高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响

周进华, 李有涵, 张兴, 胡荣海, 郭华春

周进华, 李有涵, 张兴, 胡荣海, 郭华春. 高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响[J]. 中国生态农业学报 (中英文), 2023, 31(5): 750−764. DOI: 10.12357/cjea.20220658
引用本文: 周进华, 李有涵, 张兴, 胡荣海, 郭华春. 高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响[J]. 中国生态农业学报 (中英文), 2023, 31(5): 750−764. DOI: 10.12357/cjea.20220658
ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764. DOI: 10.12357/cjea.20220658
Citation: ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764. DOI: 10.12357/cjea.20220658
周进华, 李有涵, 张兴, 胡荣海, 郭华春. 高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响[J]. 中国生态农业学报 (中英文), 2023, 31(5): 750−764. CSTR: 32371.14.cjea.20220658
引用本文: 周进华, 李有涵, 张兴, 胡荣海, 郭华春. 高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响[J]. 中国生态农业学报 (中英文), 2023, 31(5): 750−764. CSTR: 32371.14.cjea.20220658
ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764. CSTR: 32371.14.cjea.20220658
Citation: ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764. CSTR: 32371.14.cjea.20220658

高温胁迫对不同耐热型马铃薯块茎形成期生长和光合特性的影响

基金项目: 国家马铃薯产业技术体系(CARS-09-15P)和云南(昆明)院士专家工作站专项(YSZJGZZ-2021058)资助
详细信息
    作者简介:

    周进华, 主要研究方向为马铃薯育种与栽培。E-mail: zjh75@qq.com

    通讯作者:

    郭华春, 主要研究方向为薯类作物育种与栽培。E-mail: ynghc@126.com

  • 中图分类号: S532

Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress

Funds: This study was supported by China Agriculture Research System (CARS-09-15P) and the Special Project of Yunnan (Kunming) Academician Expert Workstation (YSZJGZZ-2021058).
More Information
  • 摘要: 全球变暖对粮食生产的负面影响日益受到关注, 马铃薯是重要的粮菜兼用作物, 对高温敏感。探究耐热和热敏感型马铃薯资源在响应高温胁迫时的生理差异, 可为深入研究马铃薯耐热机制提供理论依据。本研究以耐热型品系‘滇187’(D187)和热敏感型品种‘青薯9号’(QS9)为材料, 在30 ℃高温胁迫处理2周后, 分析2个马铃薯材料在块茎形成期的植株形态和光合作用差异。在植株形态方面, 高温使马铃薯植株株高和节间长度显著(P<0.01)增加, 叶片直立, 叶片长度和面积缩小, 株型更为紧凑; 与QS9相比, D187叶片数和披垂角更为稳定。高温胁迫下马铃薯植株水分散失加快, 水分利用率降低, 对CO2吸收和低浓度CO2利用能力减弱, 呼吸作用消耗增加, 1,5-二磷酸核酮糖(RuBP)的再生能力减弱, 黑暗下的叶绿素荧光参数降低, 光下叶绿素荧光参数升高, 对有限强光的利用能力增强。高温胁迫下, D187叶片具有更高的净光合速率、水分利用效率、最大净光合速率、表观量子效率、羧化效率、最大羧化速率、最大电子传递速率, 更低的光补偿点和暗呼吸速率, 说明D187光合能力更强、弱光利用率更高、呼吸消耗更低、碳同化能力更强。D187的形态和光合作用指标中, 可塑性指数大于0.5的参数均多于QS9, 平均可塑性指数(0.448)高于QS9 (0.418), 说明耐热型马铃薯能够更好地通过调节植株形态和光合作用来适应高温环境。
    Abstract: The potato (Solanum tuberosum L.) is an important grain and vegetable crop. Global warming affects its growth and production owing to its high temperature sensitivity. Investigating the physiological differences between heat-tolerant and heat-sensitive resources can help rationalize the mechanism of high-temperature resistance in potatoes. The parameters related to the morphology and photosynthesis of the heat-tolerant line ‘Dian 187’ (D187) and the heat-sensitive cultivar ‘Qingshu 9’ (QS9) were measured and analyzed after two weeks of high-temperature stress at 30 ℃. Under high-temperature stress, the plant height and internode length were increased, the leaves were upright, the length and area of leaves were reduced, and the plant architecture was more compact. The extent of change in the leaf number and bend angle in D187 was greater than that in QS9. The high-temperature affected potato net photosynthetic rate, water use efficiency, maximum net photosynthetic rate, apparent quantum yield, carboxylation efficiency, maximum carboxylation rate, and maximum electron transport rate, which were lower in QS9 than those in D187 under high-temperature stress. Furthermore, D187 had a lower light compensation point and dark respiration rate than the heat-sensitive cultivar (QS9), and as a result of its strong adaptability, the number of indexes with phenotypic plasticity index exceeding 0.5 in D187 was more than that in QS9. The mean phenotypic plasticity index of morphology, photosynthesis, and yield was 0.448 in D187, which was higher than that in QS9 (0.418). Furthermore, under high-temperature stress, the ability to absorb CO2 and low-concentration CO2 utilization were weakened, along with the acceleration of water loss and the reduction of water use efficiency in potato plants. Consequently, respiratory consumption increased, and the regeneration abilities of ribulose 1,5-diphosphate (RuBP) and chlorophyll fluorescence parameters were reduced in the dark. In contrast, chlorophyll fluorescence parameters increased under light, and the utilization ability of limited light was also enhanced. Differences in morphology and photosynthetic self-adaptation abilities are the main reasons for the difference in high-temperature resistance between heat-tolerant and heat-sensitive resources, which will help clarify the mechanism of high-temperature adaptability in potato plants and provide references for the selection of cultivars with high-temperature resistance and innovation in cultivation techniques.
  • 全球变暖日益加剧, 在过去的50年中, 气温升高的速度是20世纪的2倍, 到21世纪末, 全球平均气温预计将上升1.5~4.5 ℃, 部分地区已出现极端高温气候[1-2]。目前, 马铃薯(Solanum tuberosum L.)已成为谷类作物外, 最重要的粮食作物。其喜性冷凉, 对高温敏感。高温对马铃薯植株形态、光合作用、块茎形成和产量品质等均有显著影响。与茎叶相比, 马铃薯的块茎发育过程对高温更为敏感, 当环境温度超过25 ℃时, 块茎则停止生长, 温度超过39 ℃时, 茎叶停止生长[3]。Kooman等[4]发现, 高温会限制马铃薯叶片的扩展, 导致叶面积缩小, 同时影响茎的伸长。

    光合作用是作物生长、产量和品质形成的前提, 也是响应高温胁迫最为敏感的生理过程之一, 因此光合作用相关生理参数可作为评价作物高温抗性的重要指标[5-6]。高温胁迫对植物的光反应和暗反应均有明显影响, 不同植物或同种植物的不同耐热型种质资源在受到高温胁迫时, 叶片光合特征参数的变化规律也不一致[7]。马铃薯光合作用的最低温度为0~7 ℃, 最适温度为16~25 ℃, 最高温度为40 ℃[8]。马铃薯净光合速率与暗呼吸速率比例最适的环境温度为16~20 ℃, 当温度每升高10 ℃, 暗呼吸速率增加1倍[9]。欧洲大部分马铃薯栽培种光合作用的最适温度为20 ℃, 当温度降至10 ℃时, 净光合速率降低25%; 当温度在20 ℃的基础上每增加5 ℃时, 净光合速率降低大约25%, 当温度高于30 ℃时, 马铃薯植株的净光合速率降低至0 [10]。高温会抑制马铃薯的光合作用, 与耐热型马铃薯相比, 热敏感型马铃薯在40 ℃下处理9 d后, 叶片的CO2固定受到更严重的抑制, 并且光合色素损失更为明显[11]。Wang等[12]以‘陇薯3号’为研究对象, 分别在马铃薯苗期和分枝期进行6 h的高温处理, 发现高温胁迫对分枝期马铃薯光合作用的影响大于苗期。

    目前, 高温胁迫对马铃薯几个关键生长时期叶片光合作用的影响已有报道, 但针对块茎发育时期的相关研究鲜有报道。块茎形成期作为马铃薯经济产量形成最基础的时期, 在生产中具有决定性作用, 同时耐热型和热敏感型马铃薯种质资源在高温胁迫下的光合特性差异还不明确。本研究在马铃薯块茎形成期, 比较分析高温胁迫下热敏感型品种‘青薯9号’和耐热型品系‘滇187’的植株形态、结薯性状和叶片光合特性的差异, 从形态和光合特性方面综合解析马铃薯耐热性存在差异的生理机理, 为马铃薯高温抗性的机制研究提供参考依据, 为耐热品种选育奠定理论基础。

