% reduction of CH4 emission— [103] 改善饲料质量
Improve feed quality秸秆氨化处理
Straw ammoniation treatment11.04 kg(CH4)∙head−1∙a−1 — [104] 农业系统
Agricultural system养殖业
Breeding industry碳源
Carbon sink肠道发酵
Enteric fermentation改善饲料质量
Improve feed quality饲喂青贮玉米秸秆
Silage corn straw as feed32.68
L(CH4)∙d−1— [104] 粪便管理
Manure management固体粪便利用
Solid manure utilization反应器式堆肥
Reactor composting33.27
g(CO2)∙kg−1— [105] 添加覆盖物
Mulching表面罩多孔渗水膜
Porous permeable membrane coverage0.42
g(C)∙m−3∙h−1— [106] 稻草覆盖粪便表面
Straw covering the surface of manure0.28
g(C)∙m−3∙h−1— [107] 村庄系统
Village system居民生活
Residential living碳源
Carbon source劳动力
Labor人力资源投入
Human resource input(地区总人口/地区GDP)提高1%
Ratio of regional population to GDP increased by 1%903.8 ×104 t(CO2)∙a−1 — [108] 乡域系统
Rural system城镇化
Urbanization(地区总人口/农村总人口)降低1%
Ratio of regional population to rural population decreased by 1%1897.23×104
t(CO2)∙a−1— [51] 城镇系统
Township system产业
Industry农业产业结构
Agricultural industrial structure(种植业产值/农林牧渔产值)降低1%
Ratio of planting industry output to agriculture, forestry, animal husbandry and fishery output decreased by 1%246.12×104
t(CO2)∙a−1— [51] 农业对外开放度
Agricultural openness degree(农产品进口量/粮食总产量)提高1%
Ratio of agricultural product imports to grain output increased by 1%307.4×104 t(CO2)∙a−1 — [109] 技术
Technology农业科技进步
Agricultural scientific and technological progress农业科技支出提高1%
Agricultural science and technology expenditure increased by 1 %491.66×104
t(CO2)∙a−1— [110] 农业机械化程度
Agricultural mechanization degree农业机械总动力降低1%
Total power of agricultural machinery reduced by 1%150.13×104
t(CO2)∙a−1— [51] 乡村环境治理水平
Rural environmental governance level(环境治理完成项目额/地区GDP)提高1%
Ratio of completed environmental governance projects to regional GDP increased by 1%487.98×104 t(CO2)∙a−1 — [111] 经济
Economy经济发展水平
Economic development level(地区GDP/地区总人口)降低1%
Ratio of regional GDP to regional population decreased by 1%3718.88×104 t(CO2)∙a−1 — [51] 经济规模
Economic scale地区GDP降低1%
Regional GDP decreased by 1%959.81×104 t(CO2)∙a−1 — [109] 乡村碳汇效应主要表现为作物生长和农田土壤固碳, 碳汇效果与农田管理模式密切相关。此外, 乡村环境治理水平每提高2%, 碳排放量减少975.96万t, 相当于农业碳排放总量的2% (表7)。若每公顷农田施用15 t生物炭, 每年每公顷农田可减排1.30 t CO2, 同时固碳0.25 t (表7)。采用测土配方培肥法后每公顷农田固碳量可达0.62 t, 间歇灌溉和氮肥减量施用可使每公顷农田分别减少2854.5 kg、1034 kg碳排放, 固碳2526.6 kg、570 kg (表7)。
3. 结论、建议与展望
3.1 研究结论与建议
乡村是一个复杂开放系统, 兼有生产、生活、生态等多种功能, 具备碳源、碳汇双重属性, 宏观把握我国乡村碳效应现状, 实现乡村减排增汇, 是助力“双碳”目标与乡村振兴的关键。本文基于人地关系地域系统理论, 系统构建乡村碳循环体系, 使用Meta分析方法综述乡村碳效应定量研究成果, 主要结论如下:
1)乡村农业生产碳排放占乡村碳排放总量的20%, 农业(种植业与养殖业)碳排放占我国年均碳排放总量的10.37%; 其中, 作物种植和禽畜养殖碳排放分别占30%和70%, 58.23%的种植业碳排放来源于化肥施用, 67.40%的养殖业碳排放来源于动物肠道发酵。氮肥施用量每减少1 t, 可节约9555 kWh电, 可用于生产27 t大米; 氮肥利用效率每提高1%, 可节约37.5 万t原煤; 牛羊养殖数量每减少1%, 养殖业碳排放可减少4.48%。
2)乡村居民生活碳排放约占乡村碳排放总量的80%, 约65%的生活碳排放来源于间接碳排放, 住房建设占间接碳排放的45.32%。与农业生产活动相比, 居民生活碳减排潜力更大, 燃煤占直接碳排放的约80%, 若将1%煤炭消费替换为生物质能, 乡村生活将减排3624.8万 tCO2, 相当于节电3635.7 kWh。如果提出乡村生活专门性减排政策, 形成低碳化乡村生产、消费、交易模式, 乡村生活碳排放有望于2046年达峰。
3) 1990—2022年, 我国乡村净碳汇呈增长态势, 乡村年均净碳汇50 025.82万t, 相当于节约7.36亿 t 标准煤, 123亿元固碳成本。玉米的固碳能力和碳投入成本均适中, 是兼顾生态和经济效益的主要粮食作物。当前我国农田保护性耕作的固碳潜力尚未得到充分发挥, 我国农田固碳速率仅为美国的66.50%。若充分利用新兴技术将乡村环境治理水平提高2%, 乡村农业碳排放可减少2%。
种植业碳减排需增加专项环保技术研发投资, 提高氮肥使用效率, 研制、推广新型长效肥料和抑制剂。养殖业碳减排应以牧区为重点区域, 可使用青贮玉米秸秆饲养家畜, 使用舔砖或营养添加剂提高消化质量。构建作物秸秆—禽畜饲料—能源供应的物质能量循环系统, 实现种养一体化, 修建沼气池对动物粪便进行发酵, 产生沼气(可以直接燃烧的清洁能源), 减少进入大气碳库的温室气体。
居民生活的碳减排潜力大于农业生产。采取创新机制、技术升级等方式, 宣传、引导、培养乡村居民低碳生活习惯, 推进乡村碳减排。特别要充分发挥信息化时代5G、大数据、人工智能等数字技术的突出优势, 构建乡村数字化能源系统建设, 精准判断能源供需情况, 模拟零碳发展情景, 结合区域自然和经济社会发展特征给出节能减排增汇方案。农业生产碳排放占比远低于居民生活碳排放, 为保障农业经济发展和粮食安全, 投入农业碳减排的技术人才、财政补贴等需适度。
3.2 研究展望
1)制定统一、详细、科学的乡村碳排放清单。将乡村作物种植投入的化肥、农药、农膜等要素, 禽畜生长过程中的肠道发酵与粪便排放, 居民衣、食、住、行活动及贯穿生产、生活活动的化石能源消费等均列为乡村碳排放源; 乡村碳汇效应需首先考虑保护性耕作措施类型, 据此核算乡村作物碳汇和农田土壤碳汇。纳入核算范畴的温室气体包括CO2、N2O、CH4, 统一使用碳排放系数法核算乡村农业生产碳排放和居民生活直接碳排放, 使用投入产出法核算居民生活间接碳排放。
2)分区确定各碳排放源的碳排放系数。在实地观测过程中充分发挥物联网、云计算等新兴技术的优势, 分别针对东北、华东、华北、华中、华南、西南、西北等7个自然地理区域, 确定不同温室气体、农作物与禽畜品种、种养方式的碳排放系数, 及各保护性耕作措施在不同区域的固碳效果, 使乡村碳效应核算结果更具针对性。
3)综合考虑区域自然和经济社会发展特征出台乡村减排增汇方案。例如: 西北牧区干旱少雨, 气候条件较为恶劣, 畜牧业是乡村主要产业, 经济发展相对缓慢。在引进科技人才, 发展好氧堆肥、低碳沼气发酵粪污处理等减排技术的同时, 推动粗放养殖转变为生态家庭牧场养殖, 实现乡村碳减排与经济发展的双赢。东部农耕区气候温暖湿润, 经济发达, 乡村居民生活水平较高, 规模化、机械化种植增加了村民收入, 亦增加了乡村碳排放。亟需实现稻田节水灌溉、秸秆颗粒燃料生产、绿肥种植等技术的规模化应用, 定期检查报废高碳排、重污染的老旧农机, 推广低碳种植设备; 同时创新机制倡导和激励乡村居民践行低碳生活理念。
-
表 1 中国乡村碳排放与碳汇相关文献的筛选结果
Table 1 Screening results of literatures concerning rural carbon emission and carbon sink in China
核算内容
Accounting content文献的作者, 出版时间
Author and publishing date of literature碳核算时期
Carbon accounting period节点年份数
Number of node years乡村农业生产碳排放
Carbon emission of rural agricultural production广义农业
(种植业和养殖业)
Generalized agriculture
(planting and breeding industry)田成诗等, 2021 TIAN C S, et al., 2021 2006—2016 3 江艳军等, 2019 JIANG Y J, et al., 2019 2008—2016 9 田云等, 2012 TIAN Y, et al., 2012 1995—2010 16 徐嘉琦, 2022 XU J Q, 2022 2004—2020 17 韦沁, 2018 WEI Q, 2018 1997—2015 19 张俊飚等, 2014 ZHANG J B, et al., 2014 2002—2011 4 狭义农业
(种植业)
Narrow agriculture
(planting industry)张颂心, 2021 ZHANG S X, 2021 2000—2018 19 杨雪, 2022 YANG X, 2022 2003—2020 18 黄晓慧等, 2022 HUANG X H, et al., 2022 2007—2019 13 贺青等, 2021 HE Q, et al., 2021 2003—2018 16 田云等, 2011 TIAN Y, et al., 2011 1993—2008 16 戴小文等, 2020 DAI X W, et al., 2020 2007—2016 10 养殖业
Breeding industry田云等, 2012 TIAN Y, et al., 2012 1995—2010 16 陈瑶, 2016 CHEN Y, 2016 2001—2013 13 姚成胜等, 2017 YAO C S, et al., 2017 2000—2014 15 胡向东等, 2010 HU X D, et al., 2010 2000—2007 8 张金鑫等, 2020 ZHANG J X, et al., 2020 1997—2017 21 苏旭峰等, 2022 SU X F, et al., 2022 2000—2018 19 乡村居民生活碳排放
Carbon emission of rural residential living朱琳, 2018 ZHU L, 2018 2005—2014 10 黄芳等, 2013 HUANG F, et al., 2013 2000—2010 11 张咪咪, 2011 ZHANG M M, 2011 1997—2007 11 凤振华等, 2010 FENG Z H, et al., 2010 2005—2007 3 万文玉等, 2017 WAN W Y, et al., 2017 2001—2013 13 乡村农业碳汇
