Progress of research on the improvement of saline-sodic soil using acidic substances
-
摘要: 苏打盐碱土作为我国后备土地资源, 具有极大利用潜力, 若加以合理的开发利用, 将会产生巨大收益。在苏打盐碱土改良中, 化学方法是一种重要的手段, 主要包括含钙制剂、有机类改良剂和酸性物质, 其中含钙制剂和有机类改良剂主要通过添加外源钙置换土壤胶体吸附的交换性钠和改善土壤结构促进水分淋洗来改良苏打盐碱土。苏打盐碱土自身富含碳酸钙, 以酸性物质作为化学改良剂可发生水解产生氢离子, 降低盐碱土pH, 有利于溶解土壤中的碳酸钙, 为代换土壤中的交换性钠提供钙源, 从而减少外源钙质材料添加, 降低改良成本。本文通过综合分析国内外酸性物质对苏打盐碱土物理性质、盐碱性质、养分利用和作物产量等方面的研究, 对酸性物质应用于苏打盐碱土改良的机理与实践进行总结, 并展望其未来发展趋势, 以期为苏打盐碱土治理与农业利用提供参考。Abstract: As a reserve land resource in China, saline-sodic soil has great utilization potential; if properly developed and utilized, it will produce great benefits. Chemical methods are important for improving saline-sodic soils. In the early days, calcium-containing preparations, such as gypsum and phosphogypsum, were used to replace the exchangeable sodium adsorbed on soil colloids by adding exogenous calcium. However, saline-sodic soils are rich in calcium carbonate. Acid substances, as one of the chemical amendments, can be hydrolyzed to produce hydrogen ions. This reduces the pH of saline soil, which is conducive to dissolving calcium carbonate in soil and providing calcium sources for replacing exchangeable sodium in soil; thus reducing the addition of exogenous calcium materials and reducing the improvement cost. Based on a comprehensive analysis of domestic and foreign studies on the physical properties, saline properties, nutrient utilization, and crop yield of saline-sodic soil, this paper summarized the improvement mechanism and practice of the application of acid substances to saline-sodic soil, and forecasted its future development trend to provide a reference for saline-sodic soil management and agricultural utilization.
-
据联合国教科文组织的不完全统计, 全球范围内约有8.3×108 hm2的盐碱土, 约占全球陆地面积的10%, 广泛分布于世界各地[1-2]。盐碱土是指包括盐土和碱土在内的各种盐化、碱化的土壤总称。盐土指含盐量多在0.6%~1.0%或者更高, 碱土指碱化度(ESP)超过15%, pH高达8以上的土壤类型, 其土壤表层盐分一般在0.5%以下[3]。土壤盐碱可能通过土壤颗粒的分散对植物生长产生负面影响, 破坏土壤结构和堵塞孔隙[4-6]; 导致营养缺乏或失衡, 即过量的Na+与Ca2+、K+和其他阳离子竞争, 降低它们的有效性[7-8]; 产生渗透胁迫和离子毒害, 影响植物生长。土壤盐碱已成为制约全球农业、畜牧业和经济发展的障碍。近年来, 许多国家都十分关注这一问题, 并对盐碱土的形成机理、水盐运移特点及盐碱土改良进行大量研究, 以期找到改良盐碱土最佳方案。
中国土壤盐碱化程度较高, 现共有盐碱地9.9×107 hm2, 其中潜在盐碱化土壤约有1.7×107 hm2 [9], 主要分布在东北、西北、华北和一些沿海平原地区。随着我国人口持续增长和经济快速发展, 土地利用与耕地保护之间的矛盾日益突出, 需尽快提高现有土地生产力和开发新的土地资源。合理改良利用盐碱地, 对提高我国耕地面积, 维护生态平衡, 促进经济、社会、生态可持续发展具有重要意义[10]。东北松嫩平原是我国盐碱土的主要分布区之一, 该区土壤盐分主要以碳酸钠和碳酸氢钠为主, 苏打盐碱土面积约占该地区盐碱土总面积的70%[11-13]。松嫩平原生态环境脆弱, 自然因素和人为因素对生态环境造成的影响较大, 其中土壤盐碱化问题最为突出[14]。因此, 对苏打盐碱土进行改良, 无论从理论上还是实践中都具有重要意义。目前, 苏打盐碱土的改良方法很多, 效果显著, 但其中一些方法由于条件限制和成本过高, 难以大规模推广。寻求快速、高效、低成本、操作简便、可持续的苏打盐碱土改良技术成为当前的首要任务[15]。
化学改良是苏打盐碱土改良的重要手段。化学改良主要通过离子交换和化学作用降低土壤交换性Na+的饱和度和盐碱度, 再通过排水洗盐方法使盐分随水转移, 促进土壤脱盐, 改善土壤理化性质以及中和土壤碱度, 减轻土壤盐碱化对作物的危害, 增加作物生长所需的养分, 达到改良盐碱土的目的[14,16]。目前改良苏打盐碱土化学改良剂主要有3类: 1)含钙物质, 如石膏、磷石膏等, 主要以Ca2+代换土壤胶体上的Na+为改良机理; 2)酸性物质, 如硫酸及其酸性盐类、磷酸及其酸性盐类, 主要以中和碱及活化钙为改良机理, 为替换可交换性Na+提供必要物质条件[17]; 3)有机类改良剂, 如传统的腐殖质类(草炭、风化煤、绿肥、有机物料)、工业合成改良剂(禾康、聚丙烯酸等)、工业脚料糖醛渣等, 主要以改善土壤结构促进水分淋洗为改良机理。
近年来, 国内外学者对酸性物质改善土壤理化性质、提高土壤肥力、提高作物产量等问题进行深入研究。相关研究表明[18-19]: 酸性物质能够促进土壤大团聚体形成, 孔隙度增加, 改善土壤结构, 提升土壤稳定性。酸性物质也可通过水解作用释放H+降低土壤pH, 以便溶解土壤中的沉积钙, 增加Ca2+的含量, 使Na+从土壤胶体置换到土壤溶液中, 便于Na+随水分排出, 达到改良土壤的效果[20-21]。同时, 可以提高土壤含水量, 抑制土壤盐分表聚, 增加土壤N、K、P等养分有效性, 提高作物产量。本文分析、归纳了近年来酸性物质对苏打盐碱土理化性质、水盐运移、土壤肥力、作物生长和产量等方面的影响, 探讨其作用规律和机制, 为苏打盐碱土农业利用和可持续发展提供理论依据。
1. 酸性物质改良盐碱土的机理
酸性物质施入土壤能够降低盐碱土pH, 溶解土壤中的Ca2+, 为代换土壤中的交换性钠提供Ca2+源。溶解的Ca2+与土壤中的Na+发生交换吸附反应, 从而置换出Na+, 土壤碱化度(ESP)和钠吸附比(SAR)降低, 提高土壤入渗率, 随着Ca2+代换Na+进入代换位和入渗水的增加, Ca2+的溶解量和Na+的淋洗量逐渐增加, 土壤的结构和理化性质得到改善, 盐碱土逐步得到改良。常见的酸性物质改良盐碱土的机理、优点和缺点如表1所示。
表 1 不同酸性物质改良盐碱土的机理及优缺点Table 1. Mechanisms and advantages and disadvantages of different acidic substances for improving saline soils改良剂
Amendment机理
Mechanism优点
Advantage缺点
Disadvantage参考文献
Reference硫酸
Sulfuric acid硫酸可解离盐碱土中固有的碳酸钙, 使Ca2+置换土壤胶体吸附的Na+
H2SO4+CaCO3+H2O→CaSO4∙H2O+CO2
土壤胶体(Na+)+CaSO4→土壤胶体 (Ca2+)+Na2SO4
Sulfuric acid dissociates CaCO3 inherent in saline soils, allowing Ca2+ to replace Na+ adsorbed on soil colloidsl
H2SO4+CaCO3+H2O→CaSO4∙H2O+CO2
Soil colloid (Na+) + CaSO4 → soil colloid (Ca2+) + Na2SO4在盐碱土中施用硫酸可以降低土壤pH, 溶解土壤中的碳酸钙, 增加Ca2+含量, 使Na+从土壤胶体置换到土壤溶液中, 有利于Na+随水分排出, 且工业废硫酸价格低廉, 易于购买
Application of sulfuric acid in saline soils can lower soil pH, dissolve CaCO3 in the soil, increase Ca2+ content, displace Na+ from the soil colloid into the soil solution, facilitate Na+ discharge with water, and industrial waste sulfuric acid is cheap and easy to purchase硫酸腐蚀性强, 使用不便, 为便于操作, 可先采用固体载体吸附或对硫酸进行改性
Sulfuric acid is highly corrosive and inconvenient to use. It can be used after adsorption on solid carrier or after modification[23-24] 硫酸亚铁
Ferrous sulfate硫酸亚铁溶于水中, Fe2+发生水解产生H+, 降低土壤pH, 促进碳酸钙溶解, 与土壤胶体上的Na+发生代换
Fe2++2H2O→2H++Fe(OH)2↓
Fe2+水解生成的氢氧化亚铁, 在碱性环境中极易被氧化为氢氧化铁, 它具有较强的絮凝作用, 使土壤微粒逐渐团聚, 从而增加土壤饱和导水率, 并降低土壤容重
4Fe(OH)2+O2+2H2O→4Fe(OH)3
When ferrous sulphate is dissolved in water, Fe2+ are hydrolyzed to H+, which lowers the pH of the soil, promotes the dissolution of CaCO3 and its substitutes with Na+ on the soil colloid
Fe2++2H2O→2H++Fe(OH)2↓
Ferrous hydroxide, produced by the hydrolysis of Fe2+, is easily oxidized to ferric hydroxide in an alkaline environment, which has a strong flocculating effect, causing soil particles to gradually agglomerate, thereby increasing the saturated hydraulic conductivity of the soil and reducing the soil bulk density
4Fe(OH)2+O2+2H2O→4Fe(OH)3硫酸亚铁能够降低盐碱土pH, 降低表层土壤交换性钠含量和土壤的碱化度(ESP), 降低土壤容重, 提高饱和导水率
Ferrous sulphate can lower the pH of saline soils, reduce the exchangeable sodium content and exchangeable sodium saturation percentage (ESP) of topsoil, lower the soil bulk density and increase saturated hydraulic conductivity硫酸亚铁价格较低, 但主要产地在山东等其他地区, 其运输成本高于产品成本, 且单位面积使用量较大, 总成本较高
The price of ferrous sulfate is low, but its main production area is in Shandong and other areas, its transportation costs higher than the cost of the product, and the use of a large amount of unit area, the total cost is higher[25-27] 硫磺
Sulfur硫磺在土壤中的氧化过程为:
S→S2O32–→S4O62–→SO42–, 产生H+从而使土壤pH降低; 与苏打盐碱土中难溶的碳酸钙发生反应, 生成高溶解度的硫酸钙, 提高土壤活性钙含量, 提升土壤改良效果
The oxidation process of sulfur in soil is:
S→S2O32–→S4O62–→SO42–, which generates H+ and thus lowering soil pH. Sulfur reacts with insoluble CaCO3 in saline-sodic soils to produce highly soluble CaSO4, which increases the active calcium content of the soil and enhances the soil improvement effect硫磺对人畜无害, 不易对作物产生毒害现象, 此外硫磺可以从燃烧产生的含硫天然气和石油废气中回收利用, 降低含硫废气对环境造成污染
Sulfur is harmless to humans and animals, and is not easily toxic to crops. In addition, sulfate can be recycled from sulfater-containing natural gas and petroleum waste gas generated by combustion, reducing the pollution caused by sulfur-containing waste gas to the environment盐碱土中施用硫磺虽可降低土壤pH, 促进Ca2+溶解, 但在施用硫磺时, 要注意用量及其在土壤中的变化趋势, 避免过量施用造成土壤盐害加重, 从而对作物生长造成不利影响
Although the application of sulfur in saline soils can reduce soil pH and promote the dissolution of Ca2+, it is important to pay attention to the amount of sulfur and its dynamic trend in soil to avoid excessive application of sulfur to aggravate soil salt damage, which may adversely affect crop growth[28-30] 聚合硫酸铝铁
Poly-ferric aluminum sulfate主要成分为[Al(OH)nSO4]m[Fe2(OH)nSO4]m
聚合硫酸铝铁水解可产生大量H+, 降低土壤pH, 其阳离子的水解产物可以中和带负电荷的土壤胶体
The main components are [Al(OH)nSO4]m[Fe2(OH)nSO4]m.