    供试马铃薯材料由云南农业大学薯类研究所提供, 分别为热敏感型品种‘青薯9号’和耐热型品系‘滇187’[13]

    试验材料采用盆栽种植于人工气候箱(赛福实验仪器公司)内, 培养箱长、宽、高分别为160 cm、60 cm、120 cm, 采用LED植物生长灯垂直光照, 控光范围: 0~200 μmol∙m−2∙s−1, 控温范围: 10~50 ℃, 控湿范围: 40%~95%。营养钵高15 cm, 直径12 cm, 容积为1 L。单个培养箱可放置65盆。

    将生长一致的马铃薯组培苗顶芽转接于MS培养基中培养20 d [16 h光照/8 h黑暗、光强度100 μmol∙m−2∙s−1、温度(20±1) ℃], 随后将组培苗移栽至经高温灭菌的基质土中, 置于人工气候箱中炼苗20 d [16 h光照/8 h黑暗、光强度为100 μmol∙m−2∙s−1、温度(20±0.5) ℃、相对湿度为75%]。选择生长一致的植株进行试验处理, 将人工气候箱培养条件调整为12 h光照/12 h黑暗, 光强200 μmol∙m−2∙s−1, 相对湿度45%, 温度(20±0.5) ℃, 在此条件下培养至植株匍匐茎形成期。再选取20株生长势一致的植株进行高温处理[(30±0.5) ℃], 20株继续在(20±0.5) ℃下培养。2个处理除温度不同外, 其余环境因子均相同。试验处理期间每天浇水, 保证土壤相对含水量在田间持水量的80%。

    植株高温处理2周后(块茎形成期), 每个处理选取10株进行形态指标测量。株高采用直尺测量植株基部到顶端生长点的长度(cm); 茎粗采用游标卡尺测量植株倒4叶与倒5叶间主茎的直径(mm); 叶面积采用长宽系数法, 用直尺测定植株倒4叶顶小叶的最长和最宽, 并采用公式计算: 叶长×叶宽×0.76 (cm2); 叶宽长比=叶宽/叶长; 叶全长采用直尺测定植株倒4叶的叶柄基部到叶尖的长度(cm); 叶夹角用量角器测定植株倒4叶的叶柄与主茎之间的角度(°); 叶垂角用量角器测定植株倒4叶的叶尖到叶柄基部的直线与主茎之间的角度(°); 披垂角=叶垂角−叶夹角(°); 节间长用直尺测定每两个节之间的间距, 并计算平均值(cm); 小叶数统计植株倒4叶顶小叶和侧小叶数量; 叶片数为马铃薯植株绿色复叶的数量。

    在开展植株形态指标测定的同时, 使用Li-6400XT光合-荧光记录仪(Li-Cor, USA)对叶片气体交换参数和叶绿素荧光参数进行测定, 所有参数均选择植株倒4叶的顶小叶进行测定。净光合速率、光响应曲线、CO2响应曲线、光诱导曲线和叶绿素荧光参数的测定均参照Li-6400XT光合-荧光记录仪的操作说明, 测定完成后, 参照双升普等[14]的方法进行相关光合特征参数计算。

    当对照组处于块茎成熟期时, 收获各处理组植株薯块, 用分析天平称量马铃薯的单株产量(g)、统计单株结薯数, 计算平均单个薯重=单株产量/单株结薯数(g), 每个处理组选取9个植株进行数据统计。

    在高温和适温处理测定指标的所有生物学重复中找出最大值和最小值, 并用公式计算: 可塑性指数=(最大值−最小值)/最大值。

    使用Excel 2019进行数据处理, SPSS 26.0进行数据统计分析, 用Origin 2020b进行主成分分析, 用Sigmaplot 14.0和GraphPad Prism 8拟合曲线及作图。

    ‘青薯9号’(QS9)在20 ℃正常结薯, 单株结薯重量为13.05 g、单株结薯数目为1.89个、单个薯平均重量为8.65 g; 而QS9在30 ℃仅形成少量匍匐茎, 不能结薯(图1, 图2)。‘滇187’(D187)在20 ℃下, 单株结薯重量为22.89 g、单株结薯数目为2.89个、单个薯平均重量8.6 g; 与QS9不同, D187在30 ℃下, 依然可以结薯, 但结薯性状各项指标均显著(P<0.01)下降(图2)。根据上述结果, 将QS9归为热敏感型种质, 而将D187归为耐热型种质, 本研究将利用这2个品种(系)开展后续研究。

    图  1  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的结薯表现
    Figure  1.  Tuberization of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    图  2  ‘青薯9号’和‘滇187’马铃薯在正常温度(20 ℃)和高温(30 ℃)下的产量性状
    **表示两温度间差异极显著(P<0.01, n=9)。** indicates significant difference between 20 ℃ and 30 ℃ (P<0.01, n=9).
    Figure  2.  Yield characters of potato materials QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    与20 ℃相比, 在30 ℃下生长的QS9和D187植株株高显著(P<0.01)增加, 增长比例分别为49.05%和49.33% (图3, 图4a), 但节数没有显著变化(图4b), 但节间显著伸长(图4c)。与20 ℃相比, 在30 ℃下QS9和D187的茎粗没有显著改变(图4d), QS9的叶片数目显著(P<0.05)减少, 而D187没有显著改变(图4e)。马铃薯的叶面积在高温下显著(P<0.01)缩小, QS9和D187的叶面积分别显著减小48.59%和54.36%, 叶全长分别显著减小8.39%和11.41%, 而叶片宽长比和小叶数并无显著变化(图4i-l)。高温下, 马铃薯植株叶片更为直立, 展现出向上性生长(图3), QS9和D187叶片夹角分别显著(P<0.01)减少39.29%和45.72% (图4f), 叶垂角分别显著(P<0.01)减少43.67%和31.47% (图4g), QS9的披垂角显著(P<0.01)减少54.45%, 但D187无显著变化(图4h)。由以上分析可知, 高温胁迫对不同耐热型马铃薯的植株形态影响是相似的, 但在高温环境下耐热型的D187的叶片数目和披垂角性状更为稳定。

    图  3  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下植株株型和叶片性状
    Figure  3.  Plant architecture and leaf morphology of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    图  4  ‘青薯9号’和‘滇187’马铃薯在正常温度(20 ℃)和高温(30 ℃)下植株株型和叶片形态指标
    *和**分别表示两温度间差异显著(P<0.05, n=10)和极显著(P<0.01, n=10)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. n=10.
    Figure  4.  Morphological indexes of plant architecture and leaf of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    在高温胁迫下, D187的净光合速率(Pn)和气孔导度(Gs)均呈上升趋势(未达显著水平); 而QS9的Pn Gs均呈下降趋势, 其中Pn显著下降26.90% (P<0.01)。QS9和D187的胞间CO2浓度(Ci)、水分利用效率(WUE)均表现出下降趋势, 且WUE下降水平显著(P<0.01), 蒸腾速率(Tr)均表现为显著上升(P<0.05)。与QS9相比, 高温胁迫下D187有较高的Pn和WUE, 说明高温胁迫下耐热型马铃薯的光合能力更强(表1)。

    表  1  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的净光合速率及相关参数
    Table  1.  Net photosynthetic rate and related parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    光合特征参数
    Photosynthetic parameter
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    净光合速率 Net photosynthetic rate (μmol∙m−2∙s−1)9.74±0.237.12±0.17**7.43±1.678.31±0.51
    气孔导度 Stomatal conductance (mol∙m−2∙s−1)0.16±0.020.14±0.030.10±0.020.12±0.02
    胞间CO2浓度 Intercellular CO2 concentration (μmol∙mol−1)289.31±13.84279.64±23.6274.76±15.08257.41±7.99
    蒸腾速率 Transpiration rate (mmol∙m−2∙s−1)3.93±0.416.35±0.92*2.98±0.567.26±0.77**
    水分利用效率 Water use efficiency (μmol∙mmol−1)2.50±0.221.14±0.15**2.20±0.311.19±0.05**
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV 
    | 显示表格

