黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制

高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙

高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报 (中英文), 2023, 31(6): 835−844. DOI: 10.12357/cjea.20220697
引用本文: 高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报 (中英文), 2023, 31(6): 835−844. DOI: 10.12357/cjea.20220697
GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844. DOI: 10.12357/cjea.20220697
Citation: GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844. DOI: 10.12357/cjea.20220697
高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报 (中英文), 2023, 31(6): 835−844. CSTR: 32371.14.cjea.20220697
引用本文: 高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报 (中英文), 2023, 31(6): 835−844. CSTR: 32371.14.cjea.20220697
GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844. CSTR: 32371.14.cjea.20220697
Citation: GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844. CSTR: 32371.14.cjea.20220697

黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制

基金项目: 国家自然科学基金项目(31860364, 32160526)、甘肃省科技计划项目(21JR7RA830)和甘肃省中央财政引导地方科技发展专项(ZCYD-2021-16)资助
详细信息
    作者简介:

    高瑞, 主要研究方向为土壤生态。E-mail: 1449324079@qq.com

    通讯作者:

    罗珠珠, 主要研究方向为土壤生态。E-mail: luozz@gsau.edu.cn

  • 中图分类号: S154.3

Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau

Funds: This study was supported by the National Natural Science Foundation of China (31860364, 32160526), the Science and Technology Plan Program of Gansu Province (21JR7RA830), and the Special Program for Local Science and Technology Development Guided by Central Government of Gansu Province (ZCYD-2021-16).
More Information
  • 摘要: 为揭示多年种植紫花苜蓿对土壤丛枝菌根真菌(AMF)群落结构和多样性的影响, 本研究通过布设在黄土高原半干旱区的田间试验, 基于2019年(L2019)、2012年(L2012)和2003年(L2003)建植的紫花苜蓿田, 以农田玉米为对照, 采用高通量测序和PCR技术, 结合分子生态网络研究不同种植年限紫花苜蓿地土壤AMF群落组成和丰度, 并基于零模型揭示了土壤AMF群落的组装过程。结果表明: 黄绵土区AMF属于球囊菌门的1纲4目7科7属, 球囊霉属、类球囊霉属和多孢囊霉属为紫花苜蓿地和农田土壤共有类群, 且均以球囊霉属(65.15%~99.12%)为优势属, 其主要贡献了不同处理分组中土壤AMF群落结构的改变。长期种植紫花苜蓿使和平囊霉属和无梗囊霉属消亡, 但促生了双型囊霉属和盾巨孢囊霉属, 其中双型囊霉属相对丰度表现为L2019处理显著高于其他处理(P<0.05)。网络关联分析发现, 高丰度的球囊霉属和类球囊霉属之间呈现负相关, 而低丰度的和平囊霉属和无梗囊霉属之间呈现正相关。基于零模型的AMF群落组装结果表明, 农田与L2019处理由确定性过程主导(66.67%), L2012和L2003处理由随机性过程主导(100%), 这表明长期种植紫花苜蓿形成稳定的土壤环境使其随机性过程增加, 利于维持人工草地生态系统功能的可持续性和稳定性。
    Abstract: Arbuscular mycorrhizal fungi (AMF) mediate the interactions between plants and soils, play crucial roles in terrestrial symbiosis, and are important components of soil microbial communities. However, information on the variations of soil AMF communities with respect to the loess soil properties is limited. Therefore, the present study investigated soil AMF diversity, community structure, and physicochemical properties in Medicago sativa fields and farmland in the Loess Plateau semi-arid area. Soil samples (0–20 cm) were collected in June 2021 from four treatments: maize (Zea mays) field (Farmland) and M. sativa fields established in 2019 (L2019), 2012 (L2012), and 2003 (L2003). Illumina MiSeq high-throughput sequencing and real-time fluorescent quantitative PCR were used to explore the structure and diversity of the AMF communities under the four treatments (Farmland, L2003, L2012, and L2019). Statistical methods (redundancy analysis and molecular ecological network analysis) were used to explore the relationship between soil physicochemical properties and the AMF community. Zero-model analysis was used to reveal the assembly process of the soil AMF community. The results showed that long-term alfalfa planting decreased soil total phosphorus and available phosphorus contents. The AMF gene abundance ranged from 1.02×104 to 1.50×104 copies∙g−1 in dry soil, which was significantly higher in M. sativa field planted in 2003 than in other treatments (P<0.05). Correlation analysis between the abundance of AMF genes and physicochemical factors showed that soil AMF gene abundance was positively correlated with total nitrogen content and negatively correlated with total phosphorus and available phosphorus contents. One class, four orders, seven families, and seven genera of AMF were identified. Glomus, Diversispora, and Paraglomus were the common genera of M. sativa fields and Farmland, and the dominant genera of M. sativa fields and Farmland were Glomus (65.15%−99.12%), mainly contributing to the changes of soil AMF community structure in different treatment groups. Long-term cultivation of M. sativa propagated rare microbial taxa, including Ambispora and Scutellospora, whereas Pacispora and Acaulospora were sterilized. Ambispora was significantly higher in M. sativa field planted in 2019 than in the other treatments (P<0.05). The analysis of the molecular ecological network showed that there were highly abundant genera (Glomus and Paraglomus) that had cooperative relationships in the ecological network, whereas the low-abundance genera (Pacispora and Acaulospora) had competitive relationships in the ecological network. RDA showed no main environmental factors affecting the AMF community structure. The null model was used to infer AMF community assembly processes. In Farmland and M. sativa field established in 2019, community mechanisms were dominantly assembled with deterministic processes (66.67%), with heterogeneous selection contributing the most. For the M. sativa field established in 2012 and 2003, the community mechanisms were dominantly assembled with random processes (100.00%); the undominated processes contributed the most to M. sativa field planted in 2012, and dispersal limitation contributed the most to M. sativa field planted in 2003. The Mantel test showed no main environmental factors driving AMF community assembly. Long-term cultivation of M. sativa increases the number of random processes. This is beneficial for maintaining the sustainability and stability of the artificial grassland ecosystem functions. In summary, long-term M. sativa planting significantly affected the composition of soil AMF communities. This study provides basic data and a theoretical basis for further studies on the microbial mechanisms of AMF on the Loess Plateau after years of M. sativa planting.
  • 丛枝菌根真菌(arbuscular mycrrohizal fungi, AMF)能与约80%的植物产生共生体[1], 尤其是豆科(Leguminosae)和禾本科(Gramineae)植物, 是土壤微生物区系中分布最为广泛的一类有益微生物。菌根真菌协助植物吸收土壤中的各种营养物质, 植物为菌根真菌提供生长发育所需的碳水化合物。Lukas等[2]通过meta分析发现, AMF的侵染有利于作物根系生长, 可使作物增产约20%[3]。特别是对于豆科作物, AMF与根瘤菌联合调控作物根际环境, 影响土壤生态环境和豆科作物生长[4-5], AMF的侵染可通过增加豆科作物的豆血红蛋白的含量、根瘤鲜重、结瘤数量、固氮酶的活力等, 强化生物固氮能力[6-8]。综上, AMF在提高作物产量、群落组装、稳定生态系统等[9]方面受到了广泛关注。中性学说指出群落组装由随机过程或扩散限制决定; 生态位学说指出确定性过程的重要性, 由生物和环境过滤调控[10]。生态学家普遍认为自然条件下的微生物群落组成由确定性和随机过程共同决定, 是扩散限制、环境过滤及物种相互作用的结果[11-12], 最近分类单元指数(Beta Nearest Taxon Index, βNTI)通过零模型运算将所有生态变量对“选择”的影响作为一个整体进行量化, 避免了主成分分析(Principal Component Analysis, PCA)和主坐标分析(Principal Co-ordinates Analysis)等传统方法对被测因素或人为关注的因素解释量的偏差。因而结合βNTI和基于Bray-Curtis的Raup-Crick指数(Bray-Curtis-based Raup Crick metrics, RCbray)可以综合估算生态过程, 能更科学地定量评价不同生态过程对AMF群落组装的贡献[13]