It’s hydrolysis can produce large amounts of H+ and lowers soil pH, and the hydrolysis products of its cations neutralize negatively charged soil colloids可以促进土壤团聚, 改善土壤孔隙度、持水能力和渗透性, 促进土壤碳酸钙溶解
Poly-ferric aluminum sulfate can promote soil agglomeration, improve soil porosity, water holding capacity and permeability, and promote dissolution of CaCO3 in soil与硫酸铝相比, 聚合硫酸铝铁对水溶性钾离子含量的影响很小, 并且对苏打盐碱土中阳离子交换量影响较小
Compared to aluminium sulfate, Poly-ferric aluminum sulfatee has little effect on the water-soluble potassium ion content and less effect on cation exchange in soda saline soils[31] 硫酸铝
Aluminum sulfate硫酸铝溶液中Al3+水解产生H+, 使土壤pH降低; 所产生的H+与土壤中碳酸钙发生反应, 增加土壤溶液中Ca2+浓度, 从而与土壤胶体中Na+发生代换, 降低土壤胶体上Na+含量
相关式子如下:
铝离子改良剂+H2O=羟基铝离子+nH+
2H++CaCO3=Ca2++H2O+CO2
土壤胶体-2Na++Ca2+=土壤胶体-Ca2++2Na+
The hydrolysis of Al3+ in the aluminium sulfate solution produces H+, which lowers soil pH. The produced H+ reacts with CaCO3 in soil to increase the Ca2+ concentration in soil solution, thus substituting with Na+ in the soil colloid and reducing Na+ content on the soil colloid
The relevant equations are as follows:
Aluminum ion modifier + H2O = hydroxy aluminum ion + nH+
2H++CaCO3=Ca2++H2O+CO2
Soil colloid-2Na+ + Ca2+ = soil colloid-Ca2+ + 2Na+铝离子水解产物可促进土壤胶体凝聚, 进而增加土壤微团聚体数量。同时, 硫酸铝还可降低土壤容重, 增加土壤孔隙度, 改善和提高土壤性质
Aluminium ion hydrolysis products can promote soil colloid coalescence, thus increasing the number of soil microaggregates. Aluminium sulfate can also reduce soil bulk density, increase soil porosity, improve and enhance soil properties硫酸铝虽然已被广泛应用, 但对其长期效应的研究甚少, 是否会污染土壤环境和地下水资源尚无定论
Although aluminum sulfate has been widely used, little research has been done on its long-term effects, and whether it will pollute the soil environment and groundwater resources[32-37] 磷酸脲
Urea phosphate磷酸脲是由磷酸和尿素等摩尔反应生成, 反应方程式为
H3PO4+CO(NH2)2→CO(NH2)2-H3PO4
磷酸脲增加土壤中H+浓度, 降低土壤pH, 抑制NH4+→NH3↑+H+反应, 降低土壤对磷的固定作用
Urea phosphate is produced by equimolar reaction of phosphoric acid and urea, the reaction equation is:
H3PO4+CO(NH2)2→CO(NH2)2-H3PO4
Phosphate urea increases H+ concentration in soil, lowers soil pH, inhibits NH4+→NH3↑+H+ reaction, and reduces phosphorus fixation by soil磷酸脲中磷和氮的总养分含量可达60%以上, 可减少土壤挥发性氮损失, 增加土壤养分
The total content of phosphorus and nitrogen in urea phosphate is more than 60%, which reduces volatile losses of soil nitrogen, and increases soil nutrients contents磷酸脲的营养元素含量不均, 仅含有氮和磷, 在市面上仅作为肥料添加剂使用, 导致肥料利用率下降, 限制了其广泛应用
Urea phosphate has uneven nutrient content, containing only nitrogen and phosphorus, and is only used commercially as a fertilizer additive, resulting in lower fertilizer utilization and limiting its wide application[38-40] 总体来看, 酸性物质能快速有效地改良苏打盐碱土。苏打盐碱土其自身含有碳酸钙[22], 盐碱土施加酸性物质后, 土壤中H+含量增加, 促进土壤中碳酸钙溶解, 为土壤中Na+交换吸附反应提供较多的钙源。但早前人们采用石膏、磷石膏等含钙物质改良盐碱土, 通过外源增加土壤中Ca2+的活度, 将吸附于土壤胶体中的Na+交换出来。但目前对酸性物质改良苏打盐碱土的机理了解较少, 如硫酸、磷酸脲等酸性物质很少应用于改良盐碱土, 其广泛应用存在一定问题。
2. 酸性物质对盐碱土物理性质的影响
土壤的物理性质主要包括土壤的容重、孔隙度、团聚体和土壤持水特性等。土壤盐度和碱化度共同作用导致钠饱和黏土分散[41], 破坏土壤结构, 使土壤颗粒分散, 潮湿时泥泞透气性差, 孔隙度低, 干时紧实板结耕性极差, 对作物的生长发育造成不利影响[42-43]。
2.1 土壤团聚体
苏打盐碱土中的盐分主要为苏打(碳酸钠, NaCO3)、小苏打(碳酸氢钠, NaHCO3), Na+含量高, 导致土壤结构性差、养分匮乏以及微生物活性较低。大量Na+会导致土壤结构崩塌, 破坏土壤团聚体的稳定性[44]。土壤团聚体是土壤结构的基本单位, 其质量与数量对土壤性质起决定性作用[45];
研究发现, 在重度苏打盐碱土中添加酸性物质如硫酸铝改良剂后, 土壤溶液pH显著下降。在一定范围内, 土壤中大部分微团聚体含量随硫酸铝添加量的增加而增加, 大粒径团聚体数量明显增多, 孔隙度增大, 容重质量减小, 作物生长状况得到改善, 出苗率提高[46]。单纯施用硫酸铝虽可有效改善土壤结构, 但过去的研究表明[47-48], 施用家畜粪、秸秆等有机物质有利于土壤形成大颗粒团聚体, 提高团聚体稳定性。建议在生产实践中, 可将硫酸铝与其他有机物料配合使用, 可进一步改善土壤结构, 提高土壤肥力。近几年来, 有学者通过用中低浓度的盐酸或硫酸对沸石进行酸化改性进而改良苏打盐碱土[49]。对沸石进行硫酸酸化改性后, 硫酸能有效地去除沸石中金属离子, H+取代金属离子, 增强沸石吸附能力, 使土壤颗粒在沸石颗粒周围形成较为稳定的胶体粒子, 不会再分散。因此, 在苏打盐碱土中施用酸改性沸石, 可以改善土壤中Na+含量过高与土壤板结的问题。
2.2 容重与孔隙度
对盐碱土而言, 不同土壤孔径的组成与分布直接影响土壤结构, 而土壤孔隙则能真实反映土壤结构状况[50]。土壤的容重和孔隙度是土壤的重要物理性质, 它直接影响土壤水分、肥力等因素变化。
研究表明[51], 硫酸铝可以显著降低苏打盐碱土旱田和水田土壤容重, 改善土壤微团聚体组成, 使土壤结构状况得到明显改善。聚合硫酸铝铁施用到土壤中, 其阳离子的水解产物能与土壤中带负电荷的胶体进行电荷中和, 促进土壤团聚结构的形成, 改善土壤孔隙度[52]。目前仅有少量研究表明, 硫酸也可用于改良盐碱土。硫酸能降低土壤pH和盐分含量, 改善土壤环境。硫酸可溶解土壤中的碳酸钙, 通过用钙代替土壤中的交换性钠来提高土壤的孔隙度, 降低土壤的紧实度[53]。
2.3 渗透性与持水性
土壤渗透性和持水性决定着土壤淋洗排盐效率[54]。土壤入渗是田间水循环的重要组成部分, 酸性物质如硫酸铝可以有效改善苏打盐碱土的土壤结构性与持水特性, 并且随着硫酸铝用量的增加, 土壤的膨胀性、渗透性和持水性都会增强[55]。通过室内垂直淋洗试验发现[56], 聚合硫酸铝铁能提高苏打盐碱土的导水率, 促进土壤淋洗脱盐。目前苏打盐碱土改良大多采用石膏等含钙物质, 通过添加外源钙置换土壤中的Na+。但Ahmad等[25]通过硫酸和石膏对盐碱土壤离子置换的试验结果表明, 硫酸和石膏均可降低土壤饱和泥浆电导率(ECe)和SAR, 且经过硫酸处理的土壤中盐分和Na+的浸出量与石膏的浸出量相当, 可能是由于硫酸与碳酸钙反应释放Ca2+, 在置换土壤胶体上吸附的Na+所需时间较长[57]。由于这种有效但延迟浸出的盐和离子, 经硫酸处理的土壤在试验结束时相对保持了更多的ECe, SAR值更低, 可以更好地疏松土壤, 增加土壤的渗透性。