    光响应相关参数能有效反映植物对光强度的利用范围, 高温处理下2个不同耐热型马铃薯的最大净光合速率(Pn max)、光饱和点(LSP)、光补偿点(LCP)和暗呼吸速率(Rd)均升高, 其中D187的Pn max显著升高60.18% (P<0.01), QS9的LSP、LCP分别显著升高41.37% (P<0.01)、40.54% (P<0.05)。D187的表观量子效率(AQY)在高温处理下无显著变化, 而QS9的AQY则显著降低25.00% (P<0.01) (表2)。由此说明, 高温下马铃薯对强光的利用能力增强, 对弱光的利用能力减弱, 呼吸消耗增加。高温胁迫下, D187比QS9具有更高的Pn max和AQY, 更低的LCP和Rd, 这说明耐热型马铃薯在高温胁迫下具有更强的光能利用能力和更低的呼吸消耗。

    表  2  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的光响应特征参数
    Table  2.  Parameters of light response of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    光响应特征参数
    Parameter of light response
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    最大净光合速率 Maximum net photosynthetic rate (μmol∙m−2∙s−1)18.03±0.1419.09±0.8811.98±1.3219.19±1.00**
    光饱和点 Light saturation point (μmol∙m−2∙s−1)530.25±12.30749.59±37.87**537.28±98.43694.35±17.70
    光补偿点 Light compensation point (μmol∙m−2∙s−1)35.62±3.1750.06±6.09*29.40±1.6645.35±21.62
    暗呼吸速率 Dark respiration rate (mmol∙m−2∙s−1)−3.25±0.28−3.43±0.48−2.28±0.45−2.59±0.93
    表观量子效率 Apparent quantum yield (μmol∙mol−1)0.08±0.000.06±0.00**0.07±0.020.07±0.00
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV 
    | 显示表格

    与20 ℃相比, 在30 ℃下QS9和D187的光呼吸速率(RL)降低, CO2补偿点(CCP)升高, 最大电子传递速率(Jmax)及Jmax/Vc max均降低, 其中QS9的RL显著降低26.21% (P<0.05), CCP显著升高24.77% (P<0.01), J max/Vc max显著降低了11.22% (P<0.05), 但羧化效率(CE)无变化(表3)。此外, 高温处理对QS9和D187的Vc max影响均不显著。由此可知, 伴随着温度的升高, 马铃薯对高浓度CO2的利用能力增强, 对低浓度CO2的利用能力减弱, 光下的呼吸消耗增强。D187在高温下比QS9具有更高的CE、Vc maxJ maxJ max/Vc max, 说明在面对高温胁迫时耐热型马铃薯具有更高的碳同化能力和RuBP的再生潜力。

    表  3  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的CO2响应特征参数
    Table  3.  Parameters of CO2 response of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    CO2响应特征参数
    Parameter of CO2 response
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    羧化效率 Carboxylation efficiency (mol∙mol−1)0.12±0.010.12±0.010.15±0.0020.15±0.002
    光呼吸速率 Photorespiration (μmol∙m−2∙s−1)−10.76±0.94−13.58±0.44*−18.44±0.83−20.87±2.80
    CO2补偿点 Carbon dioxide compensation point (μmol∙mol−1)90.50±2.06112.92±3.61**119.94±4.91135.01±18.79
    最大羧化速率 Maximum carboxylation rate (Vc max, μmol∙mol−1)142.60±7.75141.74±9.40157.75±9.04167.39±2.86
    最大电子传递速率 Maximum electron transportation rate (Jmax, μmol∙mol−1)570.87±24.04504.44±31.37727.32±103.26678.66±28.21
    Jmax/Vc max4.01±0.053.56±0.04**4.65±0.94.05±0.13
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV 
    | 显示表格

    表4可知, 高温对QS9和D187光合诱导相关参数的影响一致。30 ℃处理下, 2个不同耐热型马铃薯暗适应后达到最大净光合速率30%所需的时间(T30%P)、暗适应后达到最大净光合速率60%所需的时间(T60%P)、暗适应后达到最大净光合速率90%所需的时间(T90%P)显著减少32.92%~52.24% (QS9 P<0.01; D187 P<0.05), 暗适应后60 s所达到的最大净光合速率百分比(IS60s) (P<0.01)、暗适应后300 s所达到的最大净光合速率百分比(IS300s) (QS9 P<0.01; D187 P<0.05)、暗适应后600 s所达到的最大净光合速率百分比(IS600s)显著(QS9 P<0.01; D187 P<0.05)升高28.69%~234.86%。说明马铃薯的Pn在高温胁迫下能更快达到最大值。

    表  4  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的光合诱导特征参数
    Table  4.  Parameters of photosynthetic induction of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    光合诱导特征参数
    Parameter of photosynthetic induction
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    T30%P (s)289.37±27.11194.11±11.47**327.04±46.83193.83±10.57*
    T60%P (s)582.35±50.62317.94±20.31**626.05±96.23375.44±25.88*
    T90%P (s)1308.12±109.89624.70±42.5**1366.76±227.63825.33±65.42*
    IS60s (%)13.92±3.2725.57±3.72**8.09±4.527.09±2.27**
    IS300s (%)45.63±4.0174.81±3.19**41.97±7.1165.26±3.25*
    IS600s (%)69.33±3.6593.44±1.38**66.96±7.3986.17±2.37*
      T30%PT60%PT90%P为暗适应后达到最大净光合速率30%、60%、90%所需的时间; IS60s、IS300s、IS600s为暗适应后60 s、300 s、600 s所达到的最大净光合速率百分比。*和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。T30%P, T60%P and T90%P are the times to reach 30%, 60% and 90% of maximum photosynthetic rate of dark adaptation; IS60s, IS300s and IS600s are the proportions of the maximum photosynthetic rate within 60 s, 300 s and 600 s, respectively, after dark adaptation. * and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV 
    | 显示表格

    对叶片进行叶绿素荧光检测可评价高温胁迫对叶绿体的损伤程度。对表5分析发现, 高温胁迫下, 2个不同耐热型马铃薯的叶绿素荧光参数均降低, 其中黑暗下最大荧光强度(Fm)、光系统Ⅱ(PSⅡ)潜在光化学量子效率(Fv/Fm)和PSⅡ潜在光化学活性(Fv/F0)显著降低(P<0.05, P<0.01)。当Fv/Fm<0.75时, 表明植物受到不可逆的严重胁迫损伤[15]。在30 ℃高温胁迫下, QS9和D187的Fv/Fm均高于0.75, 说明30 ℃的高温胁迫没有造成马铃薯叶片中叶绿体的不可逆损伤。

    表  5  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的叶绿素荧光参数
    Table  5.  Chlorophyll fluorescence parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
    叶绿素荧光参数
    Chlorophyll fluorescence parameter
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    黑暗下初始荧光强度
    Initial fluorescence intensity (F0)
    199.40±1.37163.90±24.66134.63±1.49131.03±2.33
    黑暗下最大荧光强度
    Maximum fluorescence intensity (Fm)
    1078.28±17.95844.43±127.65*743.99±8.02692.32±10.38**
    PSⅡ潜在光化学量子效率
    Potential photochemical quantum efficiency of photosystem Ⅱ (Fv/Fm)
    0.82±0.0020.81±0.001**0.82±0.0010.81±0.002**
    PSⅡ潜在光化学活性
    Potential photochemical activity of photosystem Ⅱ (Fv/F0)
    4.41±0.064.15±0.03**4.53±0.034.28±0.05**
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV 
    | 显示表格

    图5可知, 不同温度处理下, 2个耐热型马铃薯的荧光特征参数在光响应过程中的变化一致, 并且在大于300 μmol∙m−2∙s−1的光照强度下, 高温处理与对照才表现出明显差异。随着光照强度增强, 电子传递速率(ETR)先快速增加后达到稳定(图5a); 最大光化学量子效率(Fv′/Fm')、实际光化学量子效率(ΔF/Fm')和光化学猝灭系数(qP)均降低(图5c, e, g); 非光化学猝灭系数(NPQ)升高(图5i)。高温处理使QS9和D187的ETR、Fv'/Fm'、ΔF/Fm'qP升高, 但两者间并无显著差异。在1000 μmol∙m−2∙s−1的光照强度下, 不同温度处理下Fv'/Fm'趋于一致, 但ΔF/Fm'在300 μmol∙m−2∙s−1的光照强度后始终保持着显著(P<0.05)差异。高温下, 两个马铃薯品种的NPQ均降低, 但QS9下降趋势更明显。在1000 μmol∙m−2∙s−1的光照强度后, 2个品种的NPQ又趋于一致。