    紫花苜蓿(Medicago sativa)在我国栽种历史久远[14], 是黄土高原分布较广的草种。同时抗旱、耐盐碱, 在促进植被恢复、改善生态环境及提高当地畜牧业发展方面发挥重要作用。当前仅甘肃省紫花苜蓿种植面积达74.67万hm2, 商品紫花苜蓿产量达204万t, 居全国首位[15]。然而, 紫花苜蓿在连续多年种植后, 将严重消耗土壤水分和磷素[16], 使紫花苜蓿产量下降, 同时制约后续作物生长。而有研究表明, AMF与植物形成共生体用来增加磷的吸收, 最终提高土壤磷的利用率[17]。面对养分胁迫环境尤其是磷胁迫时, AMF能释放质子动员不溶性土壤磷酸盐, 并扩展其分布广泛的菌丝到磷耗尽区, 用于探索更大的土壤体积以获取无机磷源[18]。AMF分泌的果糖一方面调节蛋白质分泌系统刺激细菌中磷酸酶基因的表达, 另一方面调节磷酸酶释放到生长介质中的速率。磷酸酶活性随后增加, 促进植酸(即有机磷)矿化为无机磷, 刺激AMF吸收磷[19], 调节植物生长。

    土壤理化性质是影响土壤AMF多样性和群落结构的重要因素[20]。在所有矿质营养中, 以磷和AMF的关系最为密切[21], 其原因为土壤高磷浓度会改变宿主植物根系分泌物, 导致AMF生存环境发生改变[22]。因此, 本研究假设, 紫花苜蓿种植年限延长引起的土壤水分和磷素耗竭, 会使得AMF基因丰度显著增加, 并促进AMF群落特别是优势类群发生明显变化。为验证以上假设, 通过高通量测序技术和荧光定量PCR技术研究不同种植年限紫花苜蓿地土壤AMF群落多样性和结构, 采用分子生态网络技术分析AMF属之间的关系, 并基于零模型揭示AMF群落组装过程以及主要环境驱动因子, 为黄绵土AMF研究及紫花苜蓿人工草地可持续发展提供理论依据。

    研究基于布设在甘肃省定西市甘肃农业大学旱作农业综合试验站(104°44′E, 35°28′N)的长期定位试验进行。该区海拔2000 m, 干燥度2.53, 无霜期140 d, 年均日照时数2476.6 h, 年均降水量390 mm, 年蒸发量1531 mm, 年均气温为6.4 ℃, 年均太阳辐射量为592.9 kJ∙cm−2, 为半干旱雨养农业区, 土壤为黄绵土。

    研究对象为紫花苜蓿草地, 分别建植于2019年(L2019)、2012年(L2012)、2003年(L2003); 对照为农田, 种植当地主栽作物玉米(Zea mays)。小区面积为7 m×3 m=21 m2, 3次重复, 随机区组排列。紫花苜蓿品种均为‘陇东苜蓿’, 采用条播方式播种, 播量为22.5 kg∙hm−2, 在建植当年施P2O5 105 kg∙hm−2, 纯N 105 kg∙hm−2, 紫花苜蓿生长期间未施肥, 每年刈割两次。农田自2013年开始连续每年播种玉米, 品种为‘先玉335’, 种植密度为5.25 万株∙hm−2, 每年播前以基肥施纯P2O5 105 kg∙hm−2, 纯N 200 kg∙hm−2, 生育期不追肥。

    2021年紫花苜蓿第1茬盛花期(6月), 五点法在每个小区采集紫花苜蓿和农田玉米土壤(0~20 cm), 混合成一个样品, 每个处理3次重复, 剔除土样中的各种杂物, 将土样充分混匀后带回实验室。将部分土壤样品放在−80 ℃冰箱中用作AMF群落结构的测定; 部分土样过筛(2 mm)留存于4 ℃冰箱用作土壤硝态氮测定; 剩余土样风干后过1 mm和0.25 mm筛, 用于土壤理化指标的测定。

    测定方法均参照《土壤农化分析》[23]。土壤水分(SW)测定使用烘干法, 容重(BD)测定使用环刀法, 全氮(TN)测定使用凯氏定氮法, 有机碳(OC)测定使用浓硫酸-重铬酸钾(H2SO4-K2Cr2O7)外加热法, 全磷(TP)测定使用高氯酸-浓硫酸(HClO4-H2SO4)-钼锑抗比色法, 速效磷(AP)测定使用碳酸氢钠(NaHCO3)-钼锑抗比色法, 速效钾(AK)测定使用醋酸铵(CH3COONH4)-火焰光度法, 硝态氮(NO3-N)浸提使用2 mol∙L−1氯化钾(KCl)、全自动化学间断分析仪测定, pH测定使用pH计。