酸性物质对苏打盐碱土物理性质的改良作用主要有以下几个方面: 1)凝聚土壤颗粒, 改善土壤结构。某些酸性物质具有膨胀性、分散性、黏着性等特性, 能使土壤中因盐碱而分散的土壤颗粒凝结, 从而改变土壤的孔隙度, 改善土壤的通透性。2)酸性物质可改善土壤微团聚体的组成, 增加土壤中大粒径团聚体的数量, 增加土壤孔隙度, 降低土壤容重, 提高土壤淋洗速率。3)硫酸等强酸性物质可以与盐碱土中的碳酸钠发生反应, 使土壤Ca2+活化, 进而交换土壤胶体吸附的Na+, 阻止胶体分散, 增加土壤颗粒絮凝和胶结, 改善土壤结构。
3. 酸性物质对土壤盐碱性质的影响
衡量盐碱土壤盐碱化程度的主要指标有pH、电导率(EC)、ESP等。盐碱土壤中含有大量碱性盐类物质, 在碱性环境中容易发生盐碱化。盐碱土中的碳酸钠和碳酸氢钠易发生水解, 离解生成HCO3−、OH−, 土壤中含有大量可溶盐类(如Na+和Mg2+), 这些盐离子进入土壤后容易与土壤中的物质结合形成复合物, 与土壤中游离的HCO3−、OH−发生反应, 从而使土壤呈碱性[58]。
目前已有不少学者致力于研究硫酸铝对苏打盐碱土的改良效果。硫酸铝改良剂能显著降低苏打盐碱土pH, 并能显著提高土壤中Ca2+、Mg2+、K2+、Na+等浓度。在室内模拟试验中[59], 随着硫酸铝用量的增加, 土壤阳离子交换量(CEC)呈递增趋势, 交换性Na+含量和ESP随硫酸铝用量的增加而逐渐降低。硫酸铝施加到新开垦苏打盐碱水田中, 与未处理土壤相比, 土壤pH值、全盐量、交换性钠、阳离子交换量及碱化度均有所下降; 其中CO32−、Ca2+、K+、Na+的含量较低, SO42−含量较高[60]。
盐碱土施用硫酸亚铁后, 硫酸亚铁能够水解出H+, 降低土壤pH[61], 促进土壤碳酸钙的溶解, 使土壤中的Ca2+与土壤胶体上的Na+发生代换, 降低土壤ESP[62]。范定慷[63]通过不同含硫量物质对苏打盐碱土的改良效应及盐分运移规律进行了试验研究, 结果表明: 硫酸亚铁、硫酸铝、硫磺均能降低土壤pH、SAR、全盐量、ESP等。
硫磺经微生物作用或水解后, 会产生酸性物质, 中和盐碱土中的碱性物质(如碳酸钠和碳酸氢钠), 进一步降低土壤pH, 改善土壤结构, 促进作物生长。如果施用于石灰性土壤, 会与土壤中难溶解的碳酸钙作用后生成溶解度大的硫酸钙, 土壤中活性钙含量增加, 改良作用也随之增强[30]。刘刚等[64]在盐碱土改良土壤中施用硫磺, 发现硫磺处理后土壤pH下降, 部分交换性钠离子含量降低, Ca2+、Mg2+、SO42−含量增加。已有研究表明[65-68], 硫酸可以迅速降低土壤pH, 特别是在ESP较高的土壤中, 硫酸与盐碱土中的碳酸钙发生反应, 增加可溶性钙离子含量, 加快钙钠离子交换速率。但硫酸对苏打盐碱土的应用较少, 其对苏打盐碱土交换性钠降低速率尚不明确。
酸性物质对苏打盐碱土盐碱性质的作用机制主要有: 1)降低土壤pH。酸性物质施入土壤后, 可降低盐碱土pH值, 进而溶解和提高土壤中钙离子含量, 并与土壤中钠离子发生反应, 土壤的ESP和SAR随之降低。2)影响土壤可溶性盐组成。如盐碱土中加入硫酸铝后, 土壤的盐分组成发生变化, 由苏打型→苏打-硫酸盐型→硫酸盐型。
4. 酸性物质对盐碱土养分的影响
土壤养分是作物生长发育所必需的营养元素, 盐碱土因其理化特性而引发离子拮抗和渗透胁迫[69], 从而导致土壤通常缺乏氮磷钾等营养元素, 且有机质溶解度较高, 养分淋失加快。植物根系活性降低, 对土壤养分转换和效率产生一定的不利作用。抑制植物吸收利用矿质养分和水分。土壤养分均衡可以为作物提供良好的生长环境; 但养分失衡, 则会对作物的生长发育产生不利作用, 导致作物的产量下降和病害加重[70]。
4.1 有机质
土壤有机碳在全球碳循环中起着重要作用, 也是土壤肥力的重要组成部分。土壤有机碳是评价土壤肥力和质量的重要指标, 对改善土壤物理特性、提供养分、保护环境具有重要作用[71-72]。活性有机碳是土壤有机质有效组分之一, 它能反映土壤中有机碳的微小变化[73], 直接影响植物的养分供应[74-75]。
采用不同比例硫酸铝、稻草和苏打盐碱土进行室内模拟培养试验, 结果表明[76]: 在一定范围内, 单独施用硫酸铝可增加土壤易氧化有机碳含量, 降低土壤有机碳的氧化稳定系数。硫酸铝和稻草同时施用促进秸秆分解, 进一步增加土壤有机质。张鑫[77]同样进行室内模拟试验, 结果表明: 苏打盐碱土微团聚体中有机碳含量在添加硫酸铝改良剂和玉米秸秆后明显增加, 土壤大粒级微团聚体的有机碳含量和贡献率提高, 有利于提高有机碳固定性能。
硫酸铝单独施用可增加土壤有机质含量, 而秸秆还田和添加有机肥则能进一步提高土壤有机质含量[78-79]。然而, 目前较多学者主要探究硫酸铝对苏打盐碱土有机质的影响, 硫酸、硫磺及硫酸铝铁等酸性物质的研究较少, 可先通过室内模拟试验, 探究其他酸性物质对苏打盐碱土有机质的影响, 再应用到大田试验中。
4.2 营养元素
苏打盐碱土碱性较高, 土壤自然肥力较差, 在碱性环境下, 土壤中磷钙等营养元素被固定[80-81], 限制了土壤养分有效性[82-85]。营养元素缺乏和盐碱胁迫是制约作物生产的两个主要问题。在盐碱条件下, 土壤高pH、高电导率、有机质含量低等因素, 导致土壤养分含量下降, 对作物生长不利[86-87]。在苏打盐碱土中施加硫酸、硫酸铝等酸性物质可有效降低土壤pH, 提高土壤中磷锌等元素有效性[88]。
已有研究[89]表明, 硫酸铝配施磷肥和氮肥均能显著促进小麦(Triticum aestivum)出苗和生长, 无论是否施加磷肥, 土壤有效磷曲线均随着硫酸铝用量的增加而逐渐降低。马巍等[19]对苏打盐碱地水稻(Oryza sativa)施用硫酸铝, 结果表明: 在盐碱化严重的稻田中, 施用硫酸铝可以提高水稻吸收氮磷钾的能力, 提高吸磷量, 增加磷肥利用率。磷酸脲在土壤中分解成尿素和磷酸, 磷素在土壤中所占比例较高, 从而增加了土壤磷素供给强度。磷酸脲在苏打盐碱土中的应用较少, 但已有研究[90]表明, 磷酸脲对土壤中磷铁锰等元素的活化具有显著的促进作用, 为作物生长发育提供更多的营养元素, 提高作物产量。杨贵婷[38]以磷酸脲基复合肥为改良剂, 进行为期两年的玉米(Zea mays)田间试验, 结果表明: 经全量磷酸脲基复合肥处理的玉米产量、磷素利用率均高于普通磷肥。磷酸脲作为改良剂施入苏打盐碱土中, 可能会降低土壤pH, 改善土壤理化性质, 增加土壤磷、钙等元素含量。
5. 酸性物质对盐碱土作物生长及产量的影响
苏打盐碱土含有碳酸钠、重碳酸钠等盐分, 影响土壤物理、化学性质以及微生物活性, 不仅会抑制作物生长, 还会导致作物死亡, 生产力下降[91-92]。研究表明[93], 酸性物质可改善土壤的理化性质, 促进作物生长。
硫酸亚铁是一种工业副产品, 其利用率低, 导致大量硫铁资源浪费。硫酸亚铁可以作为铁肥、硫肥、调酸剂等对苏打盐碱土进行改良, 可提高水稻的抗病能力, 提高秧苗素质。经硫酸亚铁培养的水稻秧苗, 其体内的铁硫含量增加; 叶绿素含量增多, 秧苗素质提高[94-95]; 硫酸亚铁对苏打盐碱土水稻分蘖有明显的促进作用, 有效穗数、单穗粒数和产量均有明显提高[96]。硫酸铝水解产生的H+可与土壤中CO32−和HCO3−发生反应生成H2O和CO2, 使碳酸钠和碳酸氢钠变成硫酸钠, 土壤类型转变为硫酸盐型, 减轻碳酸钠和碳酸氢钠对作物生长的危害, 对苏打盐碱土水稻生长环境有一定的优化作用, 为水稻秧苗的生长提供了有利的环境条件, 提高了水稻产量[97-98]。硫酸除有效降低土壤pH外, 还能提高水稻的生理适应能力和产量, 苏打盐碱土施用浓硫酸可显著改善土壤理化性状和水稻的生长环境, 增加水稻分蘖, 并提高水稻的单株有效穗数、单株实粒数、千粒重、结实率, 进而增加水稻产量[99]。
酸性物质提高苏打盐碱土作物生长及产量的可能原因有: 1)酸性物质可降低土壤pH, 活化土壤中的碳酸钙, 增加土壤Ca2+含量, 解析盐碱土中的Na+, 从而降低高浓度Na+对作物生长的危害, 促进作物生长。2)酸性能够降低苏打盐碱土pH, 提高养分有效性, 增加土壤肥力。3)酸性物质可降低盐碱土中有毒元素富集, 降低土壤中原有重金属对作物生长的影响。
6. 展望及未来发展方向
苏打盐碱土的改良是一个持续性过程, 目前众多改良方法都存在着投资大、见效慢等问题。利用酸性物质改良苏打盐碱土, 相对其他方法而言见效快且方便。酸性物质可以改善土壤理化性质、提高土壤的透水透气能力和入渗速率以及增加土壤中微量元素的有效性, 进而提升土壤肥力, 增加农作物产量, 是提高农业生产效率和环境可持续发展的重要因素。由于不同地区农业气候资源、土壤水肥气热条件及农业管理模式差异较大, 因此在实际应用酸性物质时应因地制宜, 综合不同气候、土壤、作物等因素, 确定适宜的改良剂用量和施用方法, 提高苏打盐碱土改良效果。
目前, 酸性物质在苏打盐碱土的改良应用中还存在一些亟待解决的问题。
1)活化土壤固有“钙源”, 减少外源钙质材料添加。苏打盐碱土本身含有钙源物质, 即碳酸钙, 但其溶解度较低, Ca2+较难析出。而添加酸性物质可以使土壤中H+含量增加, 促进碳酸钙溶解, 增加土壤Ca2+含量, 使Ca2+置换土壤胶体上吸附的 Na+。这种改良方法可以减少外源钙质改良剂的添加, 利用其土体本身的“ Ca2+”对土壤进行改良。在苏打盐碱土未来改良中, 可以选择酸性物质对其进行改良, 并探究不同酸性物质对苏打盐碱土的改良机理和最佳施用量。在选择酸性改良剂时, 可选用一些工业废液, 如工业废硫酸、硫酸铝、硫酸亚铁等, 在降低改良成本的同时, 也可减少工业废弃物对环境造成污染。