Carbon sink of rural agriculture曹执令等, 2022 CAO Z L, et al., 2022 2007—2022 14 陈罗烨等, 2016 CHEN L Y, et al., 2016 1991—2011 21 田云等, 2015 TIAN Y, et al., 2015 2000—2012 4 张俊飚等, 2013 ZHANG J B, et al., 2013 1995—2010 16 李强等, 2022 LI Q, et al., 2022 2005—2020 16 李翠菊, 2012 LI C J, 2012 1990—2010 21 表 2 化肥碳排放系数
Table 2 Fertilizers carbon emission factors
t(CE)∙t−1 化肥类型
Fertilizer type生产、运输、包装过程
Production, transportation and pack process使用过程
Utilization process总量
Gross来源
Source氮肥 Nitrogen fertilizer 7.759 1.767 9.526 [42-43] 磷肥 Phosphate fertilizer 2.332 0.733 3.065 [42-44] 钾肥 Potash fertilizer 0.660 0.550 1.210 [42-44] 对参考文献中的数据进行了单位换算, 统一为t(CE)∙t−1。数量关系为: CE=(12/44)×CO2, CE为碳当量。 The unit of data in the reference is converted to CE. The quantitative relationship is CE=(12/44)×CO2 and CE is carbon equivalent. 表 3 乡村居民生活碳排放的影响因素及其作用效果
Table 3 Influencing factors and their effects of rural residential living carbon emission
影响因素
Influencing factor可量化指标
Quantifiable index每提升1%所带来的碳排放变化
Change in carbon emission resulting from 1% uplift (%)来源
Source经济增长 Economic growth 乡村居民人均收入 Income per rural inhabitant 0.43 [47] 技术进步 Technological progress 能源利用效率 Energy efficiency −2.12 [48] 能源结构 Energy structure 煤炭消费占比 Coal consumption percentage 0.26 [49] 生物质能消费占比 Biomass energy consumption percentage −1.50 [50] 产业结构 Industrial structure 第一产业产值占比 Primary industry output percentage −1.99 [51] 人口规模 Population size 乡村人口总数 Rural population −3.98 [47] 表 4 中国主要粮食作物年均碳汇量及碳投入价值
Table 4 Average annual carbon sink and carbon input value of major grain crops in China
作物
Crop固碳量
Carbon sequestration
[t(C)∙hm−2∙a−1]大气CO2吸收量
Absorption of atmospheric CO2
[t(C)∙hm−2∙a−1]碳投入价值
Carbon input value
[¥∙hm−2∙a−1]来源
Source小麦 Wheat 3.62 13.28 245 [56–57] 玉米 Maize 3.98 14.58 162 [56–57] 水稻 Rice 4.32 15.83 254 [56–57] 1)大气CO2吸收量=单位面积作物固碳量×作物种植面积; 2)面积数据来源于《2021年中国统计年鉴》; 3)碳投入价值指作物种植耗能和化肥、农药等生产资料使用造成的碳排放量与碳价格的乘积。1) Atmospheric CO2 absorption = carbon sequestration per unit area multiplied by crop area; 2) Crops area data from China Statistical Yearbook (2021). 3) Carbon input value refers to the multiplication of the total carbon emission caused by the consumption of energy (diesel, electricity, etc.) and production materials (fertilizers, pesticides, etc.) in the cultivation of crops and the price of carbon. 表 5 不同估算条件下的乡村农田土壤碳汇潜力(中国、美国与全球)
Table 5 Soil carbon sink potential of rural farmland under different assessment conditions (China, USA and world)
研究区
Study area固碳潜力
Carbon sequestration potential
[108 t(C)∙a−1)]估算条件
Assessment condition来源
Source中国
China0.25~0.37 综合养分管理, 作物轮作及有效的保护系统
Comprehensive nutrient management, rotation of crops and effective protection system[60] 0.110~0.365 作物产量提高且作物残茬清除量减少
Crop yield increased and crop residue removal reduced[61] 0.325 50%的免耕以及50%秸秆还田
50% no-tillage and 50% straw returning[62] 0.16~0.20 保护性耕作和水土流失综合治理
Conserving cultivation and soil erosion comprehensive harness[63] 0.20~0.25 改善土壤管理和农田经营机制
Improving soil management and farmland management mechanism[64] 0.33 20世纪80年代农业生产条件
On the basis of agricultural production condition in the 1980s[65] 0.121~0.344 施氮与100%秸秆还田
Nitrogen fertilizer and 100% straw returning[66] 美国
USA0.75~2.08 RMP(资源管理计划)和优化土地利用
Resource Management Plans and land use optimization[67] 0.9~1.8 退耕还草
Restoring farmland to grassland[68] 0.6~0.7 IPCC(联合国政府间气候变化专门委员会)推荐方法
Intergovernmental Panel on Climate Change recommended methods[69] 全球
World4.0~8.0 RMP(资源管理计划)与保护性耕作
Resource Management Plans and conserving cultivation[70] 5.0~20.0 应用土壤管理新技术
Applying new soil management technologies[68] 3.0~15.0 土地利用/土地覆被变化研究和氮沉降
Land use/land cover change studies and nitrogen deposition[71] 表 6 不同农田管理措施下农田土壤固碳率的区域差异
Table 6 Regional differences in soil carbon sequestration rate under various farmland management measures in China
农田管理方式
Farmland management method具体措施
Concrete measure研究区
Study area土壤类别
Soil type作物熟制
Crop cropping system固碳率
Carbon sequestration
[kg(C)∙hm−2∙a−1]来源
Source秸秆还田模式
Straw returning pattern堆沤还田
Composting return华东地区
East China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system447.05 [72] 华中地区
Central China麦田土
Wheat soil小麦一熟制
Wheat single cropping system676.8 [73] 覆盖还田
Straw mulching return华东地区
East China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system118.63 [72] 华中地区
Central China麦田土
Wheat soil小麦一熟制
Wheat single cropping system410.4 [73] 华南地区
South China水稻土
Paddy soil水稻两熟制
Double rice cropping system906.8 [74] 东北地区
Northeast China中层黑土
Middle layer black soil玉米一熟制
Maize single cropping system770 [75] 西北地区
Northwest China黄壤
Yellow soil两年三熟制
Two-year triple cropping system160 [76] 过腹还田
Straw return after livestock digestion华东地区
East China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system604.44 [72] 华中地区
Central China麦田土
Wheat soil小麦一熟制
Wheat single cropping system758.4 [73] 炭化还田
Carbonization returning华南地区
South China水稻土
Paddy soil水稻两熟制
Double rice cropping system1118.2 [74] 粉碎翻压还田
Breaking and ploughing return东北地区
Northeast China中层黑土
Middle layer black soil玉米一熟制
Maize single cropping system1740 [75] 耕作模式
Cultivation
pattern翻耕
Plough tillage华北地区
North China潮褐土
Meadow cinnamon soil小麦-玉米两熟制
Wheat-maize cropping system615.5 [77] 南方地区
Southern China水稻土
Paddy soil水稻-小麦两熟制
Rice-wheat cropping system449.89 [78] 西北地区
Northwest China黑垆土
Black loessial soil小麦一熟制
Wheat single cropping system76.85 [79] 南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system1008 [74] 免耕