    土壤微生物DNA提取: 使用Power Soil® DNA试剂盒提取, DNA的纯度和浓度在凝胶成像系统检测。荧光定量 PCR: 在DNA完成提取后, 扩增利用引物AMV4-5NF (5’-AAGCTCGTAGTT-GAATTTCG-3’)和AMDGR (5’-CCCAACTATC-CCTATTAATCAT-3’)进行。PCR反应体系及条件: 95 ℃预变性5 min, 1个循环; 95 ℃变性30 s; 58 ℃退火30 s, 35个循环; 72 ℃终延伸1 min, 之后对PCR产物采取纯化、定量。Illumina Miseq PE300 测序: 利用聚合DNA产物构建Miseq文库, 借助于高通量测序平台测序, 由上海美吉生物公司完成。

    AMF基因丰度: 质粒起始拷贝数换算公式(copies∙µL−1)=浓度(ng∙µL−1)×10−9×6.02×1023/(分子量×660), 分子量指的是载体的大小加上目的基因的片段大小, 采用科学计数法表示。

    选取土壤AMF属间的Spearman相关系数r>0.6, 显著性P<0.05的物种OTU, 利用R软件中“igraph”和“psych”包进行微生物群落相关性网络构建, 应用Gephi0.9.2软件进行网络可视化分析。

    最近分类单元指数βNTI借助R软件中的picante包中“mntd”和“ses.mntd”函数计算, 表示AMF群落组建过程。βNTI<−2或>2, 同质性选择(βNTI<–2)和异质性选择(βNTI>2), 表明确定性过程占主导。−2<βNTI<2, 随机性过程占主导[24]。基于群落的Raup-Crick矩阵(简称RCbray)计算采用R软件中的vegan包。RCbray值>0.95表示扩散限制、RCbray值<–0.95表示同质性扩散、|RCbray|<0.95表示不明确过程。

    利用上海美吉公司I-sanger云平台开展AMF群落多样性及结构组成分析; 使用Excel 2016进行数据统计分析, 同时绘制AMF在属水平上的相对丰度图; 使用SPSS 25.0对数据进行单因素(ANOVA)方差分析和多重比较(LSD法, P=0.05); 分子生态网络通过R语言计算, Gephi软件可视化处理; SIMPER分析采用R软件中的vegan包进行运算; AMF属水平与理化因子之间运用Canoco5进行冗余分析(RDA); 群落组装过程通过R语言计算; Origin 2021进行绘图, 并用Adobe Illustrator 2020对图表进行调整。

    表1可以得出, 农田土壤水分(SW)、土壤全磷(TP)、速效磷(AP)和硝态氮(NO3-N)显著高于(P<0.05)紫花苜蓿地, 且土壤全磷和速效磷含量随紫花苜蓿种植年限延长显著降低(P<0.05); 紫花苜蓿地土壤有机碳(OC)、全氮(TN)随紫花苜蓿种植年限延长呈增加趋势, L2003处理显著高于(P<0.05)农田和L2019、L2012; 土壤容重(BD)、速效钾(AK)和pH在农田和紫花苜蓿地均未表现出明显差异。不同处理AMF基因丰度为1.02×104~1.50×104copies∙g−1, 其随紫花苜蓿种植年限的延长增加, L2003显著高于其他处理(P<0.05)。相关分析表明(表2), AMF基因丰度与土壤全氮(TN)呈极显著正相关(P<0.01), 与土壤全磷(TP)、速效磷(AP)呈极显著负相关(P<0.01)。

    表  1  不同处理土壤基本理化性状及丛枝菌根真菌(AMF)基因丰度
    Table  1.  Soil physicochemical properties and abundance of arbuscular mycorrhizal fungi (AMF) gene under different treatments
    指标 IndexFarmlandL2019L2012L2003
    土壤水分 Soil water (%)15.65±0.76a8.76±0.46b8.72±0.34b9.62±0.13b
    容重 Bulk density (g∙cm−3)1.18±0.01a1.21±0.01a1.23±0.02a1.24±0.03a
    有机碳 Organic carbon (g∙kg−1)10.50±0.20b9.83±0.21b9.89±0.05b11.49±0.32a
    全氮 Total nitrogen (g∙kg−1)0.92±0.03b0.77±0.02c0.85±0.05bc1.11±0.05a
    硝态氮 Nitrate nitrogen (mg∙kg−1)23.14±0.33a13.93±0.07c12.35±0.07d14.85±0.08b
    全磷 Total phosphorus (g∙kg−1)0.99±0.01a0.93±0.01b0.86±0.03c0.82±0.01c
    速效磷 Available phosphorus (mg∙kg−1)6.21±0.05a5.02±0.15b3.92±0.13c3.54±0.09d
    速效钾 Available potassium (mg∙kg−1)223.00±11.14a222.00±2.89a228.67±7.06a229.33±0.88a
    pH8.38±0.03a8.49±0.01a8.47±0.04a8.45±0.03a
    AMF基因丰度
    Abundance of AMF gene [×104 copy∙g−1(dry soil)]
    1.15±0.01bc1.02±0.00c1.26±0.04b1.50±0.08a
      数据为平均值±标准误(n=3), 同行不同小写字母表示不同处理间差异显著(P<0.05), Farmland、L2019、L2012和L2003分别表示农田、2019年建植紫花苜蓿、2012年建植紫花苜蓿和2003年建植紫花苜蓿。Data in table are mean ± standard error (n=3). Different lowercase letters in the same line indicate significant differences among different treatments (P<0.05). Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    下载: 导出CSV 
    | 显示表格
    表  2  丛枝菌根真菌(AMF)基因丰度与土壤理化因子相关分析
    Table  2.  Correlation analysis of arbuscular mycorrhizal fungi (AMF) gene abundance and environmental factors
    AMFSWBDOCTNNO3-NTPAPAKpH
    AMF 1.000
    SW 0.105 1.000
    BD 0.298 −0.495 1.000
    OC 0.522 0.522 0.165 1.000
    TN 0.789** 0.474 0.023 0.786** 1.000
    NO3-N 0.007 0.888** −0.488 0.648* 0.523 1.000
    TP −0.711** 0.438 −0.627* −0.202 −0.304 0.529 1.000
    AP −0.774** 0.326 −0.560 −0.263 −0.397 0.396 0.961** 1.000
    AK 0.462 −0.042 0.229 0.109 0.305 −0.112 −0.385 −0.392 1.000
    pH −0.102 −0.615* 0.456 −0.252 −0.515 −0.566 −0.327 −0.322 0.162 1.000
      **: P<0.01; *: P<0.05。AMF、SW、BD、OC、TN、TP、AP、AK分别表示AMF基因丰度、土壤水分、容重、有机碳、全氮、全磷、速效磷、速效钾。In the table, AMF, SW, BD, OC, TN, TP, AP, AK are abundance of AMF gene, soil water, bulk density, organic carbon, total nitrogen, total phosphorus, available phosphorus, available potassium.
    下载: 导出CSV 
    | 显示表格