2)改良剂“多元化”发展。较多学者大多采用硫酸铝和硫酸亚铁对苏打盐碱土进行改良, 硫酸、磷酸脲等酸性物质应用较少。在苏打盐碱土未来改良中, 可选用其他酸性物质, 探究其对苏打盐碱土有机碳、土壤生物肥力及对作物生长的影响。
3)选择“绿色”改良剂。酸性物质虽可改良盐碱土, 改善土壤的结构和理化性质, 但需要注意的是, 土壤酸化后会引发土壤重金属离子的活化及其在作物中的富集作用。农作物生产必须以安全和健康为前提。选择酸性物质改良苏打盐碱土需具有以下特点: ①其自身不含重金属超标等有毒物质。②所选用的改良剂不能使土壤产生有毒有害物质。③经改良后的土壤排出物不会污染周边生态环境[100]。
4)增加大田试验。酸性物质对苏打盐碱土的改良多用于室内模拟试验, 但不同类型盐碱土的理化性质十分复杂。应适当增加大田试验, 对酸性物质应用于大田的适用性和作用机理进行分析, 并对其持续效应进行评估。
5)选择性价比较高的改良剂。目前我国农业产业效益低, 特别是大田作物收益更低。在盐碱土改良时, 应选择具有较高性价比的改良剂, 促进苏打盐碱土改良和农业利用持续发展。
-
表 1 不同酸性物质改良盐碱土的机理及优缺点
Table 1 Mechanisms and advantages and disadvantages of different acidic substances for improving saline soils
改良剂
Amendment机理
Mechanism优点
Advantage缺点
Disadvantage参考文献
Reference硫酸
Sulfuric acid硫酸可解离盐碱土中固有的碳酸钙, 使Ca2+置换土壤胶体吸附的Na+
H2SO4+CaCO3+H2O→CaSO4∙H2O+CO2
土壤胶体(Na+)+CaSO4→土壤胶体 (Ca2+)+Na2SO4
Sulfuric acid dissociates CaCO3 inherent in saline soils, allowing Ca2+ to replace Na+ adsorbed on soil colloidsl
H2SO4+CaCO3+H2O→CaSO4∙H2O+CO2
Soil colloid (Na+) + CaSO4 → soil colloid (Ca2+) + Na2SO4在盐碱土中施用硫酸可以降低土壤pH, 溶解土壤中的碳酸钙, 增加Ca2+含量, 使Na+从土壤胶体置换到土壤溶液中, 有利于Na+随水分排出, 且工业废硫酸价格低廉, 易于购买
Application of sulfuric acid in saline soils can lower soil pH, dissolve CaCO3 in the soil, increase Ca2+ content, displace Na+ from the soil colloid into the soil solution, facilitate Na+ discharge with water, and industrial waste sulfuric acid is cheap and easy to purchase硫酸腐蚀性强, 使用不便, 为便于操作, 可先采用固体载体吸附或对硫酸进行改性
Sulfuric acid is highly corrosive and inconvenient to use. It can be used after adsorption on solid carrier or after modification[23-24] 硫酸亚铁
Ferrous sulfate硫酸亚铁溶于水中, Fe2+发生水解产生H+, 降低土壤pH, 促进碳酸钙溶解, 与土壤胶体上的Na+发生代换
Fe2++2H2O→2H++Fe(OH)2↓
Fe2+水解生成的氢氧化亚铁, 在碱性环境中极易被氧化为氢氧化铁, 它具有较强的絮凝作用, 使土壤微粒逐渐团聚, 从而增加土壤饱和导水率, 并降低土壤容重
4Fe(OH)2+O2+2H2O→4Fe(OH)3
When ferrous sulphate is dissolved in water, Fe2+ are hydrolyzed to H+, which lowers the pH of the soil, promotes the dissolution of CaCO3 and its substitutes with Na+ on the soil colloid
Fe2++2H2O→2H++Fe(OH)2↓
Ferrous hydroxide, produced by the hydrolysis of Fe2+, is easily oxidized to ferric hydroxide in an alkaline environment, which has a strong flocculating effect, causing soil particles to gradually agglomerate, thereby increasing the saturated hydraulic conductivity of the soil and reducing the soil bulk density
4Fe(OH)2+O2+2H2O→4Fe(OH)3硫酸亚铁能够降低盐碱土pH, 降低表层土壤交换性钠含量和土壤的碱化度(ESP), 降低土壤容重, 提高饱和导水率
Ferrous sulphate can lower the pH of saline soils, reduce the exchangeable sodium content and exchangeable sodium saturation percentage (ESP) of topsoil, lower the soil bulk density and increase saturated hydraulic conductivity硫酸亚铁价格较低, 但主要产地在山东等其他地区, 其运输成本高于产品成本, 且单位面积使用量较大, 总成本较高
The price of ferrous sulfate is low, but its main production area is in Shandong and other areas, its transportation costs higher than the cost of the product, and the use of a large amount of unit area, the total cost is higher[25-27] 硫磺
Sulfur硫磺在土壤中的氧化过程为:
S→S2O32–→S4O62–→SO42–, 产生H+从而使土壤pH降低; 与苏打盐碱土中难溶的碳酸钙发生反应, 生成高溶解度的硫酸钙, 提高土壤活性钙含量, 提升土壤改良效果
The oxidation process of sulfur in soil is:
S→S2O32–→S4O62–→SO42–, which generates H+ and thus lowering soil pH. Sulfur reacts with insoluble CaCO3 in saline-sodic soils to produce highly soluble CaSO4, which increases the active calcium content of the soil and enhances the soil improvement effect硫磺对人畜无害, 不易对作物产生毒害现象, 此外硫磺可以从燃烧产生的含硫天然气和石油废气中回收利用, 降低含硫废气对环境造成污染
Sulfur is harmless to humans and animals, and is not easily toxic to crops. In addition, sulfate can be recycled from sulfater-containing natural gas and petroleum waste gas generated by combustion, reducing the pollution caused by sulfur-containing waste gas to the environment盐碱土中施用硫磺虽可降低土壤pH, 促进Ca2+溶解, 但在施用硫磺时, 要注意用量及其在土壤中的变化趋势, 避免过量施用造成土壤盐害加重, 从而对作物生长造成不利影响
Although the application of sulfur in saline soils can reduce soil pH and promote the dissolution of Ca2+, it is important to pay attention to the amount of sulfur and its dynamic trend in soil to avoid excessive application of sulfur to aggravate soil salt damage, which may adversely affect crop growth[28-30] 聚合硫酸铝铁
Poly-ferric aluminum sulfate主要成分为[Al(OH)nSO4]m[Fe2(OH)nSO4]m
聚合硫酸铝铁水解可产生大量H+, 降低土壤pH, 其阳离子的水解产物可以中和带负电荷的土壤胶体
The main components are [Al(OH)nSO4]m[Fe2(OH)nSO4]m.