No-tillage华北地区
North China砂壤土
Sandy loam soil玉米一熟制
Maize single cropping system144 [80] 西北地区
Northwest China人为土
Anthropic soils小麦-玉米两熟制
Wheat-maize cropping system1090.7 [81] 华北地区
North China砂壤土
Sandy loam soil小麦一熟制
Wheat single cropping system410 [80] 华北地区
North China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system1137 [82] 华北地区
North China潮褐土
Meadow cinnamon soil小麦-玉米两熟制
Wheat-maize cropping system329.1 [77] 南方地区
Southern China水稻土
Paddy soil水稻-小麦两熟制
Rice-wheat cropping system2333.71 [78] 西北地区
Northwest China黑垆土
Black loessial soil小麦一熟制
Wheat single cropping system148.58 [79] 南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system888 [74] 旋耕
Rotary tillage西北地区
Northwest China人为土
Anthropic soils小麦-玉米两熟制
Wheat-maize cropping system877.2 [81] 耕作模式
Cultivation
pattern旋耕
Rotary tillage华北地区
North China潮褐土
Meadow cinnamon soil小麦-玉米两熟制
Wheat-maize cropping system1011.1 [77] 南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system1065.02 [74] 深松
Deep scarification西北地区
Northwest China人为土
Anthropic soil小麦-玉米两熟制
Wheat-maize cropping system1048.9 [81] 华北地区
North China壤土
Loam soil小麦-玉米两熟制
Wheat-maize cropping system959 [82] 施肥模式
Fertilization pattern单施化肥
Single application
of chemical
fertilizer南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system140 [83] 东北地区
Northeast China淋溶土
Alfisols— 23.5 [84] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system104.67 [85] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system76 [86] 南方地区
Southern China黄泥土
Yellow clayey soil水稻一熟制
Rice single cropping system950 [87] 南方地区
Southern China黄泥土
Yellow clayey soil水稻两熟制
Double rice cropping system620 [87] 南方地区
Southern China黄壤
Yellow soil玉米一熟制
Maize single cropping system839.05 [88] 华中地区
Central China水稻土
Paddy soil水稻两熟制
Double rice cropping system1525 [89] 西北地区
Northwest China壤土
Loam soil— 240.51 [90] 单施有机肥
Single application
of organic
fertilizer南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system100 [83] 东北地区
Northeast China淋溶土
Alfisols— 195.3 [84] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system1653 [86] 南方地区
Southern China黄壤
Yellow soil玉米一熟制
Maize single cropping system1300.48 [88] 西北地区
Northwest China壤土
Loam soil— 215.91 [90] 混施有机肥化肥
Mixed application
of organic and chemical fertilizers南方地区
Southern China水稻土
Paddy soil水稻两熟制
Double rice cropping system170 [83] 东北地区
Northeast China淋溶土
Alfisols— 489 [84] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system564 [85] 华北地区
North China砂壤土
Sandy loam soil小麦-玉米两熟制
Wheat-maize cropping system798 [86] 南方地区
Southern China黄泥土
Yellow clayey水稻一熟制
Rice single cropping system1090 [87] 南方地区
Southern China黄泥土
Yellow clayey水稻两熟制
Double rice cropping system990 [87] 南方地区
Southern China黄壤
Yellow soil玉米一熟制
Maize single cropping system1153.33 [88] 华中地区
Central China水稻土
Paddy soil水稻两熟制
Double rice cropping system3120 [89] 表 7 中国乡村减排增汇措施及其效果
Table 7 Measures and their effects of rural emission reduction and sink increase in China
乡村地域系统
Rural regional system活动
Activity属性
Attribute减排增汇重点
Emission reduction and sink increase focus途径
Approach具体措施
Concrete measure减排效果
Emission
reduction effect增汇效果
Sink increase effect来源
Source农业系统
Agricultural system种植业
Planting industry碳源/碳汇
Carbon source/
carbon sink肥料施用
Fertilizer application使用生物炭
Using biochar15 t∙hm−2生物碳
15 t∙hm−2 Biochar1322.34
kg(CO2)∙hm−2∙a−116.88
g(C)∙kg−1[92] 添加抑制剂
Adding inhibitors施用硝化抑制剂
Application of nitrification inhibitors2.42
kg(N2O)∙hm−2228.5
kg(C)∙hm−2[93] 改用长效肥料
Switching to slow-acting fertilizer施用长效碳酸氢铵
Application of long-effect ammonium bicarbonate0.03
kg(CO2)∙kg−14.53
g(C)∙kg−1[94] 测土配方培肥
Soil testing formula fertilization施用控释肥
Application of controlled-release fertilizer13.26
μg(C)∙m−2∙h−1617
kg(C)∙hm−2[95] 农田管理
Farmland management水分管理
Water
management间歇灌溉
Intermittent irrigation2854.5
kg(CO2)∙hm−22526.6
kg(C)∙hm−2[96] 烤田处理
Drying treatment469.9
kg(CH4)∙hm−2∙a−10.24
t(C)∙hm−2∙a−1[96] 肥料控制
Fertilizer control氮肥减量施用
Reducing nitrogen application1034
kg(CO2)∙hm−2570
kg(C)∙hm−2[86] 品种选育控制
Variety breeding control种植杂交水稻
Planting hybrid rice13.93
mg∙m−2∙h−17.66
g∙m−2∙d−1[97-98] 燃烧秸秆转化
Converting burning straw秸秆炭化
Straw carbonization602.82
kg(CO2)∙kg−1∙a−1164.45
kg(CO2)∙kg−1∙a−1[99] 秸秆沼气化
Straw biogasification27 530
kg(CO2)∙kg−1∙a−1— [100] 养殖业
Breeding industry碳源
Carbon sink肠道发酵
Enteric fermentation沼气工程
Biogas project秸秆全量利用技术
Whole straw utilization1.2634 ×108
t(CO2)∙a−1— [101] 8 m3水压式沼气池
Hydraulic biogas digester1612 g(CO2)∙a−1 — [102] 提高饲料消化率
Increasing digestibility of feed使用舔砖或营养添加剂
Utilization of lick block or nutritional additivesCH4减排25%
25% reduction of CH4 emission— [103] 改善饲料质量
Improve feed quality秸秆氨化处理
Straw ammoniation treatment11.04 kg(CH4)∙head−1∙a−1 — [104] 农业系统
Agricultural system养殖业
Breeding industry碳源
Carbon sink肠道发酵
Enteric fermentation改善饲料质量
Improve feed quality饲喂青贮玉米秸秆
Silage corn straw as feed32.68
L(CH4)∙d−1— [104] 粪便管理
Manure management固体粪便利用
Solid manure utilization反应器式堆肥
Reactor composting33.27
g(CO2)∙kg−1— [105] 添加覆盖物
Mulching表面罩多孔渗水膜
Porous permeable membrane coverage0.42
g(C)∙m−3∙h−1— [106] 稻草覆盖粪便表面
Straw covering the surface of manure0.28
g(C)∙m−3∙h−1— [107] 村庄系统
Village system居民生活
Residential living碳源
Carbon source劳动力
Labor人力资源投入
Human resource input(地区总人口/地区GDP)提高1%
Ratio of regional population to GDP increased by 1%903.8 ×104 t(CO2)∙a−1 — [108] 乡域系统
Rural system城镇化
Urbanization(地区总人口/农村总人口)降低1%
Ratio of regional population to rural population decreased by 1%1897.23×104
t(CO2)∙a−1— [51] 城镇系统
Township system产业
Industry农业产业结构