    Alpha多样性结果表明(图1), 土壤AMF群落Ace指数(图1A)和Chao指数(图1B) L2019处理高于农田, 随紫花苜蓿种植年限延长而降低; 紫花苜蓿地Shannon指数(图1C)低于农田, 且随其种植年限延长而降低; 紫花苜蓿地Simpson指数(图1D)高于农田, 且随其种植年限延长而升高。Alpha多样性指数各处理间均无显著差异。

    图  1  不同处理土壤丛枝菌根真菌(AMF)群落多样性指数
    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    Figure  1.  Diversity indexes of arbuscular mycorrhizal fungi (AMF) community under different treatments

    通过计算Beta多样性指数, 基于Bray-curtis距离算法, 组间差异检验采用Adonis对农田及不同种植年限紫花苜蓿地土壤AMF群落进行PCoA分析(图2)。第1轴和第2轴样本组成差异解释度分别为PC1 (40.80%)、PC2 (19.07%)。L2012、L2003处理主要集中在第3象限, 处理间有交集产生, 表明这两处理AMF物种信息更相似; 农田主要集中在第1、2象限, L2019处理主要集中在第3、4象限。不同处理AMF群落组成差异显著(P<0.05)。

    图  2  不同处理土壤丛枝菌根真菌(AMF)群落主坐标分析
    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    Figure  2.  Principal co-ordinates analysis (PcoA) of abundance of soil arbuscular mycorrhizal fungi (AMF) communities under different treatments

    通过对AMF进行高通量测序, 抽平根据最小样本数进行, 处理后共得到650个OTUs, 分属于1纲4目7科7属。从属水平群落组成发现已注释的AMF有7属(图3A), 相对丰度占总序列的71.12%~99.99%, 未明确分类物种占0.01%~28.88%, 说明黄绵土中仍蕴藏着一些未知的AMF资源有待进一步挖掘研究。紫花苜蓿地和农田共有类群为球囊霉属(Glomus)、类球囊霉属(Paraglomus)和多孢囊霉属(Diversispora), 且均以球囊霉属(65.15%~99.12%)为优势属, 各处理间并无显著差异。值得注意的是, 本研究长期种植紫花苜蓿后促生了一些特有AMF群落, 双型囊霉属(Ambispora)和盾巨孢囊霉属(Scutellospora)仅能在紫花苜蓿地检测到, 而在农田并未检测到, 其中(如图3B)双型囊霉属L2019处理显著高于其他处理(P<0.05); 同时长期种植紫花苜蓿也使得另外一些菌群消失, 如和平囊霉属(Pacispora)和无梗囊霉属(Acaulospora)仅能在农田检测到, 而在紫花苜蓿地未检测到。SIMPER分析表明(表3), 球囊霉属解释了农田、紫花苜蓿地不同分组之间的大部分差异, 其相对贡献在L2019和L2003之间最高, 其次是Farmland和L2003之间。

    图  3  不同处理土壤丛枝菌根真菌(AMF)属水平群落结构(A)和双型囊霉属相对丰度(B)
    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。*表示处理间差异显著(P<0.05)。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. * indicates significant differences among treatments at P<0.05.
    Figure  3.  Relative abundance of soil arbuscular mycorrhizal fungi (AMF) community at the genus level (A) and relative abundance of Ambispora (B) under different treatments
    表  3  不同处理方式间丛枝菌根真菌(AMF)群落组成差异的优势属贡献率
    Table  3.  Contribution rates of dominant genus to abundance of arbuscular mycorrhizal fungi (AMF) community compositions under different treatments
    % 
    分组
    Group
    球囊霉属
    Glomus
    类球囊霉属
    Paraglomus
    多孢囊霉属
    Diversispora
    盾巨孢囊霉属
    Scutellospora
    双型囊霉属
    Ambispora
    无梗囊霉属
    Acaulospora
    和平囊霉属
    Pacispora
    Farmland vs L201948.085.271.230.000.930.180.18
    Farmland vs L201249.001.910.561.390.350.270.27
    Farmland vs L200349.182.640.641.140.060.270.26
    L2019 vs L201249.166.061.530.990.740.000.00
    L2019 vs L200349.265.641.320.840.960.000.00
    L2012 vs L200340.5727.445.5021.194.450.000.00
      Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    下载: 导出CSV 
    | 显示表格

    为进一步明确AMF群落7个属之间的相互关系, 利用网络关联分析构建分子生态网络, 结果如图4所示。网络平均度为0.571, 平均加权度为0.134, 网络直径为1.000, 图密度为0.095, 正相关节点连接存在于和平囊霉属和无梗囊霉属之间, 两属均为低丰度物种, 表明低丰度属之间可能存在协作关系; 负相关节点连接存在于球囊霉属和类球囊霉属之间, 两属均为高丰度属, 表明高丰度属之间可能存在竞争关系。但由于仍有部分群落之间无明显相关关系, 有待后续进一步挖掘。

    图  4  农田和紫花苜蓿地丛枝菌根真菌(AMF)属的关联网络图
    红线表明正相关, 绿线表明负相关。Red line represents positive correlation. Green line represents negative correlation.
    Figure  4.  Associated network of arbuscular mycorrhizal fungi (AMF) genus in farmland and Medicago sativa fields

    为探究影响土壤AMF群落组成的主导环境因子, 以土壤AMF群落属水平为响应变量, 理化因子为解释变量进行RDA分析(图5)。两排序轴累计变量可在49.47%解释属水平相对丰度AMF群落结构组成的差异性。其中球囊霉属(Glomus)、盾巨孢囊霉属(Scutellospora)与容重(BD)和pH呈正相关; 和平囊霉属(Pacispora)、无梗囊霉属(Acaulospora)及类球囊霉属(Paraglomus)与土壤水分(SW)、速效钾(AK)、硝态氮(NO3-N)、全磷(TP)、速效磷(AP)呈正相关。蒙特卡洛检验结果表明, 单个土壤理化因子对AMF群落影响均未达显著水平, 即土壤AMF群落受到多种土壤理化性质的共同影响。