    图  5  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下光响应和光诱导过程中荧光特征参数的变化
    Figure  5.  Changes of fluorescence characteristic parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures during light response and photosynthetic induction

    光诱导过程中, 不同温度处理的QS9和D187的荧光特征参数变化一致。随着诱导时间延长, ETR、ΔF/Fm'qP和NPQ快速升高后逐渐趋于平稳(图5b, f, h, j), Fv'/Fm'迅速下降后逐渐趋于平稳(图5d)。高温处理使2个不同耐热型马铃薯的ETR、ΔF/Fm'、qP和NPQ升高, 但处理间和材料间的差异均不显著。NPQ在光照下诱导180 s后又缓慢降低, 且在高温处理下的QS9降低到与对照相同。Fv'/Fm'在高温处理下降低, 但2种基因型马铃薯的变化差异均不显著。

    马铃薯叶片捕获的光能分配到不同耗散途径的比例在光响应和光诱导过程中表现出不同变化趋势(图6)。随着光照增强, QS9和D187在不同温度下的光化学耗散比例(ΦPSⅡ)逐渐减小, 而非光化学猝灭耗散比例(ΦNPQ)和荧光耗散比例(Φf,d)逐渐增加。高温处理下, 2个不同耐热型马铃薯的ΦNPQ较对照显著减少(P<0.05), ΦPSⅡ显著增加(P<0.05), Φf,d无显著变化, 且试验材料间光能分配到不同耗散途径的比例无显著差异。随着光诱导时间的延长, 2个不同耐热型马铃薯的ΦNPQΦf,d快速升高后缓慢降低, 而ΦPSⅡ迅速降低后缓慢增加。高温处理下, QS9和D187的ΦNPQΦf,d较对照均显著减少(P<0.05), ΦPSⅡ显著增加(P<0.05), 且QS9的ΦPSⅡ比D187显著增加(P<0.05), ΦPSⅡ显著减少(P<0.05), Φf,d无显著变化。由此表明, 高温改变了马铃薯的光能分配, 且热敏感型马铃薯比耐热型的分配比例变化更大。

    图  6  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下光响应和光诱导过程中的光能分配特征
    ΦPSⅡ: 光化学耗散比例; ΦNPQ: 非光化学猝灭耗散比例; Φf,d: 荧光耗散比例。ФPSⅡ: quantum yield of photochemical dissipation; ФNPQ: quantum yield of non-photochemical quenching dissipation; Фf,d: quantum yield of fluorescence quenching dissipation.
    Figure  6.  Characteristics of light energy distribution of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures during light response and photosynthetic induction

    图7可知, 在形态指标中, 可塑性指数大于0.5的参数, QS9有4个, 占比为33.33%; D187有6个, 占比为50%。在光合特征中, QS9可塑性指数大于0.5的指标有6个, 占比为23.08%; 而D187有10个, 占比为38.46%。总体上, QS9的平均可塑性指数为0.418, D187的平均可塑性指数为0.448, 在高温胁迫下D187在形态和光合作用方面可塑性高于QS9。这说明D187能够更好地通过调节植株形态和光合作用来适应高温环境。

    图  7  ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯高温(30 ℃)下形态、光合和产量特征等各参数的表型可塑性指数
    Figure  7.  Phenotypic plasticity indexes of parameters of morphology, photosynthesis, and yield of potato materials of QS9 and D187 at high (30 ℃) temperatures
    Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate; WUE: water use efficiency; Pn·max: maximum net photosynthetic rate; LSP: light saturation point; LCP: light compensation point; Rd: dark respiration rate; AQY: apparent quantum yield; CE: carboxylation efficiency; RL: photorespiration; CCP: carbon dioxide compensation point; Vc·max: maximum carboxylation rate; Jmax: maximum electron transportation rate; T30%P: time to reach 30% of maximum photosynthetic rate of dark adaptation ; T60%P: time to reach 60% of maximum photosynthetic rate of dark adaptation; T90%P: time to reach 90% of maximum photosynthetic rate of dark adaptation; IS60s: maximum photosynthetic rate within 60 s; IS300s: maximum photosynthetic rate within 300 s; IS600s: maximum photosynthetic rate within 600 s; F0: initial fluorescence intensity; Fm: maximum fluorescence intensity; Fv/Fm: potential photochemical quantum efficiency of photosystem Ⅱ; Fv/F0: potential photochemical activity of photosystem Ⅱ.

    对QS9和D187的41个形态特征、光合特征和产量特征参数进行主成分分析, 得到各主成分对马铃薯响应高温的特征值和贡献率(表6)。从表中可以看出, QS9在PC1和PC2的累计贡献度为83.58%, D187为80.90%, 且特征值都大于1, 因此这两个主成分都能有效反映参数特征, 并能够充分解释马铃薯对高温的响应特征。QS9和D187的点在PC1/PC2平面上完全聚集为2簇, 同时PC1明显将高温处理和对照分开, 表明本研究所设置的高温胁迫对2个马铃薯品种(系)的生长和抗性生理指标均有影响(图8)。

    表  6  ‘青薯9号’(QS9)和‘滇187’(D187)形态特征、光合特征和产量特征参数初始特征值及累积贡献率
    Table  6.  Initial eigenvalues and accumulated variance contribution of each component of morphology, photosynthesis, and yield of potato materials of QS9 and D187
    品种(系)
    Variety (line)
    主成分
    Principal component
    特征值
    Eigenvalue
    贡献率
    Rate of contribution (%)
    累积贡献率
    Cumulative contribution (%)
    QS9
    126.7265.1765.17
    24.5511.1176.27
    33.007.3183.58
    D187
    123.9658.4458.44
    25.2712.8471.28
    33.949.6280.90
    下载: 导出CSV 
    | 显示表格
    图  8  ‘青薯9号’(QS9)和‘滇187’(D187)在正常温度和高温下的形态、光合及产量指标的主成分分析
    椭圆为不同温度下各参数的置信区间; 箭头代表各指标与主成分的关系。PnGsCiTr、WUE、Pn max、LSP、LCP、Rd、AQY、CE、RL、CCP、Vc maxJ maxF0FmFv/FmFv/F0依次为净光合速率、气孔导度、胞间CO2浓度、蒸腾速率、水分利用效率、最大净光合速率、光饱和点、光补偿点、暗呼吸速率、表观量子效率、羧化效率、光呼吸速率、CO2补偿点、最大羧化速率、最大电子传递速率、黑暗下初始荧光强度、黑暗下最大荧光强度、PSⅡ潜在光化学量子效率、PSⅡ潜在光化学活性; T 30%PT 60%PT 90%P为暗适应后达到最大净光合速率30%、60%、90%所需的时间, IS 60s、IS 300s、IS 600s为暗适应后60 s、300 s、600 s所达到的最大净光合速率百分比。The ellipse is the confidence interval of each parameter under different temperature; the arrow represents the relationship between each index and the principal component. Pn, Gs, Ci, Tr, WUE, Pn max, LSP, LCP, Rd, AQY, CE, RL, CCP, Vc max, Jmax, F0, Fm, Fv/Fm, and Fv/F0 are net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, water use efficiency, maximum net photosynthetic rate, light saturation point, light compensation point, dark respiration rate, apparent quantum yield, carboxylation efficiency, photorespiration, carbon dioxide compensation point, maximum carboxylation rate, maximum electron transportation rate, initial fluorescence after dark adaptation, maximum fluorescence after dark adaptation, maximum quantum yield of photosystem Ⅱ, potential photochemical activity of photosystem Ⅱ, respectively. T30%P, T60%P and T90%P are the times to reach 30%, 60% and 90% of maximum photosynthetic rate of dark adaptation; IS60s, IS300s and IS600s are the proportions of the maximum photosynthetic rate within 60 s, 300 s and 600 s, respectively, after dark adaptation.
    Figure  8.  Principal component analysis of morphology, photosynthesis, and yield indexes of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    QS9的6个形态指标参数(株高、节间长、叶面积、叶夹角、叶垂角和披垂角)、20个光合特征参数(PnTr、LSP、CCP、LCP、WUE、AQY、RLJmax/Vc max、IS60s、IS300s、IS600sT30%PT60%PT90%PF0FmFv/FmFv/F0)和3个产量特征参数(单株产量、单株结薯数和平均单个薯重)在PC1中的权重系数和载荷系数较大, 对PC1有较大贡献, 其中株高、节间长、Tr、LSP、CCP、LCP、IS60s、IS300s和IS600s与PC1呈负相关关系, 其他特征参数呈正相关。D187的7个形态特征参数(株高、节间长、节数、叶全长、叶面积、叶夹角和叶垂角)、13个光合特征参数(Pn maxTr、LSP、WUE、IS60s、IS300s、IS600sT30%PT60%PT90%PFmFv/FmFv/F0)和2个产量特征参数(单株产量和单株结薯数)在PC1中的权重系数和载荷系数较大, 对PC1有较大贡献, 其中株高、节间长、节数、Tr、LSP、Pn max、IS60s、IS300s和IS600s与PC1呈负相关关系, 其他特征各参数呈正相关。