Agricultural industrial structure(种植业产值/农林牧渔产值)降低1%
Ratio of planting industry output to agriculture, forestry, animal husbandry and fishery output decreased by 1%246.12×104
t(CO2)∙a−1— [51] 农业对外开放度
Agricultural openness degree(农产品进口量/粮食总产量)提高1%
Ratio of agricultural product imports to grain output increased by 1%307.4×104 t(CO2)∙a−1 — [109] 技术
Technology农业科技进步
Agricultural scientific and technological progress农业科技支出提高1%
Agricultural science and technology expenditure increased by 1 %491.66×104
t(CO2)∙a−1— [110] 农业机械化程度
Agricultural mechanization degree农业机械总动力降低1%
Total power of agricultural machinery reduced by 1%150.13×104
t(CO2)∙a−1— [51] 乡村环境治理水平
Rural environmental governance level(环境治理完成项目额/地区GDP)提高1%
Ratio of completed environmental governance projects to regional GDP increased by 1%487.98×104 t(CO2)∙a−1 — [111] 经济
Economy经济发展水平
Economic development level(地区GDP/地区总人口)降低1%
Ratio of regional GDP to regional population decreased by 1%3718.88×104 t(CO2)∙a−1 — [51] 经济规模
Economic scale地区GDP降低1%
Regional GDP decreased by 1%959.81×104 t(CO2)∙a−1 — [109] -
[1] 丁仲礼, 段晓男, 葛全胜, 等. 国际温室气体减排方案评估及中国长期排放权讨论[J]. 中国科学(D辑: 地球科学), 2009, 39(12): 1659−1671 DING Z L, DUAN X N, GE Q S, et al. Evaluation of international greenhouse gas emission reduction schemes and discussion on China’s long-term emission rights[J]. Science in China (Series D: Earth Sciences), 2009, 39(12): 1659−1671
[2] 本报评论员. 改善农村环境 建设美丽乡村[N]. 光明日报, 2018-02-06(2) Commentator of this newspaper. Improving rural environment, constructing beautiful countryside[N]. GuangMing Daily, 2018-02-06(2)
[3] LIU Y S, LI Y H. Revitalize the world’s countryside[J]. Nature, 2017, 548(7667): 275−277 doi: 10.1038/548275a
[4] CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 1−12
[5] 韦玉琼, 龙飞, 岳欣冉. 乡村振兴背景下农村碳排放变动及减排策略[J]. 农业经济问题, 2022, 43(9): 62−73 WEI Y Q, LONG F, YUE X R. Carbon emission changing and reduction strategy of agriculture and rural areas under the background of rural vitalization[J]. Issues in Agricultural Economy, 2022, 43(9): 62−73
[6] Intergovernmental Panel on Climate Change. Climate Change 2013: Mitigation of Climate Change Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK: Cambridge University Press, 2013
[7] 谭秋成. 中国农业温室气体排放: 现状及挑战[J]. 中国人口•资源与环境, 2011, 21(10): 69−75 TAN Q C. Greenhouse gas emission in China’s agriculture: situation and challenge[J]. China Population, Resources and Environment, 2011, 21(10): 69−75
[8] SHUKLA P R, SKEG J, CALVO BUENDIA E, et al. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems[M]. Cambride, UK: Cambridge University Press, 2019
[9] TANS P P, FUNG I Y, TAKAHASHI T. Observational constraints on the global atmospheric CO2 budget[J]. Science, 1990, 247(4949): 1431−1438 doi: 10.1126/science.247.4949.1431
[10] 李波, 张俊飚, 李海鹏. 中国农业碳排放与经济发展的实证研究[J]. 干旱区资源与环境, 2011, 25(12): 8−13 LI B, ZHANG J B, LI H P. Empirical study on China’s agriculture carbon emissions and economic development[J]. Journal of Arid Land Resources and Environment, 2011, 25(12): 8−13
[11] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口•资源与环境, 2011, 21(8): 80−86 LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86
[12] 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价−基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210 TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210
[13] 吴昊玥, 何艳秋, 陈柔. 中国农业碳排放绩效评价及随机性收敛研究−基于SBM-Undesirable模型与面板单位根检验[J]. 中国生态农业学报, 2017, 25(9): 1381−1391 WU H Y, HE Y Q, CHEN R. Assessment of agricultural carbon emission performance and stochastic convergence in China using SBM-Undesirable model and panel unit root test[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1381−1391
[14] 韦惠兰, 杨彬如. 中国农村碳排放核算及分析: 1999—2010[J]. 西北农林科技大学学报(社会科学版), 2014, 14(3): 10−15 WEI H L, YANG B R. Accounting and analysis of carbon emission in rural areas of China[J]. Journal of Northwest A& F University (Social Science Edition), 2014, 14(3): 10−15
[15] 李治国, 王杰. 中国城乡家庭碳排放核算及驱动因素分析[J]. 统计与决策, 2021, 37(20): 48−52 LI Z G, WANG J. Accounting and driving factors analysis of household carbon emissions in urban and rural China[J]. Statistics & Decision, 2021, 37(20): 48−52
[16] 刘晶茹, Glen P. Peters, 王如松, 等. 综合生命周期分析在可持续消费研究中的应用[J]. 生态学报, 2007, 27(12): 5331−5336 LIU J R, PETERS G P, WANG R S, et al. Hybrid life-cycle analysis and its applications in sustainable consumption researches[J]. Acta Ecologica Sinica, 2007, 27(12): 5331−5336
[17] 朱勤, 彭希哲, 陆志明, 等. 1980—2007年中国居民生活用能碳排放测算与分析[J]. 安全与环境学报, 2010, 10(2): 72−76 ZHU Q, PENG X Z, LU Z M, et al. Calculation and analysis on carbon emissions from household energy consumption in China during 1980−2007[J]. Journal of Safety and Environment, 2010, 10(2): 72−76
[18] 李科. 我国城乡居民生活能源消费碳排放的影响因素分析[J]. 消费经济, 2013, 29(2): 73−76, 80 LI K. Analysis on the influencing factors of carbon emissions from domestic energy consumption of urban and rural residents in China[J]. Consumer Economics, 2013, 29(2): 73−76, 80
[19] 刘莉娜, 曲建升, 邱巨龙, 等. 1995—2010年居民家庭生活消费碳排放轨迹[J]. 开发研究, 2012(4): 117−121 LIU L N, QU J S, QIU J L, et al. Carbon emission trajectory of household consumption from 1995 to 2010[J]. Research on Development, 2012(4): 117−121
[20] 张馨, 牛叔文, 赵春升, 等. 中国城市化进程中的居民家庭能源消费及碳排放研究[J]. 中国软科学, 2011(9): 65−75 ZHANG X, NIU S W, ZHAO C S, et al. The study on household energy consumption and carbon emissions in China’s urbanization[J]. China Soft Science, 2011(9): 65−75
[21] 万文玉, 赵雪雁, 王伟军, 等. 我国农村居民生活能源碳排放的时空特征分析[J]. 生态学报, 2017, 37(19): 6390−6401 WAN W Y, ZHAO X Y, WANG W J, et al. Analysis of spatio-temporal patterns of carbon emission from energy consumption by rural residents in China[J]. Acta Ecologica Sinica, 2017, 37(19): 6390−6401