    图  5  不同处理方式下土壤丛枝菌根真菌(AMF)群落与土壤理化因子冗余分析
    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。SW、BD、OC、TN、TP、AP、AK分别表示土壤水分、容重、有机碳、全氮、全磷、速效磷、速效钾, GlomusParaglomus、Diversispora、Scutellospora、Ambispora Acaulosporapacispora分别表示球囊霉属、类球囊霉属、多孢囊霉属、盾巨孢囊霉属、双型囊霉属、无梗囊霉属及和平囊霉属。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. SW, BD, OC, TN, TP, AP, AK are soil water, bulk density, organic carbon, total nitrogen, total phosphorus, available phosphorus, available potassium, respectively.
    Figure  5.  Redundancy analysis (RDA) of abundance of soil arbuscular mycorrhizal fungi (AMF) communities and soil physicochemical properties under different treatments

    为了探寻驱动不同种植年限紫花苜蓿地土壤AMF群落结构差异的原因, 基于零模型分析微生物群落分布模式的内在组装机制。从土壤|βNTI|值来看(图6A), 土壤AMF群落组装农田和L2019处理以确定性组装为主(贡献率为66.67%), L2012和L2003处理以随机性过程为主(贡献率为100.00%)。进一步计算|βNTI|值<2条件下RCbray值(图6B), 农田和L2019处理土壤AMF群落随机性组装过程以确定性过程中的异质性选择(βNTI>+2)为主, 其次是随机性过程中的不明确过程(|RCbray|值<0.95); L2012处理以随机性过程中的不明确过程(|RCbray|值<0.95)为主, L2003处理以随机性过程中的扩散限制(RCbray值>0.95)为主。此外, 本研究所有处理均未发现同质性选择和同质性扩散。进一步通过Mantel分析发现(表4), βNTI与土壤理化的相关性均未达显著水平, 这也进一步印证了土壤AMF群落受到多种土壤性质的共同影响。

    图  6  不同处理土壤丛枝菌根真菌(AMF)群落组装生态过程
    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Stochasticity: 随机性过程;Und: 非主导过程; Dil: 扩散限制; Determinism: 确定性过程; Hod: 同质性扩散; Hos: 同质性选择; Hes: 异质性选择。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. Und: undominated processes; Dil: dispersal limitation; Hod: homogenizing dispersal; Hos: homogeneous selection; Hes: heterogeneous selection.
    Figure  6.  Ecological processes governing abundance of soil arbuscular mycorrhizal fungi (AMF) community assembly under different treatments
    表  4  土壤理化因子与土壤丛枝菌根真菌(AMF)群落最近分类单元指数(βNTI)的Mantel分析
    Table  4.  Mantel tests of soil physicochemical properties and Beta Nearest Taxon Index (βNTI) of soil arbuscular mycorrhizal fungi (AMF) community
    因子
    Factor
    βNTI
    rP
    SW−0.1260.818
    BD−0.1310.846
    OC0.1090.198
    TN−0.1020.754
    NO3-N−0.0710.651
    TP−0.0560.627
    AP−0.1240.843
    AK−0.0320.518
    pH0.0990.242
      SW、BD、OC、TN、TP、AP、AK分别表示土壤水分、容重、有机碳、全氮、全磷、速效磷、速效钾。SW, BD, OC, TN, TP, AP, AK are soil water, bulk density, organic carbon, total nitrogen, total phosphorus, available phosphorus, available potassium, respectively.
    下载: 导出CSV 
    | 显示表格

    AMF能与80%以上的植物形成共生体-丛枝菌根进行互利互惠, 是土壤微生物区系中分布最广泛的一类菌根真菌[25]。有研究表明速效磷、有机碳、全氮、黏土含量等显著影响土壤AMF丰度[26]。本研究结果表明, 紫花苜蓿地AMF基因丰度随种植年限的延长而增加, 但土壤磷素显著下降( 表1), 说明长期种植紫花苜蓿导致土壤缺磷刺激了植物与AMF的共生关系。进一步的相关分析也发现, AMF基因丰度与土壤全磷和速效磷呈极显著负相关(P<0.01), 进一步证实了本试验的假设。Urcoviche等[27]研究表明, 土壤磷素有效性是影响菌根共生的重要因素, 低磷土壤AMF定殖率较高, 高磷水平反而会抑制其孢子的发育, 因为AMF菌丝直径比植物根直径小约10倍, 可以延伸到植物根系形成的枯竭区外并及时捕获磷酸盐, 尤其是在低磷环境中更有利于菌根形成[28]

    王永明等[29]通过对AMF归类发现, 我国境内的AMF归属于8科12属, 其中球囊霉属为优势属(71%)。本试验也表明紫花苜蓿地和农田均以球囊霉属(65.15%~99.12%)为优势属, 而且主要解释了不同处理间AMF群落组成结构的变化, 这与酸性红壤的研究结果类似[30], 说明球囊霉属对土壤环境干扰的耐受性较强, 其偏好性地适应不同土壤类型和不同土地利用方式。但是, 由于紫花苜蓿多年种植改变了土壤理化性质, 特别是水分和磷素的耗竭, 促生形成了独特的丛枝菌根真菌群落。例如双型囊霉属和盾巨孢囊霉属为紫花苜蓿地特有菌属, 可能是这两属AMF的宿主特异性导致的。研究同时发现, 和平囊霉属和无梗囊霉属为农田特有菌属, 其中无梗囊霉属往往在酸性土壤环境具有更好的产孢率[31], 而农田长期施肥造成土壤pH低于紫花苜蓿地, 导致无梗囊霉属在农田土壤中具有更好的繁殖能力; 和平囊霉属更适宜于良好的水热环境, 本试验农田种植玉米采用的全膜双垄沟播技术良好的蓄水保墒效果有利于和平囊霉属产孢定殖, 而长期种植紫花苜蓿对土壤水分的耗竭限制了其繁殖。