It’s hydrolysis can produce large amounts of H+ and lowers soil pH, and the hydrolysis products of its cations neutralize negatively charged soil colloids可以促进土壤团聚, 改善土壤孔隙度、持水能力和渗透性, 促进土壤碳酸钙溶解
Poly-ferric aluminum sulfate can promote soil agglomeration, improve soil porosity, water holding capacity and permeability, and promote dissolution of CaCO3 in soil与硫酸铝相比, 聚合硫酸铝铁对水溶性钾离子含量的影响很小, 并且对苏打盐碱土中阳离子交换量影响较小
Compared to aluminium sulfate, Poly-ferric aluminum sulfatee has little effect on the water-soluble potassium ion content and less effect on cation exchange in soda saline soils[31] 硫酸铝
Aluminum sulfate硫酸铝溶液中Al3+水解产生H+, 使土壤pH降低; 所产生的H+与土壤中碳酸钙发生反应, 增加土壤溶液中Ca2+浓度, 从而与土壤胶体中Na+发生代换, 降低土壤胶体上Na+含量
相关式子如下:
铝离子改良剂+H2O=羟基铝离子+nH+
2H++CaCO3=Ca2++H2O+CO2
土壤胶体-2Na++Ca2+=土壤胶体-Ca2++2Na+
The hydrolysis of Al3+ in the aluminium sulfate solution produces H+, which lowers soil pH. The produced H+ reacts with CaCO3 in soil to increase the Ca2+ concentration in soil solution, thus substituting with Na+ in the soil colloid and reducing Na+ content on the soil colloid
The relevant equations are as follows:
Aluminum ion modifier + H2O = hydroxy aluminum ion + nH+
2H++CaCO3=Ca2++H2O+CO2
Soil colloid-2Na+ + Ca2+ = soil colloid-Ca2+ + 2Na+铝离子水解产物可促进土壤胶体凝聚, 进而增加土壤微团聚体数量。同时, 硫酸铝还可降低土壤容重, 增加土壤孔隙度, 改善和提高土壤性质
Aluminium ion hydrolysis products can promote soil colloid coalescence, thus increasing the number of soil microaggregates. Aluminium sulfate can also reduce soil bulk density, increase soil porosity, improve and enhance soil properties硫酸铝虽然已被广泛应用, 但对其长期效应的研究甚少, 是否会污染土壤环境和地下水资源尚无定论
Although aluminum sulfate has been widely used, little research has been done on its long-term effects, and whether it will pollute the soil environment and groundwater resources[32-37] 磷酸脲
Urea phosphate磷酸脲是由磷酸和尿素等摩尔反应生成, 反应方程式为
H3PO4+CO(NH2)2→CO(NH2)2-H3PO4
磷酸脲增加土壤中H+浓度, 降低土壤pH, 抑制NH4+→NH3↑+H+反应, 降低土壤对磷的固定作用
Urea phosphate is produced by equimolar reaction of phosphoric acid and urea, the reaction equation is:
H3PO4+CO(NH2)2→CO(NH2)2-H3PO4
Phosphate urea increases H+ concentration in soil, lowers soil pH, inhibits NH4+→NH3↑+H+ reaction, and reduces phosphorus fixation by soil磷酸脲中磷和氮的总养分含量可达60%以上, 可减少土壤挥发性氮损失, 增加土壤养分
The total content of phosphorus and nitrogen in urea phosphate is more than 60%, which reduces volatile losses of soil nitrogen, and increases soil nutrients contents磷酸脲的营养元素含量不均, 仅含有氮和磷, 在市面上仅作为肥料添加剂使用, 导致肥料利用率下降, 限制了其广泛应用
Urea phosphate has uneven nutrient content, containing only nitrogen and phosphorus, and is only used commercially as a fertilizer additive, resulting in lower fertilizer utilization and limiting its wide application[38-40] -
[1] 牛东玲, 王启基. 盐碱地治理研究进展[J]. 土壤通报, 2002, 33(6): 449−455 doi: 10.3321/j.issn:0564-3945.2002.06.014 NIU D L, WANG Q J. Research progress on saline-alkali field control[J]. Chinese Journal of Soil Science, 2002, 33(6): 449−455 doi: 10.3321/j.issn:0564-3945.2002.06.014
[2] QADIR M, TUBEILEH A, AKHTAR J, et al. Productivity enhancement of salt-affected environments through crop diversification[J]. Land Degradation & Development, 2008, 19(4): 429−453
[3] ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66−71 doi: 10.1016/S1360-1385(00)01838-0
[4] 李彬, 王志春, 孙志高, 等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154−158 doi: 10.3321/j.issn:1000-7601.2005.02.032 LI B, WANG Z C, SUN Z G, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 154−158 doi: 10.3321/j.issn:1000-7601.2005.02.032
[5] HARPER R J, DELL B, RUPRECHT J K, et al. Salinity and the reclamation of salinized lands[M]//STANTURF J A, CALLAHAM M A. Soils and Landscape Restoration. New York, USA: Academic Press, 2021: 193–208
[6] BELLO S K, ALAYAFI A H, AL-SOLAIMANI S G, et al. Mitigating soil salinity stress with gypsum and bio-organic amendments: a review[J]. Agronomy, 2021, 11(9): 1735 doi: 10.3390/agronomy11091735
[7] NEINA D. The role of soil pH in plant nutrition and soil remediation[J]. Applied and Environmental Soil Science, 2019, 2019: 1−9
[8] WU H H. Plant salt tolerance and Na+ sensing and transport[J]. The Crop Journal, 2018, 6(3): 215−225 doi: 10.1016/j.cj.2018.01.003
[9] 刘文政, 王遵亲, 熊毅. 我国盐渍土改良利用分区[J]. 土壤学报, 1978, 15(2): 101–112 LIU W Z, WANG Z Q, XIONG Y. Delimitation of salt-affected soils for reclamation and utilization in China[J]. Acta Pedologica Sinica, 1978, 15(2): 101–112
[10] 徐璐, 王志春, 赵长巍, 等. 东北地区盐碱土及耕作改良研究进展[J]. 中国农学通报, 2011, 27(27): 23−31 XU L, WANG Z C, ZHAO C W, et al. A review of saline-sodic soil and tillage amelioration in northeast of China[J]. Chinese Agricultural Science Bulletin, 2011, 27(27): 23−31
[11] 裘善文, 张柏, 王志春. 吉林省西部土地荒漠化现状、特征与治理途径研究[J]. 地理科学, 2003, 23(2): 188−192 doi: 10.3969/j.issn.1000-0690.2003.02.010 QIU S W, ZHANG B, WANG Z C. Status, features and management practices of land desertification in the west of Jilin Province[J]. Scientia Geographica Sinica, 2003, 23(2): 188−192 doi: 10.3969/j.issn.1000-0690.2003.02.010
[12] 俞仁培, 陈德明. 我国盐渍土资源及其开发利用[J]. 土壤通报, 1999, 30(4): 158−159, 177 doi: 10.3321/j.issn:0564-3945.1999.04.005 YU R P, CHEN D M. Saline soil resources in China and its development and utilization[J]. Chinese Journal of Soil Science, 1999, 30(4): 158−159, 177 doi: 10.3321/j.issn:0564-3945.1999.04.005
[13] WANG L, SEKI K, MIYAZAKI T, et al. The causes of soil alkalinization in the Songnen Plain of Northeast China[J]. Paddy and Water Environment, 2009, 7(3): 259−270 doi: 10.1007/s10333-009-0166-x
[14] 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述[J]. 陕西农业科学, 2015, 61(2): 67−71 doi: 10.3969/j.issn.0488-5368.2015.02.023 HU Y, HAN J C, ZHANG Y. Review of research on saline-alkali land improvement technology[J]. Shaanxi Journal of Agricultural Sciences, 2015, 61(2): 67−71 doi: 10.3969/j.issn.0488-5368.2015.02.023
[15] 关胜超. 松嫩平原盐碱地改良利用研究[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2017 GUAN S C. The research of reclamation of saline-sodic soil in Songnen Plain[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2017
[16] 刘建红. 盐碱地开发治理研究进展[J]. 山西农业科学, 2008, 36(12): 51−53 LIU J H. Research progress of development and control of saline land[J]. Journal of Shanxi Agricultural Sciences, 2008, 36(12): 51−53
[17] 潘峰, 刘滨辉, 袁文涛, 等. 不同改良剂对紫花苜蓿生长和盐渍化土壤的影响[J]. 东北林业大学学报, 2011, 39(5): 67−68, 76 doi: 10.3969/j.issn.1000-5382.2011.05.021 PAN F, LIU B H, YUAN W T, et al. Effects of different soil amendments on growth of alfalfa and salt-affected soil[J]. Journal of Northeast Forestry University, 2011, 39(5): 67−68, 76 doi: 10.3969/j.issn.1000-5382.2011.05.021
[18] RHOADES J, LOVEDAY J. Salinity in irrigated agriculture[J]. Agronomy, 1990, 30: 1089−1142
[19] 马巍, 王鸿斌, 赵兰坡. 不同硫酸铝施用条件下对苏打盐碱地水稻吸肥规律的研究[J]. 中国农学通报, 2011, 27(12): 31−35 MA W, WANG H B, ZHAO L P. Research on soda saline-alkali soil rice absorb fertilizer rule in conditions of different aluminum sulfate apply[J]. Chinese Agricultural Science Bulletin, 2011, 27(12): 31−35