[22] 田云, 张俊飚. 农业碳排放国内外研究进展[J]. 中国农业大学学报, 2013, 18(3): 203−208 TIAN Y, ZHANG J B. International and domestic research progress on agricultural carbon emission[J]. Journal of China Agricultural University, 2013, 18(3): 203−208
[23] 王喜, 鲁丰先, 秦耀辰, 等. 河南省碳源碳汇的时空变化研究[J]. 地理科学进展, 2016, 35(8): 941−951 doi: 10.18306/dlkxjz.2016.08.003 WANG X, LU F X, QIN Y C, et al. Spatial and temporal changes of carbon sources and sinks in Henan Province[J]. Progress in Geography, 2016, 35(8): 941−951 doi: 10.18306/dlkxjz.2016.08.003
[24] 邢燕燕, 张艳芳. 农用地碳汇效应估算及时空变化特征分析−以陕西省为例[J]. 干旱地区农业研究, 2011, 29(3): 203−208, 259 XING Y Y, ZHANG Y F. Study on effects of carbon fixed by different agricultural vegetation patterns in Shaanxi[J]. Agricultural Research in the Arid Areas, 2011, 29(3): 203−208, 259
[25] 吕斯涵, 张小平. 山东省农业净碳汇时空演化特征分析[J]. 水土保持学报, 2019, 33(2): 227−234 LYU S H, ZHANG X P. Spatial-temporal characteristics of agricultural net carbon sink in Shandong Province[J]. Journal of Soil and Water Conservation, 2019, 33(2): 227−234
[26] 田云, 张俊飚. 中国农业生产净碳效应分异研究[J]. 自然资源学报, 2013, 28(8): 1298−1309 doi: 10.11849/zrzyxb.2013.08.003 TIAN Y, ZHANG J B. Regional differentiation research on net carbon effect of agricultural production in China[J]. Journal of Natural Resources, 2013, 28(8): 1298−1309 doi: 10.11849/zrzyxb.2013.08.003
[27] 曹执令, 黄飞, 伍赛君. 中国农业生产碳汇效应与生产绩效的时空特征[J]. 经济地理, 2022, 42(9): 166−175 CAO Z L, HUANG F, WU S J. Carbon sink measurement and spatio-temporal evolution of agriculture production in China[J]. Economic Geography, 2022, 42(9): 166−175
[28] 陈罗烨, 薛领, 雪燕. 中国农业净碳汇时空演化特征分析[J]. 自然资源学报, 2016, 31(4): 596−607 CHEN L Y, XUE L, XUE Y. Spatial-temporal characteristics of China’s agricultural net carbon sink[J]. Journal of Natural Resources, 2016, 31(4): 596−607
[29] 杨果, 陈瑶. 中国农业源碳汇估算及其与农业经济发展的耦合分析[J]. 中国人口·资源与环境, 2016, 26(12): 171−176 YANG G, CHEN Y. China’s agriculture carbon sink estimation and its coupling analysis with agricultural economy development[J]. China Population, Resources and Environment, 2016, 26(12): 171−176
[30] 刘彦随, 周扬, 李玉恒. 中国乡村地域系统与乡村振兴战略[J]. 地理学报, 2019, 74(12): 2511−2528 LIU Y S, ZHOU Y, LI Y H. Rural regional system and rural revitalization strategy in China[J]. Acta Geographica Sinica, 2019, 74(12): 2511−2528
[31] 刘彦随. 现代人地关系与人地系统科学[J]. 地理科学, 2020, 40(8): 1221−1234 LIU Y S. Modern human-earth relationship and human-earth system science[J]. Scientia Geographica Sinica, 2020, 40(8): 1221−1234
[32] 刘昱, 陈敏鹏, 陈吉宁. 农田生态系统碳循环模型研究进展和展望[J]. 农业工程学报, 2015, 31(3): 1−9 LIU Y, CHEN M P, CHEN J N. Progress and perspectives in studies on agro-ecosystem carbon cycle model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 1−9
[33] CONRAD R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285−292 doi: 10.1111/j.1758-2229.2009.00038.x
[34] 祝贞科, 肖谋良, 魏亮, 等. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策[J]. 中国生态农业学报(中英文), 2022, 30(4): 592−602 ZHU Z K, XIAO M L, WEI L, et al. Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 592−602
[35] BARANČÍKOVÁ G, MAKOVNÍKOVÁ J, HALAS J. Effect of land use change on soil organic carbon[J]. Agriculture (Polnohospodárstvo), 2016, 62(1): 10−18
[36] GLASS G V. Primary, secondary, and meta-analysis of research[J]. Educational Researcher, 1976, 5(10): 3−8 doi: 10.3102/0013189X005010003
[37] MOHER D, LIBERATI A, TETZLAFF J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement[J]. Annals of Internal Medicine, 2009, 151(4): 264−269 doi: 10.7326/0003-4819-151-4-200908180-00135
[38] 吴贤荣, 张俊飚, 程文能. 中国种植业低碳生产效率及碳减排成本研究[J]. 环境经济研究, 2017, 2(1): 57−69 WU X R, ZHANG J B, CHENG W N. The efficiency and reduction cost of carbon emission in China’s planting industry[J]. Journal of Environmental Economics, 2017, 2(1): 57−69
[39] 苏旭峰, 杨小东, 冉启英. 基于碳排放视角的中国畜牧业绿色增长分析[J]. 生态经济, 2022, 38(4): 101−107 SU X F, YANG X D, RAN Q Y. Analysis on the green growth of animal husbandry in China from the perspective of carbon emissions[J]. Ecological Economy, 2022, 38(4): 101−107
[40] 孟祥海, 程国强, 张俊飚, 等. 中国畜牧业全生命周期温室气体排放时空特征分析[J]. 中国环境科学, 2014, 34(8): 2167−2176 MENG X H, CHENG G Q, ZHANG J B, et al. Analyze on the spatial temporal characteristics of GHG estimation of livestock by life cycle assessment in China[J]. China Environmental Science, 2014, 34(8): 2167−2176
[41] 郭娇, 齐德生, 张妮娅, 等. 中国畜牧业温室气体排放现状及峰值预测[J]. 农业环境科学学报, 2017, 36(10): 2106−2113 GUO J, QI D S, ZHANG N Y, et al. Chinese greenhouse gas emissions from livestock: trend and predicted peak value[J]. Journal of Agro-Environment Science, 2017, 36(10): 2106−2113
[42] 陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算[J]. 生态学报, 2015, 35(19): 6371−6383 CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China’s nitrogen, posphate, and potash fertilizers[J]. Acta Ecologica Sinica, 2015, 35(19): 6371−6383
[43] 国家发展和改革委员会. 省级温室气体清单编制指南(试行)[R]. 北京: 国家发展和改革委员会, 2011 National Development and Reform Commission. Provincial Greenhouse Gas Inventory Guidelines (Trial)[R]. Beijing: National Development and Reform Commission, 2011
[44] WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems and Environment, 2002, 91(1): 217−232
[45] 金书秦, 李颖, 胡浚哲. 农业碳减排的技术与政策[J]. 开放导报, 2021(6): 97−104 JIN S Q, LI Y, HU J Z. Technical options and policy arrangements for reduction of agricultural carbon emission[J]. China Opening Journal, 2021(6): 97−104
[46] DAVID W K, GEOFFREY H, DAVID S A, et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(10): 2179 doi: 10.1016/j.joule.2018.09.017