    为了探寻驱动不同种植年限紫花苜蓿地土壤AMF群落结构差异的原因, 本研究基于零模型分析微生物群落分布模式的内在组装机制。农田与2019年建植的紫花苜蓿地的AMF群落组装主要由确定性过程为主导, 说明土壤微生态环境受翻耕、施肥等农业活动的影响变化显著, 进一步强化了土壤微生物群落组装的确定性过程[32], 该结果与之前对旱地农田土壤微生物群落组装的研究结果一致[33]。但目前研究中种植水稻(Oryza sativa)、小麦(Triticum aestivum)等的农田土壤中微生物群落组装多为确定性过程, 并且这类生态环境中确定性过程大部分以同质性选择占主导位置[34-35], 然而本试验中异质性选择贡献最大, 虽然较高的异质性选择过程将利于微生物群落形成更多生态功能, 但具体原因还需要进一步探究。2012年和2003年种植的紫花苜蓿地的AMF群落组装主要由随机性过程主导, 由于紫花苜蓿本身具有固氮属性, 减少了微生物进行生命活动的限制因素, 直接增加了微生物可利用的碳、氮源, 因此随机性过程主导其群落组装。本试验结果也表明, 随紫花苜蓿种植年限的延长, 土壤AMF群落组装逐渐由确定性向随机性过渡。随机性过程相比于确定性过程能产生更加多样化的生态功能[36], 还能缓冲由于环境强烈变化带来的扰动, 有利于维持生态系统功能的稳定性和可持续性[37-38]。因此长期种植紫花苜蓿增加的随机性过程可丰富物种多样性, 保持生态系统功能。

    长期种植紫花苜蓿后土壤氮磷变化显著影响AMF基因丰度, 其群落结构组成发生了明显的分异。球囊霉属(65.15%~99.12%)为黄绵土区紫花苜蓿和农田共有优势属, 主要贡献了不同处理分组中土壤AMF群落结构的改变。由于长期种植紫花苜蓿改变了土壤微环境, 促生了一些特有AMF群落, 如双型囊霉属和盾巨孢囊霉属, 也使得和平囊霉属和无梗囊霉属等群落消亡。高丰度AMF球囊霉属和类球囊霉属呈现负相关, 低丰度AMF和平囊霉属和无梗囊霉属呈现正相关。基于生态零模型的群落组装机制发现, 和农田生态系统相比, 长期种植紫花苜蓿形成稳定的土壤环境使其随机性过程增加, 而确定性过程下降, 这有助于维持紫花苜蓿地人工草地生态系统功能的稳定性和可持续性。

  • 图  6   不同处理土壤丛枝菌根真菌(AMF)群落组装生态过程

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Stochasticity: 随机性过程;Und: 非主导过程; Dil: 扩散限制; Determinism: 确定性过程; Hod: 同质性扩散; Hos: 同质性选择; Hes: 异质性选择。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. Und: undominated processes; Dil: dispersal limitation; Hod: homogenizing dispersal; Hos: homogeneous selection; Hes: heterogeneous selection.

    Figure  6.   Ecological processes governing abundance of soil arbuscular mycorrhizal fungi (AMF) community assembly under different treatments

    图  1   不同处理土壤丛枝菌根真菌(AMF)群落多样性指数

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.

    Figure  1.   Diversity indexes of arbuscular mycorrhizal fungi (AMF) community under different treatments

    图  2   不同处理土壤丛枝菌根真菌(AMF)群落主坐标分析

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.

    Figure  2.   Principal co-ordinates analysis (PcoA) of abundance of soil arbuscular mycorrhizal fungi (AMF) communities under different treatments

    图  3   不同处理土壤丛枝菌根真菌(AMF)属水平群落结构(A)和双型囊霉属相对丰度(B)

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。*表示处理间差异显著(P<0.05)。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. * indicates significant differences among treatments at P<0.05.

    Figure  3.   Relative abundance of soil arbuscular mycorrhizal fungi (AMF) community at the genus level (A) and relative abundance of Ambispora (B) under different treatments

    图  4   农田和紫花苜蓿地丛枝菌根真菌(AMF)属的关联网络图

    红线表明正相关, 绿线表明负相关。Red line represents positive correlation. Green line represents negative correlation.

    Figure  4.   Associated network of arbuscular mycorrhizal fungi (AMF) genus in farmland and Medicago sativa fields

    图  5   不同处理方式下土壤丛枝菌根真菌(AMF)群落与土壤理化因子冗余分析

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。SW、BD、OC、TN、TP、AP、AK分别表示土壤水分、容重、有机碳、全氮、全磷、速效磷、速效钾, GlomusParaglomus、Diversispora、Scutellospora、Ambispora Acaulosporapacispora分别表示球囊霉属、类球囊霉属、多孢囊霉属、盾巨孢囊霉属、双型囊霉属、无梗囊霉属及和平囊霉属。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. SW, BD, OC, TN, TP, AP, AK are soil water, bulk density, organic carbon, total nitrogen, total phosphorus, available phosphorus, available potassium, respectively.

    Figure  5.   Redundancy analysis (RDA) of abundance of soil arbuscular mycorrhizal fungi (AMF) communities and soil physicochemical properties under different treatments

    表  1   不同处理土壤基本理化性状及丛枝菌根真菌(AMF)基因丰度

    Table  1   Soil physicochemical properties and abundance of arbuscular mycorrhizal fungi (AMF) gene under different treatments

    指标 IndexFarmlandL2019L2012L2003
    土壤水分 Soil water (%)15.65±0.76a8.76±0.46b8.72±0.34b9.62±0.13b
    容重 Bulk density (g∙cm−3)1.18±0.01a1.21±0.01a1.23±0.02a1.24±0.03a
    有机碳 Organic carbon (g∙kg−1)10.50±0.20b9.83±0.21b9.89±0.05b11.49±0.32a
    全氮 Total nitrogen (g∙kg−1)0.92±0.03b0.77±0.02c0.85±0.05bc1.11±0.05a
    硝态氮 Nitrate nitrogen (mg∙kg−1)23.14±0.33a13.93±0.07c12.35±0.07d14.85±0.08b
    全磷 Total phosphorus (g∙kg−1)0.99±0.01a0.93±0.01b0.86±0.03c0.82±0.01c
    速效磷 Available phosphorus (mg∙kg−1)6.21±0.05a5.02±0.15b3.92±0.13c3.54±0.09d
    速效钾 Available potassium (mg∙kg−1)223.00±11.14a222.00±2.89a228.67±7.06a229.33±0.88a
    pH8.38±0.03a8.49±0.01a8.47±0.04a8.45±0.03a
    AMF基因丰度
    Abundance of AMF gene [×104 copy∙g−1(dry soil)]
    1.15±0.01bc1.02±0.00c1.26±0.04b1.50±0.08a
      数据为平均值±标准误(n=3), 同行不同小写字母表示不同处理间差异显著(P<0.05), Farmland、L2019、L2012和L2003分别表示农田、2019年建植紫花苜蓿、2012年建植紫花苜蓿和2003年建植紫花苜蓿。Data in table are mean ± standard error (n=3). Different lowercase letters in the same line indicate significant differences among different treatments (P<0.05). Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    下载: 导出CSV