    总体而言, 高温胁迫下QS9光合作用和产量性状相关参数对PC1的贡献率高于D187, 这说明, 由高温引起的光合作用参数变化在D187和QS9两个品种(系)之间存在明显差异, 更多的光合作用相关参数被用于解释QS9在高温与适宜生长环境下的区别, 高温对耐热型马铃薯D187光合作用和产量性状相关参数的影响小于热敏感型。

    马铃薯喜性冷凉, 其块茎发育对高温尤为敏感, 夜间温度超过28 ℃表现为不结薯, 且块茎作为马铃薯最主要的经济器官, 因此常用在28 ℃的条件下是否结薯来评价马铃薯的耐热性[16]。试验中, 耐热型马铃薯在30 ℃下虽然产量降低, 但还能结薯, 而热敏感型则不结薯(图1)。

    较多研究都已证明高温会使马铃薯的株高显著(P<0.01)增加[17-19], 本研究表明高温显著(P<0.01)增加了马铃薯的株高和节间长, 但未显著改变节数(图4a-c)。由此证明, 马铃薯株高增加是由于高温引起节间增长、而不是增加节的数量。叶片角度决定了植株的株型[20], 高温胁迫显著(P<0.01)减小了QS9和D187的叶夹角(图4f)和叶垂角(图4g), 使马铃薯株型由平展型变为紧凑型[21], 并缩短了叶片长度(图4i), 使马铃薯植株横向生长减弱。较大的叶面积和较多的叶片能够保证植株具有更大的光合面积。试验中, 高温使马铃薯的叶面积显著(P<0.01)减小(图4j), 削弱马铃薯光合能力。此外, QS9的叶片数显著(P<0.05)减少, 但D187却增加(图4e), 且结合图3发现, QS9植株下部叶衰老脱落, 而D187则没有明显的叶片脱落迹象。由此推断, 高温下热敏感型马铃薯叶片数减少主要是因为高温加速老叶衰老脱落, 而耐热型则是加速新叶长出并减缓老叶衰老来抵御高温伤害。

    马铃薯处于高温环境中时, 植株会通过加强水分散失来降低体温[22], 因此Tr会显著(P<0.05)升高。本研究发现 2个不同耐热型马铃薯在高温胁迫下的Tr均显著(P<0.05)升高, 且D187比QS9具有更高的Tr, 但因D187具有更高的Pn, 所以其WUE也更高, 进而保证光合机构合成更多的同化产物。试验中, 2个不同耐热型马铃薯的Ci在高温胁迫下均降低, 说明高温减弱了马铃薯对CO2的吸收能力[23]。高温胁迫下, QS9因Gs和Ci降低导致Pn降低, 而D187通过增大Gs, 加强与外界的气体交换, 进而提高Pn, 但其Ci却降低, 说明耐热型马铃薯在高温胁迫下的净光合速率升高是由气孔因素和非气孔因素共同作用导致, 而热敏感型则是由于气孔因素导致净光合速率下降[24]

    AQY越高、LCP越低, 表示其利用弱光的能力越强; Pn max和LSP越高, 说明其具有较高的强光利用能力[25]。本试验发现(表2), 高温胁迫使2个不同耐热型马铃薯的Pn max和LSP均提高, 说明高温胁迫提高了马铃薯对强光的利用能力。高温胁迫下, QS9的LCP提高, 同时AQY降低; 但D187仅LCP升高, AQY不变, 说明相较于耐热型, 高温胁迫减弱了热敏感型马铃薯对弱光的利用能力, 而且LSP的提高比例远大于LCP, 由此表明高温胁迫使马铃薯的光能利用范围扩大。植物为抵御逆境带来的伤害, 其Rd会显著(P<0.05)提升[26]。本研究中, 2个不同耐热型马铃薯的Rd均升高, 说明马铃薯需要消耗更多的光合产物来减轻高温的伤害。

    CE和Vc max的大小与核酮糖-1,5-二磷酸羧化酶(Rubisco)丰度和活性呈正比关系[27]。本研究表明, 高温胁迫对2个不同耐热型马铃薯的CE无影响, Vc max的变化也未达到显著水平。说明抑制块茎形成的高温对马铃薯的Rubisco活性(或蛋白丰度)及碳同化能力无显著影响。试验中, QS9和D187的CCP在高温胁迫下都升高, 说明高温胁迫减弱了马铃薯叶片对低浓度CO2的利用能力。RL是植物生命活动能顺利进行的重要保证[28], 试验中2个不同耐热型马铃薯的RL在高温胁迫下都升高, 且QS9升高显著(P<0.05), 说明高温增强了马铃薯在光下的呼吸消耗, 且热敏感型消耗更多。J max体现了RuBP的再生潜力[29], 高温胁迫使QS9和D187的J max降低, 表明在高温胁迫下, 马铃薯的RuBP的再生能力受到抑制。前人研究表明, 在适宜条件下, 植物的J max/Vc max大于4时, 光合电子传递与Rubiso催化能力间达到动态平衡[30]。本试验中, 发现高温胁迫使2个不同耐热型马铃薯的J max/Vc max值降低, 且QS9下降(4以下)显著(P<0.01), 而D187则保持在4以上。表明在高温胁迫下, 耐热型马铃薯的电子传递能够满足羧化的需求, 但热敏感型不能满足。

    光合诱导可用于检验植物对有限光能的利用能力[31-32]。在本研究中(表4), 高温胁迫下2个不同耐热型马铃薯达到最大净光合速率所用的时间均显著(P<0.05)缩短, 并且QS9比D187所用时间更短。这说明高温提高了马铃薯短暂强光的利用能力, 并且热敏感型马铃薯对短暂强光利用率更高。植物接收的光能主要通过3个途径耗散: 光化学反应耗散、非光化学热耗散和荧光耗散, 三者为竞争关系, 此消彼长[33]。在光响应和光诱导过程中, 高温处理使2个不同耐热型马铃薯的Φf,d较对照无显著变化, 但Φ NPQ显著(P<0.05)减少, ΦPSⅡ显著(P<0.05)增加(图6)。说明在高温胁迫下, 马铃薯光能耗散失衡, 捕获的光能更多用于光化学反应还原力的形成, 抵御高温伤害。

    有研究表明, 高温胁迫会造成植物的F0FmFv/FmFv/F0下降, 进而降低净光合速率[34-36]。当PSⅡ的电子传递受到抑制时, Fm会显著(P<0.05)降低, 本试验中QS9和D187的FmFv/Fm在高温胁迫下均显著(P<0.05)下降, 说明高温胁迫抑制了马铃薯PSⅡ反应中心的电子传递和光能转换效率[37]。植物PSⅡ反应中心受到逆境破坏时, 会引起F0升高, 同时Fv/F0显著(P<0.05)降低[38]。试验中, 高温胁迫使2个不同耐热型马铃薯的Fv/F0显著(P<0.01)降低, 但F0并未升高, 表明马铃薯的PSⅡ反应中心受到影响, 但未被抑制块茎形成的高温破坏[39]

    Fv'/Fm'和ΔF/Fm'分别反映了开放的PSⅡ反应中心对激发能捕获效率和实际电子传递效率[40], 但ΔF/Fm'Fv'/Fm'能更准确地反映PSⅡ反应中心的实际情况[41]。本试验中, QS9和D187在高温下的Fv'/Fm'在光响应中有部分降低, 在光诱导中完全降低(图5c-d), 但ΔF/Fm'表现为升高(图5e-f), 由此说明马铃薯植株通过提高PSⅡ反应中心的光化学反应效率来适应高温环境。qP表示PSⅡ中开放的反应中心占比及光合电子流动强弱[42], 高温处理使马铃薯的qP (图5g-h)和ETR (图5a-b)升高, 表明高温提高了马铃薯PSⅡ反应中心的开放程度和电子传递, 保证有充足的能量和还原力供给碳同化反应。NPQ反映热耗散的大小[43], 其值变小(图5i-j), 表明高温抑制了马铃薯对过剩光能的热耗散。