[47] 汝醒君, 汪臻. 中国农村居民生活用能碳排放影响因素研究[J]. 生态经济, 2017, 33(1): 73−76 RU X J, WANG Z. Study on influence factors of rural residents’ CO2 emission in China[J]. Ecological Economy, 2017, 33(1): 73−76
[48] 颜光耀, 陈卫洪, 钱海慧. 农业技术效率对农业碳排放的影响−基于空间溢出效应与门槛效应分析[J]. 中国生态农业学报(中英文), 2023, 31(2): 226−240 YAN G Y, CHEN W H, QIAN H H. Effects of agricultural technical efficiency on agricultural carbon emission — Based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226−240
[49] 徐子瀛. 我国农村居民生活消费碳排放影响因素的门限效应研究[J]. 统计与管理, 2019(3): 22−25 XU Z Y. Study on the threshold effect of the factors influencing the carbon emissions of rural residents’ domestic consumption in China[J]. Statistics and Management, 2019(3): 22−25
[50] 陈冲影, 姚春生, 黎明. 中国农村生活用能及其碳排放分析(2001—2010)[J]. 可再生能源, 2012, 30(4): 121−127 CHEN C Y, YAO C S, LI M. Analysis of rural residential energy consumption and its carbon emission in China, 2001—2010[J]. Renewable Energy Resources, 2012, 30(4): 121−127
[51] 胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62 HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020, 36(5): 56−62
[52] WEI Y M, LIU L C, FAN Y, et al. The impact of lifestyle on energy use and CO2 emission: an empirical analysis of China’s residents[J]. Energy Policy, 2007, 35(1): 247−257 doi: 10.1016/j.enpol.2005.11.020
[53] 张保留, 吕连宏, 吴静, 等. 农村居民生活碳达峰路径及对策[J]. 环境科学研究, 2021, 34(9): 2065−2075 ZHANG B L, LYU L H, WU J, et al. Rural household carbon-peak path and countermeasures[J]. Research of Environmental Sciences, 2021, 34(9): 2065−2075
[54] 杜威, 樊胜岳. 城镇化进程中居民生活碳排放动态特征分析[J]. 生态经济, 2016, 32(5): 48−52, 101 DU W, FAN S Y. Dynamic analysis of carbon emissions for urban and rural residents in the process of urbanization[J]. Ecological Economy, 2016, 32(5): 48−52, 101
[55] 曲建升, 刘莉娜, 曾静静, 等. 中国居民生活碳排放增长路径研究[J]. 资源科学, 2017, 39(12): 2389−2398 QU J S, LIU L N, ZENG J J, et al. A study on growth path for China’s household CO2 emissions[J]. Resources Science, 2017, 39(12): 2389−2398
[56] 佘玮, 黄璜, 官春云, 等. 我国典型农作区作物生产碳汇功能研究[J]. 中国工程科学, 2016, 18(1): 106−113 SHE W, HUANG H, GUAN C Y, et al. Study on the carbon sink function of crop production in typical agricultural areas of China[J]. Strategic Study of CAE, 2016, 18(1): 106−113
[57] 白保勋, 陈东海, 徐婷婷, 等. 主要粮经作物与轮作模式净碳汇价值分析[J]. 生态经济, 2021, 37(9): 97−101 BAI B X, CHEN D H, XU T T, et al. Analysis on net carbon sink value of main grain crops and crop rotation[J]. Ecological Economy, 2021, 37(9): 97−101
[58] ZHANG H, LI S. Carbon emissions’ spatial-temporal heterogeneity and identification from rural energy consumption in China[J]. Journal of Environmental Management, 2022, 304: 114286 doi: 10.1016/j.jenvman.2021.114286
[59] 张国, 逯非, 王效科. 保护性耕作对温室气体排放和经济成本的影响−以山东滕州和兖州为例[J]. 山东农业科学, 2014, 46(5): 34−37 ZHANG G, LU F, WANG X K. Influences of conservation tillage on greenhouse gas emission and economic cost — a case study of Tengzhou and Yanzhou in Shandong Province[J]. Shandong Agricultural Sciences, 2014, 46(5): 34−37
[60] LAL R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems[J]. Land Degradation & Development, 2010, 13(6): 469−478
[61] YU Y Q, HUANG Y, ZHANG W. Modeling soil organic carbon change in croplands of China, 1980–2009[J]. Global and Planetary Change, 2012, 82/83: 115−128 doi: 10.1016/j.gloplacha.2011.12.005
[62] YAN H M, CAO M K, LIU J Y, et al. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China[J]. Agriculture, Ecosystems & Environment, 2007, 121(4): 325−335
[63] 黄耀, 孙文娟. 近20年来中国大陆农田表土有机碳含量的变化趋势[J]. 科学通报, 2006, 51(7): 750−763 doi: 10.1360/csb2006-51-7-750 HUANG Y, SUN W J. Variation trend of organic carbon content in farmland topsoil in Chinese mainland in recent 20 years[J]. Chinese Science Bulletin, 2006, 51(7): 750−763 doi: 10.1360/csb2006-51-7-750
[64] 郑聚锋, 程琨, 潘根兴, 等. 关于中国土壤碳库及固碳潜力研究的若干问题[J]. 科学通报, 2011, 56(26): 2162−2173 doi: 10.1360/csb2011-56-26-2162 ZHENG J F, CHENG K, PAN G X, et al. Some problems on the study of soil carbon pool and carbon sequestration potential in China[J]. Chinese Science Bulletin, 2011, 56(26): 2162−2173 doi: 10.1360/csb2011-56-26-2162
[65] 梁二, 蔡典雄, 代快, 等. 中国农田土壤有机碳变化: Ⅱ 土壤固碳潜力估算[J]. 中国土壤与肥料, 2010(6): 87−92 LIANG E, CAI D X, DAI K, et al. Changes in soil organic carbon in croplands of China: Ⅱ Estimation of soil carbon sequestration potentials[J]. Soil and Fertilizer Sciences in China, 2010(6): 87−92
[66] LU F, WANG X K, HAN B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland[J]. Global Change Biology, 2009, 15(2): 281−305 doi: 10.1111/j.1365-2486.2008.01743.x
[67] LAL R, KIMBLE J M, FOLLETT R F, et al. The Potential of US Crop Lands to Sequester Carbon and Mitigate the Greenhouse Effect[M]. Chelsea, Michigan, USA: Ann Arbor Press, 1998
[68] METTING F B, SMITH J L, AMTHOR J S, et al. Science needs and new technology for increasing soil carbon sequestration[J]. Climatic Change, 2001, 51(1): 11−34 doi: 10.1023/A:1017509224801
[69] SPEROW M, EVE M, PAUSTIAN K. Potential soil C sequestration on U. S. agricultural soils[J]. Climatic Change, 2003, 57(3): 319−339 doi: 10.1023/A:1022888832630
[70] LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623−1627 doi: 10.1126/science.1097396
[71] MCGUIR A D, SITCH S, CLEIN J S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models[J]. Global Biogeochemical Cycles, 2001, 15(1): 183−206 doi: 10.1029/2000GB001298
[72] 李新华, 朱振林, 董红云, 等. 秸秆不同还田模式对玉米田温室气体排放和碳固定的影响[J]. 农业环境科学学报, 2015, 34(11): 2228−2235 LI X H, ZHU Z L, DONG H Y, et al. Effects of different return modes of wheat straws on greenhouse gas emissions and carbon sequestration of maize fields[J]. Journal of Agro-Environment Science, 2015, 34(11): 2228−2235