    表  2   丛枝菌根真菌(AMF)基因丰度与土壤理化因子相关分析

    Table  2   Correlation analysis of arbuscular mycorrhizal fungi (AMF) gene abundance and environmental factors

    AMFSWBDOCTNNO3-NTPAPAKpH
    AMF 1.000
    SW 0.105 1.000
    BD 0.298 −0.495 1.000
    OC 0.522 0.522 0.165 1.000
    TN 0.789** 0.474 0.023 0.786** 1.000
    NO3-N 0.007 0.888** −0.488 0.648* 0.523 1.000
    TP −0.711** 0.438 −0.627* −0.202 −0.304 0.529 1.000
    AP −0.774** 0.326 −0.560 −0.263 −0.397 0.396 0.961** 1.000
    AK 0.462 −0.042 0.229 0.109 0.305 −0.112 −0.385 −0.392 1.000
    pH −0.102 −0.615* 0.456 −0.252 −0.515 −0.566 −0.327 −0.322 0.162 1.000
      **: P<0.01; *: P<0.05。AMF、SW、BD、OC、TN、TP、AP、AK分别表示AMF基因丰度、土壤水分、容重、有机碳、全氮、全磷、速效磷、速效钾。In the table, AMF, SW, BD, OC, TN, TP, AP, AK are abundance of AMF gene, soil water, bulk density, organic carbon, total nitrogen, total phosphorus, available phosphorus, available potassium.
    下载: 导出CSV

    表  3   不同处理方式间丛枝菌根真菌(AMF)群落组成差异的优势属贡献率

    Table  3   Contribution rates of dominant genus to abundance of arbuscular mycorrhizal fungi (AMF) community compositions under different treatments

    % 
    分组
    Group
    球囊霉属
    Glomus
    类球囊霉属
    Paraglomus
    多孢囊霉属
    Diversispora
    盾巨孢囊霉属
    Scutellospora
    双型囊霉属
    Ambispora
    无梗囊霉属
    Acaulospora
    和平囊霉属
    Pacispora
    Farmland vs L201948.085.271.230.000.930.180.18
    Farmland vs L201249.001.910.561.390.350.270.27
    Farmland vs L200349.182.640.641.140.060.270.26
    L2019 vs L201249.166.061.530.990.740.000.00
    L2019 vs L200349.265.641.320.840.960.000.00
    L2012 vs L200340.5727.445.5021.194.450.000.00
      Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    下载: 导出CSV

    表  4   土壤理化因子与土壤丛枝菌根真菌(AMF)群落最近分类单元指数(βNTI)的Mantel分析

    Table  4   Mantel tests of soil physicochemical properties and Beta Nearest Taxon Index (βNTI) of soil arbuscular mycorrhizal fungi (AMF) community

    因子
    Factor
    βNTI
    rP
    SW−0.1260.818
    BD−0.1310.846
    OC0.1090.198
    TN−0.1020.754
    NO3-N−0.0710.651
    TP−0.0560.627
    AP−0.1240.843
    AK−0.0320.518
    pH0.0990.242
      SW、BD、OC、TN、TP、AP、AK分别表示土壤水分、容重、有机碳、全氮、全磷、速效磷、速效钾。SW, BD, OC, TN, TP, AP, AK are soil water, bulk density, organic carbon, total nitrogen, total phosphorus, available phosphorus, available potassium, respectively.
    下载: 导出CSV
  • [1]

    PAN S, WANG Y, QIU Y P, et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi[J]. Global Change Biology, 2020, 26(11): 6568−6580 doi: 10.1111/gcb.15311

    [2]

    LUKAS S, GATTINGER A, MEIER M, et al. Improving crop yield and nutrient use eficiency via biofertilization — A global Meta-analysis[J]. Frontiers in Plant Science, 2018, 8(12): 2204

    [3]

    VOLPIN H, PHILLIPS D A. Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots[J]. Plant Physiology, 1998, 116(2): 777−783 doi: 10.1104/pp.116.2.777

    [4]

    MASSA N, CESARO P, TODESCHINI V, et al. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition[J]. Applied Soil Ecology, 2020, 148: 103507 doi: 10.1016/j.apsoil.2020.103507

    [5] 赵丹丹, 李涛, 赵之伟. 丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展[J]. 生态学杂志, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020

    ZHAO D D, LI T, ZHAO Z W. Research advances in arbuscular mycorrhizal fungi-legumes-rhizobia symbiosis[J]. Chinese Journal of Ecology, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020

    [6]

    ABD-ALLA M H, ELSADEK EL-ENANY A W, NAFADY N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research, 2014, 169(1): 49−58 doi: 10.1016/j.micres.2013.07.007

    [7] 李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体的氮代谢运输及其生态作用[J]. 应用生态学报, 2013, 24(3): 861−868

    LI Y J, LIU Z L, HE X Y, et al. Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 861−868

    [8]

    CHALK P M, DE F SOUZA R, URQUIAGA S, et al. The role of arbuscular mycorrhiza in legume symbiotic performance[J]. Soil Biology and Biochemistry, 2006, 38(9): 2944−2951 doi: 10.1016/j.soilbio.2006.05.005

    [9] 伏云珍, 马琨, 崔慧珍, 等. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J]. 生态学杂志, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030

    FU Y Z, MA K, CUI H Z, et al. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system[J]. Chinese Journal of Ecology, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030

    [10]

    LEIBOLD M A, MCPEEK M A. Coexistence of the niche and neutral perspectives in community ecology[J]. Ecology, 2006, 87(6): 1399−1410 doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2

    [11] 柴宇星. 祁连山阴阳坡丛枝菌根真菌多样性及群落构建机制研究[D]. 兰州: 兰州大学, 2018

    CHAI Y X. The species diversity and community assembly of arbuscular mycorrhizal fungi in Qilianshan Mountains on a northwest-facing slope and a southeast-facing slope[D]. Lanzhou: Lanzhou University, 2018