    生命体通过某些特征的可塑性响应以改变表型, 从而适应新环境。研究表明, 可塑性指数越大, 植物对环境变化的适应能力越强[44]。试验中, 2个不同耐热型马铃薯的产量特征参数相较于形态特征参数和光合特征参数具有较高可塑性指数和主成分贡献率(图7-图8), 这是因为块茎形成对温度变化最敏感, 而形态及光合敏感度较弱。对于耐热性不同的马铃薯而言, 热敏感型比耐热型在高温下的产量、形态及光合方面受到的影响更大, 以避免不适应高温环境而死亡。

    高温胁迫显著增加了马铃薯植株节间长和株高, 但并未显著改变节数和茎粗; 此外高温胁迫还显著减小叶片面积、长度和角度, 但叶宽长比和小叶数并未显著改变, 而且耐热型马铃薯在高温下具有更稳定的叶片数和披垂角。高温胁迫会使马铃薯的Tr加强, WUE降低, Ci降低和CCP提高, RdRL升高, Jmax降低, 黑暗下的叶绿素荧光参数(F0FmFv/FmFv/F0)降低, 而光下的叶绿素荧光参数(Fv'/Fm'、ΔF/Fm'qP和ETR)升高, 达到最大净光合速率所用的时间均显著缩短, ΦPSⅡ增加。此外, 热敏感型马铃薯在高温下的PnGs下降, LCP升高, Vc max降低, Jmax/Vc max小于4, 而耐热型则表现相反。可塑性和主成分分析表明, 高温显著影响马铃薯的形态、光合及产量, 且耐热型马铃薯比热敏感型受到的影响较小。

  • 图  1   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的结薯表现

    Figure  1.   Tuberization of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    图  2   ‘青薯9号’和‘滇187’马铃薯在正常温度(20 ℃)和高温(30 ℃)下的产量性状

    **表示两温度间差异极显著(P<0.01, n=9)。** indicates significant difference between 20 ℃ and 30 ℃ (P<0.01, n=9).

    Figure  2.   Yield characters of potato materials QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    图  3   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下植株株型和叶片性状

    Figure  3.   Plant architecture and leaf morphology of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    图  4   ‘青薯9号’和‘滇187’马铃薯在正常温度(20 ℃)和高温(30 ℃)下植株株型和叶片形态指标

    *和**分别表示两温度间差异显著(P<0.05, n=10)和极显著(P<0.01, n=10)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. n=10.

    Figure  4.   Morphological indexes of plant architecture and leaf of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    图  5   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下光响应和光诱导过程中荧光特征参数的变化

    Figure  5.   Changes of fluorescence characteristic parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures during light response and photosynthetic induction

    图  6   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下光响应和光诱导过程中的光能分配特征

    ΦPSⅡ: 光化学耗散比例; ΦNPQ: 非光化学猝灭耗散比例; Φf,d: 荧光耗散比例。ФPSⅡ: quantum yield of photochemical dissipation; ФNPQ: quantum yield of non-photochemical quenching dissipation; Фf,d: quantum yield of fluorescence quenching dissipation.

    Figure  6.   Characteristics of light energy distribution of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures during light response and photosynthetic induction

    图  7   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯高温(30 ℃)下形态、光合和产量特征等各参数的表型可塑性指数

    Figure  7.   Phenotypic plasticity indexes of parameters of morphology, photosynthesis, and yield of potato materials of QS9 and D187 at high (30 ℃) temperatures

    Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate; WUE: water use efficiency; Pn·max: maximum net photosynthetic rate; LSP: light saturation point; LCP: light compensation point; Rd: dark respiration rate; AQY: apparent quantum yield; CE: carboxylation efficiency; RL: photorespiration; CCP: carbon dioxide compensation point; Vc·max: maximum carboxylation rate; Jmax: maximum electron transportation rate; T30%P: time to reach 30% of maximum photosynthetic rate of dark adaptation ; T60%P: time to reach 60% of maximum photosynthetic rate of dark adaptation; T90%P: time to reach 90% of maximum photosynthetic rate of dark adaptation; IS60s: maximum photosynthetic rate within 60 s; IS300s: maximum photosynthetic rate within 300 s; IS600s: maximum photosynthetic rate within 600 s; F0: initial fluorescence intensity; Fm: maximum fluorescence intensity; Fv/Fm: potential photochemical quantum efficiency of photosystem Ⅱ; Fv/F0: potential photochemical activity of photosystem Ⅱ.

    图  8   ‘青薯9号’(QS9)和‘滇187’(D187)在正常温度和高温下的形态、光合及产量指标的主成分分析

    椭圆为不同温度下各参数的置信区间; 箭头代表各指标与主成分的关系。PnGsCiTr、WUE、Pn max、LSP、LCP、Rd、AQY、CE、RL、CCP、Vc maxJ maxF0FmFv/FmFv/F0依次为净光合速率、气孔导度、胞间CO2浓度、蒸腾速率、水分利用效率、最大净光合速率、光饱和点、光补偿点、暗呼吸速率、表观量子效率、羧化效率、光呼吸速率、CO2补偿点、最大羧化速率、最大电子传递速率、黑暗下初始荧光强度、黑暗下最大荧光强度、PSⅡ潜在光化学量子效率、PSⅡ潜在光化学活性; T 30%PT 60%PT 90%P为暗适应后达到最大净光合速率30%、60%、90%所需的时间, IS 60s、IS 300s、IS 600s为暗适应后60 s、300 s、600 s所达到的最大净光合速率百分比。The ellipse is the confidence interval of each parameter under different temperature; the arrow represents the relationship between each index and the principal component. Pn, Gs, Ci, Tr, WUE, Pn max, LSP, LCP, Rd, AQY, CE, RL, CCP, Vc max, Jmax, F0, Fm, Fv/Fm, and Fv/F0 are net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, water use efficiency, maximum net photosynthetic rate, light saturation point, light compensation point, dark respiration rate, apparent quantum yield, carboxylation efficiency, photorespiration, carbon dioxide compensation point, maximum carboxylation rate, maximum electron transportation rate, initial fluorescence after dark adaptation, maximum fluorescence after dark adaptation, maximum quantum yield of photosystem Ⅱ, potential photochemical activity of photosystem Ⅱ, respectively. T30%P, T60%P and T90%P are the times to reach 30%, 60% and 90% of maximum photosynthetic rate of dark adaptation; IS60s, IS300s and IS600s are the proportions of the maximum photosynthetic rate within 60 s, 300 s and 600 s, respectively, after dark adaptation.

    Figure  8.   Principal component analysis of morphology, photosynthesis, and yield indexes of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    表  1   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的净光合速率及相关参数

    Table  1   Net photosynthetic rate and related parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    光合特征参数
    Photosynthetic parameter
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    净光合速率 Net photosynthetic rate (μmol∙m−2∙s−1)9.74±0.237.12±0.17**7.43±1.678.31±0.51
    气孔导度 Stomatal conductance (mol∙m−2∙s−1)0.16±0.020.14±0.030.10±0.020.12±0.02
    胞间CO2浓度 Intercellular CO2 concentration (μmol∙mol−1)289.31±13.84279.64±23.6274.76±15.08257.41±7.99
    蒸腾速率 Transpiration rate (mmol∙m−2∙s−1)3.93±0.416.35±0.92*2.98±0.567.26±0.77**
    水分利用效率 Water use efficiency (μmol∙mmol−1)2.50±0.221.14±0.15**2.20±0.311.19±0.05**
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV

    表  2   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的光响应特征参数

    Table  2   Parameters of light response of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    光响应特征参数
    Parameter of light response
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    最大净光合速率 Maximum net photosynthetic rate (μmol∙m−2∙s−1)18.03±0.1419.09±0.8811.98±1.3219.19±1.00**
    光饱和点 Light saturation point (μmol∙m−2∙s−1)530.25±12.30749.59±37.87**537.28±98.43694.35±17.70
    光补偿点 Light compensation point (μmol∙m−2∙s−1)35.62±3.1750.06±6.09*29.40±1.6645.35±21.62
    暗呼吸速率 Dark respiration rate (mmol∙m−2∙s−1)−3.25±0.28−3.43±0.48−2.28±0.45−2.59±0.93
    表观量子效率 Apparent quantum yield (μmol∙mol−1)0.08±0.000.06±0.00**0.07±0.020.07±0.00
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV

    表  3   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的CO2响应特征参数

    Table  3   Parameters of CO2 response of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    CO2响应特征参数
    Parameter of CO2 response
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    羧化效率 Carboxylation efficiency (mol∙mol−1)0.12±0.010.12±0.010.15±0.0020.15±0.002
    光呼吸速率 Photorespiration (μmol∙m−2∙s−1)−10.76±0.94−13.58±0.44*−18.44±0.83−20.87±2.80
    CO2补偿点 Carbon dioxide compensation point (μmol∙mol−1)90.50±2.06112.92±3.61**119.94±4.91135.01±18.79
    最大羧化速率 Maximum carboxylation rate (Vc max, μmol∙mol−1)142.60±7.75141.74±9.40157.75±9.04167.39±2.86
    最大电子传递速率 Maximum electron transportation rate (Jmax, μmol∙mol−1)570.87±24.04504.44±31.37727.32±103.26678.66±28.21
    Jmax/Vc max4.01±0.053.56±0.04**4.65±0.94.05±0.13
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV

    表  4   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的光合诱导特征参数

    Table  4   Parameters of photosynthetic induction of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    光合诱导特征参数
    Parameter of photosynthetic induction
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    T30%P (s)289.37±27.11194.11±11.47**327.04±46.83193.83±10.57*
    T60%P (s)582.35±50.62317.94±20.31**626.05±96.23375.44±25.88*
    T90%P (s)1308.12±109.89624.70±42.5**1366.76±227.63825.33±65.42*
    IS60s (%)13.92±3.2725.57±3.72**8.09±4.527.09±2.27**
    IS300s (%)45.63±4.0174.81±3.19**41.97±7.1165.26±3.25*
    IS600s (%)69.33±3.6593.44±1.38**66.96±7.3986.17±2.37*
      T30%PT60%PT90%P为暗适应后达到最大净光合速率30%、60%、90%所需的时间; IS60s、IS300s、IS600s为暗适应后60 s、300 s、600 s所达到的最大净光合速率百分比。*和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。T30%P, T60%P and T90%P are the times to reach 30%, 60% and 90% of maximum photosynthetic rate of dark adaptation; IS60s, IS300s and IS600s are the proportions of the maximum photosynthetic rate within 60 s, 300 s and 600 s, respectively, after dark adaptation. * and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV

    表  5   ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的叶绿素荧光参数

    Table  5   Chlorophyll fluorescence parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures

    叶绿素荧光参数
    Chlorophyll fluorescence parameter
    QS9D187
    20 ℃30 ℃20 ℃30 ℃
    黑暗下初始荧光强度
    Initial fluorescence intensity (F0)
    199.40±1.37163.90±24.66134.63±1.49131.03±2.33
    黑暗下最大荧光强度
    Maximum fluorescence intensity (Fm)
    1078.28±17.95844.43±127.65*743.99±8.02692.32±10.38**
    PSⅡ潜在光化学量子效率
    Potential photochemical quantum efficiency of photosystem Ⅱ (Fv/Fm)
    0.82±0.0020.81±0.001**0.82±0.0010.81±0.002**
    PSⅡ潜在光化学活性
    Potential photochemical activity of photosystem Ⅱ (Fv/F0)
    4.41±0.064.15±0.03**4.53±0.034.28±0.05**
      *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively.
    下载: 导出CSV

    表  6   ‘青薯9号’(QS9)和‘滇187’(D187)形态特征、光合特征和产量特征参数初始特征值及累积贡献率

    Table  6   Initial eigenvalues and accumulated variance contribution of each component of morphology, photosynthesis, and yield of potato materials of QS9 and D187

    品种(系)
    Variety (line)
    主成分
    Principal component
    特征值
    Eigenvalue
    贡献率
    Rate of contribution (%)
    累积贡献率
    Cumulative contribution (%)
    QS9
    126.7265.1765.17
    24.5511.1176.27
    33.007.3183.58
    D187
    123.9658.4458.44
    25.2712.8471.28
    33.949.6280.90
    下载: 导出CSV
  • [1]

    GRIGGS D, NOGUER M. Climate change 2001: the scientific basis. contribution of working group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change[J]. Weather, 2002, 57: 267−269 doi: 10.1256/004316502320517344

    [2]

    LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616−620 doi: 10.1126/science.1204531

    [3]

    FOGELMAN E, OREN-SHAMIR M, HIRSCHBERG J, et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids[J]. Planta, 2019, 249(4): 1143−1155 doi: 10.1007/s00425-018-03078-y

    [4]

    KOOMAN P L, HAVERKORT A J. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO[M]//HAVERKORT A J, MACKERRON D K L. Potato Ecology and Modelling of Crops Under Conditions Limiting Growth. Dordrecht: Springer, 1995: 41−59

    [5] 徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建[J]. 应用生态学报, 2021, 32(1): 231−240

    XU C, WANG M T, YANG Z Q, et al. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 231−240

    [6]

    WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199−223 doi: 10.1016/j.envexpbot.2007.05.011

    [7] 江晓东, 华梦飞, 杨沈斌, 等. 喷施钾钙硅制剂改善高温胁迫水稻叶片光合性能提高产量[J]. 农业工程学报, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015

    JIANG X D, HUA M F, YANG S B, et al. Spraying exogenous potassium, calcium and silicon solutions improve photosynthetic performance of flag leaf and increase the yield of rice under heat stress condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015

    [8]

    POLLASTRI S, JORBA I, HAWKINS T J, et al. Leaves of isoprene-emitting tobacco plants maintain PSⅡ stability at high temperatures[J]. The New Phytologist, 2019, 223(3): 1307−1318 doi: 10.1111/nph.15847

    [9]

    BURTON D. Physiological responses of melanophores and xanthophores of hypophysectomized and spinal winter flounder, Pseudopleuronectes americanus Walbaum[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1981, 213(1191): 217−231

    [10]

    REYNOLDS M P, EWING E E, OWENS T G. Photosynthesis at high temperature in tuber-bearing Solanum species: a comparison between accessions of contrasting heat tolerance[J]. Plant Physiology, 1990, 93(2): 791−797 doi: 10.1104/pp.93.2.791

    [11]

    WINKLER L, BUANGA N F, GOETZE E. Gas-liquid chromatographic analysis of cardiolipin from fetal and maternal liver of the rat[J]. Biochimica et Biophysica Acta, 1971, 231(3): 535−536 doi: 10.1016/0005-2760(71)90122-6

    [12]

    WANG L X, XIN J, JIANPING L, et al. Effects of short-term high temperature stress on the photosynthesis of potato in different growth stages[J]. Agricultural Science and Technology Hunan, 2011, 12: 317−342

    [13] 郭新宇, 张光海, 李凯峰, 等. 不同马铃薯品种(系)苗期耐热性评价[J]. 云南农业大学学报(自然科学), 2020, 35(2): 196−205

    GUO X Y, ZHANG G H, LI K F, et al. Evaluation of heat tolerance of different potato varieties (lines)[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(2): 196−205

    [14] 双升普, 张金燕, 寸竹, 等. 光照强度驱动典型阴生植物三七的生理生态响应特征[J]. 生态学报, 2022, 42(9): 3596−3612

    SHUANG S P, ZHANG J Y, CUN Z, et al. Ecophysiological characteristics of a typically shade-tolerant species Panax notoginseng in response to different light intensities[J]. Acta Ecologica Sinica, 2022, 42(9): 3596−3612

    [15]

    GRANDA E, SCOFFONI C, RUBIO-CASAL A E, et al. Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems[J]. Oikos, 2014, 123(11): 1281−1290 doi: 10.1111/oik.01526

    [16]

    LEHRETZ G G, SONNEWALD S, HORNYIK C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato[J]. Current Biology:CB, 2019, 29(10): 1614−1624.e3 doi: 10.1016/j.cub.2019.04.027

    [17]

    HASTILESTARI B R, LORENZ J, REID S, et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures[J]. Plant, Cell & Environment, 2018, 41(11): 2600−2616