[73] 马守臣, 邵云, 李春喜, 等. 秸秆还田方式对麦田生态系统土壤呼吸季节动态及碳收支的影响[C]//中国农学会耕作制度分会2016年学术年会论文摘要集. 乌鲁木齐: 中国农学会耕作制度分会, 2016 MA S C, SHAO Y, LI C X, et al. Effects of straw return methods on the seasonal dynamics of soil respiration and carbon balance in wheat field ecosystems[C]//The Paper Abstract of 2016 Annual Academic Conference of Cropping System Branch of Chinese Agricultural Society. Urumqi: Cropping System Branch of Chinese Agricultural Society, 2016
[74] 张卫红. 秸秆还田方式与水稻品种对双季稻田CH4和N2O排放的影响[D]. 北京: 中国农业科学院, 2016 ZHANG W H. The impact of different straw returning forms and rice varieties on CH4 and N2O emission in a double rice field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016
[75] 梁尧, 蔡红光, 杨丽, 等. 玉米秸秆覆盖与深翻两种还田方式对黑土有机碳固持的影响[J]. 农业工程学报, 2021, 37(1): 133−140 LIANG Y, CAI H G, YANG L, et al. Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 133−140
[76] 王明明. 8年保护性耕作对黄土高原玉米—小麦—大豆轮作系统土壤碳固定的影响[D]. 兰州: 兰州大学, 2011 WANG M M. Conservation tillage influence on soil carbon sequestration in a maize-wheat-soybean rotation system on the Loess Plateau[D]. Lanzhou: Lanzhou University, 2011
[77] 韩宾, 孔凡磊, 张海林, 等. 耕作方式转变对小麦/玉米两熟农田土壤固碳能力的影响[J]. 应用生态学报, 2010, 21(1): 91−98 HAN B, KONG F L, ZHANG H L, et al. Effects of tillage conversion on carbon sequestration capability of farmland soil doubled cropped with wheat and corn[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 91−98
[78] 宋知远. 长三角稻麦轮作农田秸秆还田方式的净减排潜力及推广策略[D]. 南京: 南京农业大学, 2019 SONG Z Y. Potential of straw return modes on the net emission mitigation and its extension policy suggestions in a rice-wheat rotation system of Yangtze Delta Plain[D]. Nanjing: Nanjing Agricultural University, 2019
[79] 张霞. 耕作与施肥对渭北旱塬黑垆土碳库构成的影响[D]. 杨凌: 西北农林科技大学, 2018 ZHANG X. Effects of tillage and fertilization on composition of organic carbon pool in Dark Loessial soil of Weibei Hiagland[D]. Yangling: Northwest A&F University, 2018
[80] 王小彬, 王燕, 代快, 等. 旱地农田不同耕作系统的能量/碳平衡[J]. 生态学报, 2011, 31(16): 4638−4652 WANG X B, WANG Y, DAI K, et al. Coupled energy and carbon balance analysis under dryland tillage systems[J]. Acta Ecologica Sinica, 2011, 31(16): 4638−4652
[81] 禄兴丽. 保护性耕作措施下西北旱作麦玉两熟体系碳平衡及经济效益分析[D]. 杨凌: 西北农林科技大学, 2017 LU X L. Carbon balance and economic benefit of winter wheat-summer maize in the dryland of northwestern China under conservation tillage[D]. Yangling: Northwest A&F University, 2017
[82] 张恒恒, 严昌荣, 张燕卿, 等. 北方旱区免耕对农田生态系统固碳与碳平衡的影响[J]. 农业工程学报, 2015, 31(4): 240−247 doi: 10.3969/j.issn.1002-6819.2015.04.034 ZHANG H H, YAN C R, ZHANG Y Q, et al. Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of Northern China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 240−247 doi: 10.3969/j.issn.1002-6819.2015.04.034
[83] 樊红柱, 秦鱼生, 陈庆瑞, 等. 长期施肥紫色水稻土团聚体稳定性及其固碳特征[J]. 植物营养与肥料学报, 2015, 21(6): 1473−1480 FAN H Z, QIN Y S, CHEN Q R, et al. Distribution and stability of soil aggregates and carbon sequestration in purple paddy soil under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1473−1480
[84] 兰宇, Muhammad Imran Asshraf, 韩晓日, 等. 长期施肥对棕壤有机碳储量及固碳速率的影响[J]. 环境科学学报, 2016, 36(1): 264−270 LAN Y, ASSHRAF M, HAN X R, et al. Effect of long-term fertilization on total organic carbon storage and carbon sequestration rate in a brown soil[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 264−270
[85] 尹云锋, 蔡祖聪. 不同施肥措施对潮土有机碳平衡及固碳潜力的影响[J]. 土壤, 2006(06): 745−749 YIN Y F, CAI Z C. Effect of fertilization on equilibrium levels of organic carbon and capacities of soil stabilizing organic carbon for Fluvo-aquic soil[J]. Soils, 2006(06): 745−749
[86] 常乃杰. 气候变化背景下施肥管理措施对环渤海区域主要粮食作物产量和固碳减排的影响[D]. 北京: 中国农业科学院, 2020 CHANG N J. Study on the response of main crops yield and soil carbon sequestration and greenhouse gas emission under different fertilization practices to future climate change in Bohai Rim[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020
[87] 王飞, 李清华, 林诚, 等. 不同施肥模式对南方黄泥田耕层有机碳固存及生产力的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1447−1454 WANG F, LI Q H, LIN C, et al. Effect of different fertilization modes on topsoil organic carbon sequestration and productivity in yellow paddy field of Southern China[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1447−1454
[88] 张雅蓉, 李渝, 刘彦伶, 等. 长期施肥下黄壤有机碳库演变及固存特征[J]. 西南农业学报, 2018, 31(4): 770−778 ZHANG Y R, LI Y, LIU Y L, et al. Evolution and sequestration characteristics of organic carbon pool in yellow soil under long-term fertilization[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(4): 770−778
[89] 彭华, 纪雄辉, 刘昭兵, 等. 洞庭湖地区长期施肥条件下双季稻田生态系统净碳汇效应及收益评估[J]. 农业环境科学学报, 2009, 28(12): 2526−2532 PENG H, JI X H, LIU Z B, et al. Evaluation of net carbon sink effect and economic benefit in double rice field ecosystem under long-term fertilization[J]. Journal of Agro-Environment Science, 2009, 28(12): 2526−2532
[90] 颉鹏. 河西绿洲农田生态系统土壤碳汇时空演变研究[D]. 兰州: 甘肃农业大学, 2009 JIE P. Research on spatial and temporal evolution of soil carbon sequestration of oasis farmland ecosystem in Hexi[D]. Lanzhou: Gansu Agricultural University, 2009
[91] 中华人民共和国农业农村部. 中央农村工作会议系列解读⑤强化种业企业创新能力 切实推进种业振兴行动[EB/OL]. (2023-01-04). http://www.moa.gov.cn/ztzl/zyncgzh2022/mtbd_29318/202301/t20230105_6418357.htm Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Interpretation of the central rural work conference series ⑤ Strengthen the innovation ability of seed enterprises and effectively promote the revitalization of planting industry[EB/OL]. (2023-01-04). http://www.moa.gov.cn/ztzl/zyncgzh2022/mtbd_29318/202301/t20230105_6418357.htm