[20] 孙宇男, 耿玉辉, 赵兰坡. 硫酸铝改良苏打盐碱土后各离子的变化[J]. 中国农学通报, 2011, 27(23): 255−258 SUN Y N, GENG Y H, ZHAO L P. The change of adding aluminum sulfate on saline alkali soil’s ion[J]. Chinese Agricultural Science Bulletin, 2011, 27(23): 255−258
[21] 徐鹏程, 冷翔鹏, 刘更森, 等. 盐碱土改良利用研究进展[J]. 江苏农业科学, 2014, 42(5): 293−298 doi: 10.3969/j.issn.1002-1302.2014.05.098 XU P C, LENG X P, LIU G S, et al. Research progress on improvement and utilization of saline-alkali soil[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 293−298 doi: 10.3969/j.issn.1002-1302.2014.05.098
[22] 范定慷, 王永亮, 张强, 等. 不同含硫物料对盐碱地的改良效果[J]. 山西农业科学, 2017, 45(5): 786−790 doi: 10.3969/j.issn.1002-2481.2017.05.29 FAN D K, WANG Y L, ZHANG Q, et al. Improvement effect of different sulfur bearing material on saline-alkali soil[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(5): 786−790 doi: 10.3969/j.issn.1002-2481.2017.05.29
[23] QADIR M, OSTER J D, SCHUBERT S, et al. Phytoremediation of sodic and saline-sodic soils[J]. Advances in Agronomy, 2007, 96: 197−247
[24] DING Z L, KHEIR A M S, ALI O A M, et al. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity[J]. Journal of Environmental Management, 2021, 277: 111388 doi: 10.1016/j.jenvman.2020.111388
[25] AHMAD S, GHAFOOR A, AKHTAR M E, et al. Ionic displacement and reclamation of saline‐sodic soils using chemical amendments and crop rotation[J]. Land Degradation & Development, 2013, 24(2): 170−178
[26] 黄高鉴, 王琼, 张强, 等. 含碳与含硫物料对内陆苏打盐化土的改良效果研究[J]. 中国土壤与肥料, 2020(5): 169−174 doi: 10.11838/sfsc.1673-6257.20266 HUANG G J, WANG Q, ZHANG Q, et al. Improving effects of different carbon and sulphur-containing amendments on inland soda saline soil[J]. Soil and Fertilizer Sciences in China, 2020(5): 169−174 doi: 10.11838/sfsc.1673-6257.20266
[27] 梁龙. 不同化学改良剂对重度苏打盐化土改良机理模拟研究[D]. 太原: 山西大学, 2015 LIANG L. Simulation study on mechanism of three soil conditioners improve heavy soda-saline soil[D]. Taiyuan: Shanxi University, 2015
[28] 汤俊芳, 李志洪, 徐明海. 不同改良物质对苏打盐碱土的改良效果[J]. 吉林农业大学学报, 2020, 42(2): 161−166 doi: 10.13327/j.jjlau.2020.4271 TANG J F, LI Z H, XU M H. Improvement effects of different conditioners on soda saline soil[J]. Journal of Jilin Agricultural University, 2020, 42(2): 161−166 doi: 10.13327/j.jjlau.2020.4271
[29] 曹莹菲, 赵毅, 赵文田, 等. 硫磺改良对宁夏引黄灌区盐碱土pH及微量元素有效性的影响研究[J]. 干旱地区农业研究, 2010, 28(3): 199−201 CAO Y F, ZHAO Y, ZHAO W T, et al. Research on effect of sulfur application on saline-alkaline soil pH and availability of trace elements in Huanghe River irrigation district in Ningxia[J]. Agricultural Research in the Arid Areas, 2010, 28(3): 199−201
[30] 赵晓进, 李亚芳, 买文选, 等. 硫磺改良盐渍土效果初探[J]. 干旱地区农业研究, 2008, 26(4): 74−78 ZHAO X J, LI Y F, MAI W X, et al. A preliminary study on amendment of saline soil through addition of sulfur[J]. Agricultural Research in the Arid Areas, 2008, 26(4): 74−78
[31] 田霄鸿, 南雄雄, 赵晓进, 等. 施用硫磺和ALA对碱性盐土上作物生长发育及土壤性质的影响[J]. 生态环境, 2008, 17(6): 2407−2412 TIAN X H, NAN X X, ZHAO X J, et al. Effect of ALA and sulfur application on crops growth and soil properties on the alkaline-saline soil[J]. Ecology and Environment, 2008, 17(6): 2407−2412
[32] 郜少敏. 生物炭和聚合硫酸铝铁对苏打盐碱土理化性质的影响[D]. 北京: 北京林业大学, 2019 GAO S M. Effect of biochar and polyaluminum ferric sulfate on physical and chemical properties of soda saline-alkali soil[D]. Beijing: Beijing Forestry University, 2019
[33] 潘艳男. 稻草和硫酸铝不同添加比例对苏打盐碱土有机碳固定效果的影响[D]. 长春: 吉林农业大学, 2013 PAN Y N. Effect of organic carbon sequestration on soda alkali-saline soil in straw and aluminum sulfate with different proportion[D]. Changchun: Jilin Agricultural University, 2013
[34] ZHAO X M, ZHU M L, GUO X X, et al. Organic carbon content and humus composition after application aluminum sulfate and rice straw to soda saline-alkaline soil[J]. Environmental Science and Pollution Research, 2019, 26(14): 13746−13754 doi: 10.1007/s11356-018-2270-1
[35] 赵作章, 陈劲松, 彭尔瑞, 等. 土壤盐渍化及治理研究进展[J]. 中国农村水利水电. [2022-12-02]. http://kns.cnki.net/kcms/detail/42.1419.TV.20220913.1452.082.html. ZHAO Z Z, CHEN J S, PENG E R, et al. Research progress on soil salinization and management[J]. China Rural Water and Hydropower. [2022-12-02]. http://kns.cnki.net/kcms/detail/42.1419.TV.20220913.1452.082.html.
[36] 赵兰坡, 王宇, 冯君, 等. 松嫩平原盐碱地改良利用: 理论与技术[M]. 北京: 科学出版社, 2013 ZHAO L P, WANG Y, FENG J, et al. Improvement and Utilization of Saline-alkali Land in Songnen Plain: Theory and Technology[M]. Beijing: Science Press, 2013
[37] ZHOU M, LIU X B, MENG Q F, et al. Additional application of aluminum sulfate with different fertilizers ameliorates saline-sodic soil of Songnen Plain in Northeast China[J]. Journal of Soils and Sediments, 2019, 19(10): 3521−3533 doi: 10.1007/s11368-019-02311-9
[38] 杨贵婷. 磷酸脲基复合肥制备工艺优化及其在滨海盐渍土中的磷素增效机制[D]. 泰安: 山东农业大学, 2021 YANG G T. Optimization of preparation technology of urea phosphate compound fertilizer and its synergistic mechanism of phosphorus in coastal saline soil[D]. Tai’an: Shandong Agricultural University, 2021
[39] 张莉, 王婧, 逄焕成. 碱胁迫下磷酸脲降低土壤pH值促进菠菜生长[J]. 农业工程学报, 2016, 32(2): 148−154 doi: 10.11975/j.issn.1002-6819.2016.02.022 ZHANG L, WANG J, PANG H C. Decreasing soil pH value to promote spinach growth by application of urea phosphate under alkaline stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 148−154 doi: 10.11975/j.issn.1002-6819.2016.02.022
[40] 贾燕燕. 磷酸脲及其应用效果进展[J]. 化工设计通讯, 2020, 46(7): 120, 225 JIA Y Y. Urea phosphate and its application effect progress[J]. Chemical Engineering Design Communications, 2020, 46(7): 120, 225
[41] BAUDER J W, BROCK T A. Irrigation water quality, soil amendment, and crop effects on sodium leaching[J]. Arid Land Research and Management, 2001, 15(2): 101−113 doi: 10.1080/15324980151062724
[42] LEVY G J, GOLDSTEIN D, MAMEDOV A I. Saturated hydraulic conductivity of semiarid soils: combined effects of salinity, sodicity, and rate of wetting[J]. Soil Science Society of America Journal, 2005, 69(3): 653−662 doi: 10.2136/sssaj2004.0232
[43] MAMEDOV A I, LEVY G J, SHAINBERG I, et al. Wetting rate, sodicity, and soil texture effects on infiltration rate and runoff[J]. Soil Research, 2001, 39(6): 1293 doi: 10.1071/SR01029
[44] 徐子棋, 许晓鸿. 松嫩平原苏打盐碱地成因、特点及治理措施研究进展[J]. 中国水土保持, 2018(2): 54−59, 69 doi: 10.14123/j.cnki.swcc.2018.0047 XU Z Q, XU X H. The cause of formation and characteristics of soda saline-alkaline land of the Songnen Plain and the study progress of control measures[J]. Soil and Water Conservation in China, 2018(2): 54−59, 69 doi: 10.14123/j.cnki.swcc.2018.0047
[45] WONG V N L, GREENE R S B, DALAL R C, et al. Soil carbon dynamics in saline and sodic soils: a review[J]. Soil Use and Management, 2010, 26(1): 2−11 doi: 10.1111/j.1475-2743.2009.00251.x
[46] 王碧胜, 于维水, 武雪萍, 等. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响[J]. 中国农业科学, 2019, 52(9): 1553−1563 doi: 10.3864/j.issn.0578-1752.2019.09.007 WANG B S, YU W S, WU X P, et al. Effect of straw addition on the formation of aggregates and accumulation of organic carbon in dryland soil[J]. Scientia Agricultura Sinica, 2019, 52(9): 1553−1563 doi: 10.3864/j.issn.0578-1752.2019.09.007