    [18]

    KIM Y U, SEO B S, CHOI D H, et al. Impact of high temperatures on the marketable tuber yield and related traits of potato[J]. European Journal of Agronomy, 2017, 89: 46−52 doi: 10.1016/j.eja.2017.06.005

    [19]

    KIM Y U, LEE B W. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth[J]. Frontiers in Plant Science, 2019, 10: 300 doi: 10.3389/fpls.2019.00300

    [20]

    XIANG D B, SONG Y, WU Q, et al. Relationship between stem characteristics and lodging resistance of Tartary buckwheat (Fagopyrum tataricum)[J]. Plant Production Science, 2019, 22(2): 202−210 doi: 10.1080/1343943X.2019.1577143

    [21]

    CHEN M Z, ZHANG Y L, LIANG F B, et al. The net photosynthetic rate of the cotton boll-leaf system determines boll weight under various plant densities[J]. European Journal of Agronomy, 2021, 125: 126251 doi: 10.1016/j.eja.2021.126251

    [22]

    MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture: challenges and perspectives[J]. Annual Review of Plant Biology, 2010, 61: 443−462 doi: 10.1146/annurev-arplant-042809-112116

    [23] 康华靖, 李红, 陶月良, 等. 气体交换与荧光同步测量估算植物光合电子流的分配[J]. 生态学报, 2015, 35(4): 1217−1224

    KANG H J, LI H, TAO Y L, et al. Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation[J]. Acta Ecologica Sinica, 2015, 35(4): 1217−1224

    [24] 李娜, 张峰举, 许兴, 等. 增温对宁夏北部春小麦叶片光合作用的影响[J]. 生态学报, 2019, 39(24): 9101−9110

    LI N, ZHANG F J, XU X, et al. Effects of elevated temperature on photosynthesis of spring wheat in northern Ningxia[J]. Acta Ecologica Sinica, 2019, 39(24): 9101−9110

    [25] 张迎辉, 王雪梅, 连巧霞. 5个彩叶树种光响应曲线特性研究[J]. 热带作物学报, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010

    ZHANG Y H, WANG X M, LIAN Q X. Light response curve of photosynthesis of five colored-leaf trees[J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010

    [26] 于波, 秦嗣军, 吕德国. 锌对苹果果实膨大期叶片13C光合产物合成及向果实转移分配的影响[J]. 应用生态学报, 2021, 32(6): 2007−2013

    YU B, QIN S J, LYU D G. Effects of zinc levels on synthesis and translocation of 13C-photoassimilates in leaves to fruit of apple during fruit expanding stage[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2007−2013

    [27]

    LONG S P, BERNACCHI C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392): 2393−2401 doi: 10.1093/jxb/erg262

    [28] 李彩斌, 郭华春. 耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析[J]. 中国生态农业学报, 2017, 25(8): 1181−1189

    LI C B, GUO H C. Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1181−1189

    [29] 孙谷畴, 赵平, 曾小平, 等. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355−362

    SUN G C, ZHAO P, ZENG X P, et al. Changes of leaf photosynthetic parameters in leaves of woonyoungia septentrionalis and tsoongiodendron lotungensis under different growth-irradiation[J]. Acta Phytoecologica Sinica, 2002, 26(3): 355−362

    [30] 徐祥增, 张金燕, 张广辉, 等. 光强对三七光合能力及能量分配的影响[J]. 应用生态学报, 2018, 29(1): 193−204

    XU X Z, ZHANG J Y, ZHANG G H, et al. Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 193−204

    [31]

    PONS T L, PEARCY R W, SEEMANN J R. Photosynthesis in flashing light in soybean leaves grown in different conditions. Ⅰ. Photosynthetic induction state and regulation of ribulose-1,5-bisphosphate carboxylase activity[J]. Plant, Cell and Environment, 1992, 15(5): 569−576 doi: 10.1111/j.1365-3040.1992.tb01490.x

    [32] 张东升, 韩硕, 王旗, 等. 枣棉间作条件下棉花密度对棉花光合特性及产量影响[J]. 棉花学报, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008

    ZHANG D S, HAN S, WANG Q, et al. Effect of plant density on photosynthesis characters and yield of cotton in the jujube-cotton intercropping systems[J]. Cotton Science, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008

    [33]

    SPERLING O, LAZAROVITCH N, SCHWARTZ A, et al. Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool)[J]. Environmental and Experimental Botany, 2014, 99: 100−109 doi: 10.1016/j.envexpbot.2013.10.014

    [34] 王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167

    WANG R M, WANG Z Q, XIANG Z X. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass[J]. Acta Prataculturae Sinica, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167

    [35] 史彦江, 罗青红, 宋锋惠, 等. 高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响[J]. 应用生态学报, 2012, 23(9): 2477−2482

    SHI Y J, LUO Q H, SONG F H, et al. Effects of high temperature stress on photosynthetic parameters and chlorophyll fluorescence characteristics of Xinjiang hybrid hazels[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2477−2482

    [36] 邵宇航, 石祖梁, 张姗, 等. 高温胁迫下镁对小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07

    SHAO Y H, SHI Z L, ZHANG S, et al. Effect of magnesium rates on photosynthetic characteristics of flag leaf and grain yield in winter wheat under heat stress[J]. Journal of Triticeae Crops, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07

    [37]

    HERAUD P, BEARDALL J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2004, 63: 123−134

    [38]

    CHAFFIN J D, BRIDGEMAN T B, HECKATHORN S A, et al. Role of suspended sediments and mixing in reducing photoinhibition in the bloom-forming cyanobacterium Microcystis[J]. Journal of Water Resource and Protection, 2012, 4(12): 1029−1041 doi: 10.4236/jwarp.2012.412119

    [39]

    KUSAMA Y, INOUE S, JIMBO H, et al. Zeaxanthin and echinenone protect the repair of photosystem Ⅱ from inhibition by singlet oxygen in Synechocystis sp. PCC 6803[J]. Plant and Cell Physiology, 2015, 56(5): 906−916 doi: 10.1093/pcp/pcv018

    [40] 李恺, 张丽丽, 邵长勇, 等. 亚高温下冷等离子体处理番茄种子对幼苗生长和光能利用的影响[J]. 园艺学报, 2021, 48(11): 2286−2298

    LI K, ZHANG L L, SHAO C Y, et al. Effects of cold plasma seed treatment on tomato seedling growth and light energy utilization under daytime sub-high temperature environment[J]. Acta Horticulturae Sinica, 2021, 48(11): 2286−2298

    [41]

    SUN C X, YUAN F, ZHANG Y L, et al. Unintended effects of genetic transformation on photosynthetic gas exchange, leaf reflectance and plant growth properties in barley (Hordeum vulgare L.)[J]. Photosynthetica, 2013, 51(1): 22−32 doi: 10.1007/s11099-013-0002-9

    [42] 王军, 赵桂琴, 柴继宽, 等. 大麦黄矮病毒侵染对燕麦光合及叶绿素荧光参数的影响[J]. 草地学报, 2020, 28(4): 923−931

    WANG J, ZHAO G Q, CHAI J K, et al. Effect of barley yellow dwarf virus infection on photosynthesis and chlorophyll fluorescence parameters of oat[J]. Acta Agrestia Sinica, 2020, 28(4): 923−931

    [43]

    DEMMIG-ADAMS B, COHU C M, MULLER O, et al. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons[J]. Photosynthesis Research, 2012, 113(1/2/3): 75−88

    [44]

    HALLIK L, NIINEMETS, KULL O. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biology, 2012, 14(1): 88−99

  • 期刊类型引用(3)

    1. 周进华,白磊,张锐,郭华春. 秸秆覆盖降温栽培对马铃薯生长的影响. 园艺学报. 2025(02): 453-466 . 百度学术
    2. 王雯,吴腾帅,刘梦圆,白海庆,刘柏林. 氮、钾肥减量对沙地马铃薯农田土壤理化性质及产量的影响. 湖北农业科学. 2025(04): 64-69 . 百度学术
    3. 郭卫珍,宋垚,章丹峰,张春英. 9个山茶品种对高温胁迫的光合生理响应及其耐热性综合评价. 西北植物学报. 2024(04): 539-550 . 百度学术

    其他类型引用(6)

图(8)  /  表(6)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  297
  • PDF下载量:  101
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-11-13
  • 录用日期:  2022-11-13
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-05-09

目录

/

返回文章
返回