[92] 高利华. 滴灌条件下水炭耦合对土壤节水保肥和固碳减排综合效应研究[D]. 呼和浩特: 内蒙古农业大学, 2017 GAO L H. Research of coupling effects of water and biochar on preserving water and nutrients and fixing carbon and reducing emission’s combined effects on base of drip irrigation[D]. Hohhot: Inner Mongolia Agricultural University, 2017
[93] 赵自超, 韩笑, 石岳峰, 等. 硝化和脲酶抑制剂对华北冬小麦-夏玉米轮作固碳减排效果评价[J]. 农业工程学报, 2016, 32(6): 254−262 ZHAO Z C, HAN X, SHI Y F, et al. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouse gas emissions in winter wheat and summer maize rotation system in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 254−262
[94] 舒常禄, 马秀枝, 蒙美莲, 等. 炭基肥施用对农田土壤性质及温室气体排放的影响[J]. 内蒙古农业大学学报(自然科学版), 2017, 38(2): 49−61 SHU C L, MA X Z, MENG M L, et al. Effects of biochar based fertilizer amendment on soil properties and greenhouse gas emission[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2017, 38(2): 49−61
[95] 李方敏, 樊小林, 刘芳, 等. 控释肥料对稻田氧化亚氮排放的影响[J]. 应用生态学报, 2004(11): 2170−2174 LI F M, FAN X L, LIU F, et al. Effects of controlled release fertilizers on N2O emission from paddy field[J]. Chinese Journal of Applied Ecology, 2004(11): 2170−2174
[96] 汤宏, 曾掌权, 沈健林, 等. 秸秆与水分管理稻田的温室气体排放和碳固定[J]. 环境科学与技术, 2021, 44(1): 41−48 TANG H, ZENG Z Q, SHEN J L, et al. Greenhouse gases emissions and carbon sequestration by soils in rice paddy fields as affected by rice straw incorporation and water management[J]. Environmental Science & Technology, 2021, 44(1): 41−48
[97] 李晶, 王明星, 陈德章. 水稻田甲烷的减排方法研究及评价[J]. 大气科学, 1998, 21(3): 99−107 doi: 10.3878/j.issn.1006-9895.1998.03.11 LI J, WANG M X, CHEN D Z. Studies on mitigation methods of methane emission from rice paddies[J]. Chinese Journal of Atmospheric Sciences, 1998, 21(3): 99−107 doi: 10.3878/j.issn.1006-9895.1998.03.11
[98] 林瑞余, 蔡碧琼, 柯庆明, 等. 不同水稻品种产量形成过程的固碳特性研究[J]. 中国农业科学, 2006, 38(12): 2441−2448 LIN R Y, CAI B Q, KE Q M, et al. Characteristics of carbon fixation in different rice cultivars during yield formation process[J]. Scientia Agricultura Sinica, 2006, 38(12): 2441−2448
[99] 李飞跃, 汪建飞. 中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算[J]. 农业工程学报, 2013, 29(14): 1−7 doi: 10.3969/j.issn.1002-6819.2013.14.001 LI F Y, WANG J F. Estimation of carbon emission from straw burning and carbon sequestration from biochar producing using crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 1−7 doi: 10.3969/j.issn.1002-6819.2013.14.001
[100] 王艺鹏, 杨晓琳, 谢光辉, 等. 1995—2014年中国农作物秸秆沼气化碳足迹分析[J]. 中国农业大学学报, 2017, 22(5): 1−14 WANG Y P, YANG X L, XIE G H, et al. Temporal variation in carbon footprint of crop residue for biogas utilization in China from 1995 to 2014[J]. Journal of China Agricultural University, 2017, 22(5): 1−14
[101] 石祖梁, 贾涛, 王亚静, 等. 我国农作物秸秆综合利用现状及焚烧碳排放估算[J]. 中国农业资源与区划, 2017, 38(9): 32−37 SHI Z L, JIA T, WANG Y J, et al. Comprehensive utilization status of crop straw and estimation of carbon from burning in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 32−37
[102] 郝先荣, 沈丰菊. 户用沼气池综合效益评价方法[J]. 可再生能源, 2006, 23(2): 4−6 HAO X R, SHEN F J. Evaluation on the composite benefit of household biogas digesters[J]. Renewable Energy Resources, 2006, 23(2): 4−6
[103] LENG R A. Improving ruminant production and reducing methane emissions from ruminants by strategic supplementation[R]. Washington DC: EPA, 1991: 105
[104] DONG H M, TAO X Y, XIN H W, et al. Comparison of enteric methane emissions in China for different IPCC estimation methods and production schemes[J]. Transactions of the ASABE, 2004, 47(6): 2051−2057 doi: 10.13031/2013.17802
[105] 巴士迪. 奶牛粪便堆肥过程温室气体和氨气排放规律及养分损失研究[D]. 北京: 中国农业科学院, 2020 BA S D. Greenhouse gas and ammonia emissions and nutrient losses from dairy manure composting[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020
[106] SOMMER S G, PETERSEN S O, SØGAARD H T. Greenhouse gas emission from stored livestock slurry[J]. Journal of Environmental Quality, 2000, 29(3): 744−751
[107] HANSEN M N, SOMMER S G, HENRIKSEN K. Methane emissions from livestock manure−effects of storage conditions and climate[J]. Dias Report, 2002, 81: 45−53
[108] 张颂心. 中国农业碳排放量测算及影响因素分析—基于省级面板数据的研究[J]. 湖北农业科学, 2021, 60(1): 60−64, 95 ZHANG S X. Calculation of agricultural carbon emission and analysis of influencing factors in China: Research based on the data of provincial panel[J]. Hubei Agricultural Sciences, 2021, 60(1): 60−64, 95
[109] 李慧, 李玮, 姚西龙. 基于GWR模型的农业碳排放影响因素时空分异研究[J]. 科技管理研究, 2019, 39(18): 238−245 LI H, LI W, YAO X L. Study on spatial and temporal variation of impacting factors of agricultural carbon emissions based on the GWR model[J]. Science and Technology Management Research, 2019, 39(18): 238−245
[110] 黄琳庆, 赵聪, 蔡悦灵. 低碳视角下农业碳排放、农业科技进步与农业经济发展的实证研究−基于中国省域面板数据[J]. 江苏农业科学, 2016, 44(5): 541−544 HUANG L Q, ZHAO C, CAI Y L. An empirical study on agricultural carbon emissions, agricultural science and technology progress and agricultural economic development from a low carbon perspective—Based on provincial panel data in China[J]. Jiangsu Agricultural Sciences, 2016, 44(5): 541−544
[111] 胡中应, 胡浩. 产业集聚对我国农业碳排放的影响[J]. 山东社会科学, 2016(6): 135−139 HU Z Y, HU H. The impact of industrial agglomeration on agricultural carbon emissions in China[J]. Shandong Social Sciences, 2016(6): 135−139
-
期刊类型引用(3)
1. 肖建勇,刘月仙,代雅男. 2010—2021年山东滨州市农业碳排放特征与畜禽养殖承载力评估. 农业环境科学学报. 2025(01): 235-246 . 百度学术
2. 康邦业. 乡村体育研究的热点、前沿和展望——基于知识图谱的可视化分析. 运动与健康. 2024(01): 116-119 . 百度学术
3. 刘彦茹,张蕊萍,董海鹰. 基于改进概率规划算法的农业园区综合能源系统优化调度. 综合智慧能源. 2023(10): 35-43 . 百度学术
其他类型引用(5)