[47] INOUE K, ZHAO L P, HUANG P M. Adsorption of humic substances by hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes[J]. Soil Science Society of America Journal, 1990, 54(4): 1166−1172 doi: 10.2136/sssaj1990.03615995005400040042x
[48] MITRAN T, MANI P K, BANDYOPADHYAY P K, et al. Effects of organic amendments on soil physical attributes and aggregate-associated phosphorus under long-term rice-wheat cropping[J]. Pedosphere, 2018, 28(5): 823−832 doi: 10.1016/S1002-0160(17)60423-5
[49] 可传豪. 沸石的酸化改性及其对苏打碱土的改良效果研究[D]. 沈阳: 沈阳农业大学, 2020 KE C H. Acidification of zeolite and its improvement effect on soda alkaline earth[D]. Shenyang: Shenyang Agricultural University, 2020
[50] 孙梅, 黄运湘, 孙楠, 等. 农田土壤孔隙及其影响因素研究进展[J]. 土壤通报, 2015, 46(1): 233−238 doi: 10.19336/j.cnki.trtb.2015.01.039 SUN M, HUANG Y X, SUN N, et al. Advance in soil pore and its influencing factors[J]. Chinese Journal of Soil Science, 2015, 46(1): 233−238 doi: 10.19336/j.cnki.trtb.2015.01.039
[51] 肖帆. 苏打盐碱土高效改良剂筛选及改良效果研究[D]. 长春: 吉林农业大学, 2019 XIAO F. Study on screening and improving effect of high efficiency improvers for soda saline-alkali soil[D]. Changchun: Jilin Agricultural University, 2019
[52] DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100/101/102: 475−502
[53] ALI Y, ASLAM Z. Use of environmental friendly fertilizers in saline and saline sodic soils[J]. International Journal of Environmental Science & Technology, 2005, 2(1): 97−98
[54] 佘冬立, 刘营营, 俞双恩, 等. 不同土地利用方式下土壤水力性质对比研究[J]. 农业机械学报, 2014, 45(9): 175−179, 186 doi: 10.6041/j.issn.1000-1298.2014.09.029 SHE D L, LIU Y Y, YU S E, et al. Comparison of soil hydraulic properties under different land use pattern[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 175−179, 186 doi: 10.6041/j.issn.1000-1298.2014.09.029
[55] 王宇, 韩兴, 赵兰坡, 等. 苏打盐碱土结构性与持水特性的改良研究[J]. 吉林农业大学学报, 2006, 28(5): 545−548 doi: 10.3969/j.issn.1000-5684.2006.05.018 WANG Y, HAN X, ZHAO L P, et al. Study on improving structure and water holding characteristics of soda alkali-saline soil[J]. Journal of Jilin Agricultural University, 2006, 28(5): 545−548 doi: 10.3969/j.issn.1000-5684.2006.05.018
[56] 罗进群. 绿矾对苏打盐碱土的改良研究[D]. 广州: 暨南大学, 2014 LUO J Q. Improvement of soda saline-sodic soils using copperas[D]. Guangzhou: Jinan University, 2014
[57] HUSSAIN T, MIAN M A. Effect of sulphuric acid and superphosphate on the chemical properties of a saline-sodic soil in relation to rice production[J]. Pakistan Journal of Soil Science, 1983, 1: 19−20
[58] 李国柱. 盐碱土壤调理剂研究初探[J]. 新疆农垦科技, 2020, 43(12): 29−32 doi: 10.3969/j.issn.1001-361X.2020.12.021 LI G Z. Preliminary study on saline-alkali soil conditioner[J]. Xinjiang Farm Research of Science and Technology, 2020, 43(12): 29−32 doi: 10.3969/j.issn.1001-361X.2020.12.021
[59] 王宇, 韩兴, 赵兰坡. 硫酸铝对苏打盐碱土的改良作用研究[J]. 水土保持学报, 2006, 20(4): 50−53 doi: 10.3321/j.issn:1009-2242.2006.04.012 WANG Y, HAN X, ZHAO L P. Study on function of aluminum sulfate on soda alkali-saline soil improvement[J]. Journal of Soil and Water Conservation, 2006, 20(4): 50−53 doi: 10.3321/j.issn:1009-2242.2006.04.012
[60] 马玉涛, 苑佰飞, 张鹏, 等. 硫酸铝对新开垦苏打盐碱水田的快速改良和培肥效果[J]. 水土保持学报, 2020, 34(2): 325−330, 339 doi: 10.13870/j.cnki.stbcxb.2020.02.046 MA Y T, YUAN B F, ZHANG P, et al. Effects of aluminium sulphate on rapid amelioration and fertility improvement of newly reclaimed soda saline-alkali paddy field[J]. Journal of Soil and Water Conservation, 2020, 34(2): 325−330, 339 doi: 10.13870/j.cnki.stbcxb.2020.02.046
[61] 魏博微. 不同措施对大安市苏打碱土的改良效果及对植物生长的影响[D]. 长春: 吉林农业大学, 2011 WEI B W. The effect of different measures on amelioration to Da’an soda-alkali soil and plant growth[D]. Changchun: Jilin Agricultural University, 2011
[62] CHUN S, NISHIYAMA M, MATSUMOTO S. Sodic soils reclaimed with by-product from flue gas desulfurization: corn production and soil quality[J]. Environmental Pollution, 2001, 114(3): 453−459 doi: 10.1016/S0269-7491(00)00226-8
[63] 范定慷. 不同含硫物料对苏打盐化土的改良效果研究[D]. 太原: 山西大学, 2018 FAN D K. Study on the improvement effect of different sulfur-containing materials on soda-saline soil[D]. Taiyuan: Shanxi University, 2018
[64] 刘刚, 李新平, 张永宏, 等. 银北地区硫磺改良盐碱土初探[J]. 干旱地区农业研究, 2008, 26(4): 79−82 LIU G, LI X P, ZHANG Y H, et al. Primary study on function of sulfur on saline-alkali soil in Yinbei Area[J]. Agricultural Research in the Arid Areas, 2008, 26(4): 79−82
[65] VADYANINA A F, ROI P K. Changes in aggregates status of saline sodic soil after their reclamation by different methods[J]. Vest Mask. Univ. Ser, 1974, 6: 111−117
[66] BOWER C A, SWARNER L R, MARSH A W, et al. The improvement of an alkali soil by treatment with manure and chemical amendments: Owyhee Irrigation Project, Oregon[J]. Station Technical Bulletin, 1951, 22: 1−37
[67] YAHIA T A, MIYAMOTO S, STROEHLEIN J L. Effect of surface applied sulfuric acid on water penetration into dry calcareous and sodic soils[J]. Soil Science Society of America Journal, 1975, 39(6): 1201−1204 doi: 10.2136/sssaj1975.03615995003900060044x
[68] HAQ I. Reclamation of saline-sodic soil by amendments[D]. Faisalabad: West Paksitant Agricultural University, 1966
[69] RENGASAMY P. Soil processes affecting crop production in salt-affected soils[J]. Functional Plant Biology, 2010, 37(7): 613 doi: 10.1071/FP09249
[70] CARMO J B, DE URZEDO D I, FERREIRA FILHO P J, et al. CO2 emission from soil after reforestation and application of sewage sludge[J]. Bragantia, 2014, 73(3): 312−318 doi: 10.1590/1678-4499.0093
[71] 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829−4838 YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829−4838
[72] LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623−1627 doi: 10.1126/science.1097396
[73] ZHANG J B, SONG C C, YANG W Y. Land use effects on the distribution of labile organic carbon fractions through soil profiles[J]. Soil Science Society of America Journal, 2006, 70(2): 660−667 doi: 10.2136/sssaj2005.0007
[74] 李永涛, 戴军, Thierryecquer, 等. 不同形态有机碳的有效性在两种重金属污染水平下水稻土壤中的差异[J]. 生态学报, 2006, 26(1): 138−145 doi: 10.3321/j.issn:1000-0933.2006.01.020 LI Y T, DAI J, THIERRYECQUER, et al. Availability of different organic carbon fractions of paddy soils under two heavy metal contamination levels[J]. Acta Ecologica Sinica, 2006, 26(1): 138−145 doi: 10.3321/j.issn:1000-0933.2006.01.020
[75] MCLAUCHLAN K K, HOBBIE S E. Comparison of labile soil organic matter fractionation techniques[J]. Soil Science Society of America Journal, 2004, 68(5): 1616−1625 doi: 10.2136/sssaj2004.1616
[76] 朱孟龙, 赵兰坡, 赵兴敏, 等. 稻草和硫酸铝添加对苏打盐碱土活性有机碳及有机无机复合体的影响[J]. 水土保持学报, 2015, 29(4): 284−288 doi: 10.13870/j.cnki.stbcxb.2015.04.051 ZHU M L, ZHAO L P, ZHAO X M, et al. Effects of rice straw and aluminum sulfate on labile organic carbon and organo-mineral complexes in soda saline-alkaline soil[J]. Journal of Soil and Water Conservation, 2015, 29(4): 284−288 doi: 10.13870/j.cnki.stbcxb.2015.04.051
[77] 张鑫. 硫酸铝改良剂对苏打盐碱土固碳性能的研究[D]. 长春: 吉林农业大学, 2019 ZHANG X. Study on the effect of aluminum sulfate improver on carbon sequestration of soda-alkali soil[D]. Changchun: Jilin Agricultural University, 2019