    [12]

    VÁLYI K, MARDHIAH U, RILLIG M C, et al. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi[J]. The ISME Journal, 2016, 10(10): 2341−2351 doi: 10.1038/ismej.2016.46

    [13] 李洁, 李杏春, 郭良栋. 真菌群落构建机制研究进展[J]. 菌物学报, 2023, 42(1): 13−25

    LI J, LI X C, GUO L D. Research progress on community assembly mechanisms of fungi[J]. Mycosystema, 2023, 42(1): 13−25

    [14] 倪红, 杨宪龙, 王刚, 等. 施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 317−327

    NI H, YANG X L, WANG G, et al. Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 317−327

    [15] 江影舟, 南志标, 王丽佳. 基于钻石模型理论的甘肃省苜蓿产业竞争力分析[J]. 草业科学, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363

    JIANG Y Z, NAN Z B, WANG L J. Competitiveness of alfalfa industry in Gansu Province— A diamond model[J]. Pratacultural Science, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363

    [16]

    WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415

    [17]

    RECORBET G, CALABRESE S, BALLIAU T, et al. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network[J]. Fungal Genetics and Biology, 2021, 147: 103517 doi: 10.1016/j.fgb.2021.103517

    [18]

    ZHANG L, FENG G, DECLERCK S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME Journal, 2018, 12(10): 2339−2351 doi: 10.1038/s41396-018-0171-4

    [19]

    ZHANG L, FAN J Q, DING X D, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014, 74: 177−183 doi: 10.1016/j.soilbio.2014.03.004

    [20] 杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971−3979

    YANG W Y, SUN L Y, SONG F B, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3971−3979

    [21] 张旭红, 朱永官, 王幼珊, 等. 不同施肥处理对丛枝菌根真菌生态分布的影响[J]. 生态学报, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038

    ZHANG X H, ZHU Y G, WANG Y S, et al. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in Northeast China[J]. Acta Ecologica Sinica, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038

    [22]

    WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. The New Phytologist, 2017, 213(2): 874−885 doi: 10.1111/nph.14196

    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000

    [24]

    STEGEN J C, LIN X J, FREDRICKSON J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069−2079 doi: 10.1038/ismej.2013.93

    [25] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000

    LIU R J, LI X L. Application of Arbuscular Mycorrhizal[M]. Beijing: Science Press, 2000

    [26]

    WU M N, QIN H L, CHEN Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397−405 doi: 10.1007/s00374-010-0535-z

    [27]

    URCOVICHE R C, GAZIM Z C, DRAGUNSKI D C, et al. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus[J]. Industrial Crops and Products, 2015, 67: 103−107 doi: 10.1016/j.indcrop.2015.01.016

    [28] 吴强盛, 夏仁学, 邹英宁. 柑橘丛枝菌根真菌生长与根际有效磷和磷酸酶活性的相关性[J]. 应用生态学报, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025

    WU Q S, XIA R X, ZOU Y N. Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025

    [29] 王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性[J]. 微生物学通报, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093

    WANG Y M, FAN J Q, SHI Z Y. Molecular diversity of arbuscular mycorrhizal fungal in China[J]. Microbiology China, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093

    [30] 薛壮壮, 冯童禹, 王超, 等. 土地利用方式对酸性红壤丛枝菌根真菌群落的影响[J]. 土壤, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010

    XUE Z Z, FENG T Y, WANG C, et al. Effects of land-use patterns on arbuscular mycorrhizal fungi community in acidic red soil[J]. Soils, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010

    [31] 彭岳林, 杨敏娜, 蔡晓布. 西藏高原针茅草地土壤因子对丛枝菌根真菌物种多样性的影响[J]. 应用生态学报, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192

    PENG Y L, YANG M N, CAI X B. Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet Plateau[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192

    [32] 高威, 王连峰, 贾仲君. 长期不同施肥模式对农田黑土微生物群落构建的影响[J]. 生态与农村环境学报, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807

    GAO W, WANG L F, JIA Z J. Changes in community assembly of microbiomes in black soil under distinct scenarios of long-term field fertilization[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807

    [33]

    FENG Y Z, GUO Z Y, ZHONG L H, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China[J]. Frontiers in Microbiology, 2017, 8: 2376 doi: 10.3389/fmicb.2017.02376

    [34]

    ZHANG B G, ZHANG J, LIU Y, et al. Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China[J]. Science of the Total Environment, 2018, 627: 20−27 doi: 10.1016/j.scitotenv.2018.01.230

    [35]

    JIAO S, LU Y H. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 2020, 22(3): 1052−1065 doi: 10.1111/1462-2920.14815

    [36]

    KNELMAN J E, NEMERGUT D R. Changes in community assembly may shift the relationship between biodiversity and ecosystem function[J]. Frontiers in Microbiology, 2014, 5: 424

    [37]

    GRAHAM E, STEGEN J. Dispersal-based microbial community assembly decreases biogeochemical function[J]. Processes, 2017, 5(4): 65 doi: 10.3390/pr5040065

    [38]

    SOLIVERES S, VAN DER PLAS F, MANNING P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality[J]. Nature, 2016, 536(7617): 456−459 doi: 10.1038/nature19092

  • 期刊类型引用(3)

    1. 孙雨豪,李旭旭,曾园,石雨鑫,弓晋超,苏颖颖,冯恣萱,贾雨圻,陈延涛,周冀琼. 不同改良方式对豆禾混播草地AMF的影响. 四川农业大学学报. 2024(02): 364-370 . 百度学术
    2. 孔猛,黄明镜,张冬梅,贺亭峰,李洁,李凤民. 黄土高原半干旱区覆膜和施磷对紫花苜蓿草地土壤磷组分的影响. 中国生态农业学报(中英文). 2024(08): 1377-1388 . 本站查看
    3. 杨沐,季生连,郭寰,段国珍,樊光辉,李建领,王占林. 枸杞根系中AMF染色方法优化及其侵染率与土壤因子的关系. 山东大学学报(理学版). 2024(11): 40-50 . 百度学术

    其他类型引用(2)

图(6)  /  表(4)
计量
  • 文章访问数:  2445
  • HTML全文浏览量:  252
  • PDF下载量:  92
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-09-09
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2023-06-09

目录

/

返回文章
返回