[78] 李月芬, 杨有德, 赵兰坡. 不同硫酸铝用量对苏打盐碱土磷素形态及吸附特性的影响[J]. 土壤通报, 2008, 39(5): 1120−1125 doi: 10.3321/j.issn:0564-3945.2008.05.032 LI Y F, YANG Y D, ZHAO L P. Effect of aluminum sulfate on the forms and adsorption properties of phosphorus in soda saline-alkali soil[J]. Chinese Journal of Soil Science, 2008, 39(5): 1120−1125 doi: 10.3321/j.issn:0564-3945.2008.05.032
[79] 赵兰坡. 施用作物秸秆对土壤的培肥作用[J]. 土壤通报, 1996, 27(2): 76−78 doi: 10.19336/j.cnki.trtb.1996.02.010 ZHAO L P. Fertilization effect of crop straw on soil[J]. Chinese Journal of Soil Science, 1996, 27(2): 76−78 doi: 10.19336/j.cnki.trtb.1996.02.010
[80] 信乃诠. 中国北方旱区农业研究[M]. 北京: 中国农业出版社, 2002 XIN N Q. The Study on Dryland Agriculture in North China[M]. Beijing: China Agriculture Press, 2002
[81] 李裕元, 邵明安. 土壤翻耕对坡地水分转化与产流产沙特征的影响[J]. 农业工程学报, 2003, 19(1): 46−50 doi: 10.3321/j.issn:1002-6819.2003.01.012 LI Y Y, SHAO M A. Impact of tillage on water transformation and runoff-sediment-yielding characteristics on slope land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(1): 46−50 doi: 10.3321/j.issn:1002-6819.2003.01.012
[82] 张凌云, 张宪法, 翟衡. 土壤因子对植物缺铁失绿的影响[J]. 土壤通报, 2002, 33(1): 74−77 doi: 10.19336/j.cnki.trtb.2002.01.021 ZHANG L Y, ZHANG X F, ZHAI H. Effects of soil factors on plant chlorosis due to iron deficit[J]. Chinese Journal of Soil Science, 2002, 33(1): 74−77 doi: 10.19336/j.cnki.trtb.2002.01.021
[83] SCHMID NESET T S, BADER H P, SCHEIDEGGER R, et al. The flow of phosphorus in food production and consumption — Linköping, Sweden, 1870−2000[J]. Science of the Total Environment, 2008, 396(2/3): 111−120
[84] 李廷轩, 叶代桦, 张锡洲, 等. 植物对不同形态磷响应特征研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1536−1546 doi: 10.11674/zwyf.17305 LI T X, YE D H, ZHANG X Z, et al. Research advances on response characteristics of plants to different forms of phosphorus[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1536−1546 doi: 10.11674/zwyf.17305
[85] 张倩雯, 丁广大, 王效华, 等. 植物种子植酸研究进展[J]. 植物科学学报, 2016, 34(5): 814−820 doi: 10.11913/PSJ.2095-0837.2016.50814 ZHANG Q W, DING G D, WANG X H, et al. Research progress on plant seed phytate[J]. Plant Science Journal, 2016, 34(5): 814−820 doi: 10.11913/PSJ.2095-0837.2016.50814
[86] PENN C, CAMBERATO J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants[J]. Agriculture, 2019, 9(6): 120 doi: 10.3390/agriculture9060120
[87] REDDY M P, SHAH M T, PATOLIA J S. Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils[J]. Industrial Crops and Products, 2008, 28(3): 273−278 doi: 10.1016/j.indcrop.2008.03.001
[88] 姚晓芹, 马文奇, 楚建周. 磷酸对石灰性土壤pH及微量元素有效性的影响[J]. 土壤肥料, 2005(2): 14−16, 20 YAO X Q, MA W Q, CHU J Z. Effect of phosphoric acid on pH and micronutrient availability in calcareous soil[J]. Soils and Fertilizers, 2005(2): 14−16, 20
[89] 李月芬, 杨有德, 赵兰坡. 硫酸铝改良剂对苏打盐碱土磷素形态的影响[J]. 水土保持学报, 2006, 20(4): 44−49 doi: 10.3321/j.issn:1009-2242.2006.04.011 LI Y F, YANG Y D, ZHAO L P. Effect of aluminum sulfate on forms of phosphorus in soda saline-alkali soil[J]. Journal of Soil and Water Conservation, 2006, 20(4): 44−49 doi: 10.3321/j.issn:1009-2242.2006.04.011
[90] MIKKELSEN R L, JARRELL W M. Application of urea phosphate and urea sulfate to drip-irrigated tomatoes grown in calcareous soil[J]. Soil Science Society of America Journal, 1987, 51(2): 464 doi: 10.2136/sssaj1987.03615995005100020039x
[91] SUN J K, HE L, LI T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress[J]. PLoS One, 2019, 14(7): e0220340 doi: 10.1371/journal.pone.0220340
[92] 姚淑姣. 醋糟和粉煤灰对苏打盐碱土的改良效果研究[D]. 太谷: 山西农业大学, 2016 YAO S J. Effects of vinegar lees and fly ash on soda salinized soil[D]. Taigu: Shanxi Agricultural University, 2016
[93] 李秀军. 松嫩平原西部土地盐碱化与农业可持续发展[J]. 地理科学, 2000, 20(1): 51−55 doi: 10.13249/j.cnki.sgs.2000.01.009 LI X J. The alkili-saline land and agricultural sustainable development of the western Songnen Plain in China[J]. Scientia Geographica Sinica, 2000, 20(1): 51−55 doi: 10.13249/j.cnki.sgs.2000.01.009
[94] 田奉俊, 金玉女, 赵世龙, 等. 硫酸亚铁对水稻秧苗素质影响的分析[J]. 农业与技术, 1999, 19(5): 25−30 TIAN F J, JIN Y N, ZHAO S L, et al. Analysis of the effect of ferrous sulfate on rice seedling quality[J]. Agriculture & Technology, 1999, 19(5): 25−30
[95] 钟磊. 实验室酸性废液改良碱土与植物生长效果的试验研究[D]. 呼和浩特: 内蒙古农业大学, 2019 ZHONG L. Experimental study of improvement of alkaline soil and plant growth effect by laboratory acidic waste liquid[D]. Hohhot: Inner Mongolia Agricultural University, 2019
[96] 隋世江, 张海楼, 陈丛斌. 脱硫石膏与硫酸亚铁配施对苏打盐碱水田的改良效果[J]. 辽宁农业科学, 2022(2): 79−81 SUI S J, ZHANG H L, CHEN C B. Improvement effect of combined application of desulfurized gypsum and ferrous sulfate on soda saline-alkali paddy field[J]. Liaoning Agricultural Sciences, 2022(2): 79−81
[97] 王宇, 韩兴, 赵兰坡, 等. 硫酸铝对苏打盐碱土化学性质及水稻产量的影响[J]. 吉林农业大学学报, 2006, 28(6): 652−655, 659 doi: 10.3969/j.issn.1000-5684.2006.06.016 WANG Y, HAN X, ZHAO L P, et al. Effect of aluminum sulfate on chemical characteristics of soda alkali-saline soil and rice yield[J]. Journal of Jilin Agricultural University, 2006, 28(6): 652−655, 659 doi: 10.3969/j.issn.1000-5684.2006.06.016
[98] 汤俊芳. 碱土水稻直接育苗与改良同步效果的初步研究[D]. 长春: 吉林农业大学, 2018 TANG J F. Preliminary study on synchronization of rice seedling raising and improvement in saline alkaline soil[D]. Changchun: Jilin Agricultural University, 2018
[99] 陈丛斌, 张海楼, 隋世江. 施用浓硫酸对苏打盐碱地种植水稻农艺性状及产量的影响[J]. 辽宁农业科学, 2018(3): 39−41 doi: 10.3969/j.issn.1002-1728.2018.03.012 CHEN C B, ZHANG H L, SUI S J. Effect of concentrated sulfuric acid on agronomic traits and yield of rice planted in saline alkali land[J]. Liaoning Agricultural Sciences, 2018(3): 39−41 doi: 10.3969/j.issn.1002-1728.2018.03.012
[100] 华利民, 张海楼, 刘子琪, 等. 化学及生物物质改良松嫩平原苏打盐碱地技术探讨[J]. 辽宁农业科学, 2021(1): 69−71 doi: 10.3969/j.issn.1002-1728.2021.01.019 HUA L M, ZHANG H L, LIU Z Q, et al. Discussion on the technology of improving soda saline soil in Songnen Plain by chemical and biological[J]. Liaoning Agricultural Sciences, 2021(1): 69−71 doi: 10.3969/j.issn.1002-1728.2021.01.019
-
期刊类型引用(11)
1. 高萌,李大智,马建,宋俏博,陈欣. 有机物料混施对盐碱土壤改良与溶解性有机质荧光特征的影响. 农业环境科学学报. 2025(02): 440-451 . 百度学术
2. 陈欣,王西娜,田军仓,柳雪,李丹丹,王莉莉,刘懂伟,谭军利. 施用硫肥对盐碱地盐分、pH及麒麟西瓜产量、品质的影响. 农业科学研究. 2024(01): 31-37 . 百度学术
3. 顾鑫. 秸秆还田对苏打盐碱土pH、电导率及玉米生长的影响. 青海农林科技. 2024(02): 104-107+116 . 百度学术
4. 巩晓芳,赵毅,彭轶楠,陈玉坤,王治业,薛林贵,祝英. 新疆天山盐碱荒地土壤开垦种植效应分析. 土壤通报. 2024(03): 622-633 . 百度学术
5. 王树玉,张佳麒,程梓峻,李仁明,薛佳妮,宁尚栋,余徐明,侯佳宝,石勇,刘会芳,王明明,梁正伟. 苏打盐碱地稻米品质研究进展与展望. 农业资源与环境学报. 2024(04): 856-867 . 百度学术
6. 白炬,田伟辰,仇子健,魏欣宇,薛晓蓉,黄高鉴,王永亮,杨治平. 不同氮肥类型及用量对盐碱耕地青贮玉米产量及饲用品质的影响. 植物营养与肥料学报. 2024(09): 1683-1693 . 百度学术
7. 王丽娜,王迪,任翠梅,顾鑫,张宏宇,李娜,齐国超,冯鹏. 土壤改良剂的应用现状. 中国农学通报. 2024(30): 84-88 . 百度学术
8. 李晓瑾,郭丽琢,高玉红,剡斌,何振邦,姜雪,马敬. 不同植物对河西盐渍土的改良效果. 核农学报. 2024(12): 2442-2450 . 百度学术
9. 孙正骁,贾舒然,李明堂,杨晋霞,王一冰,陈元晖,范旭红. 铝改性水热炭的制备及其对苏打盐碱土的改良特征. 吉林农业大学学报. 2024(05): 850-859 . 百度学术
10. 何振邦,郭丽琢,高玉红,剡斌,马敬,李晓瑾. 三种盐生植物对河西地区盐渍土理化性状的改良作用. 甘肃农业大学学报. 2024(06): 210-217 . 百度学术
11. 吴帅兵,苗琪,王红叶,王韵弘,李俊超,宋华峰,刘玉明,王卫东,崔振岭. 优化氮肥管理提高滨海盐渍土春玉米产量、氮肥利用率及经济效益研究. 植物营养与肥料学报. 2023(09): 1573-1586 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 875
- HTML全文浏览量: 360
- PDF下载量: 146
- 被引次数: 24