Responses of yield traits and grain filling characteristics of maize to sowing dates and their relationships with meteorological factors
-
摘要: 本文通过研究限水灌溉条件下, 播期对一作玉米产量、产量性状和籽粒灌浆特性的影响及阶段气象因子与产量、产量性状及灌浆参数的相关关系, 探讨播期对一年一作玉米产量的影响机制, 为低平原区玉米高产高效生产提供数据支撑。试验采用‘先玉335’和‘郑单958’ 两个玉米品种, 设置5个播期: 5月5日(SD1)、5月20日(SD2)、6月5日(SD3)、6月20日(SD4)和6月30日(SD5)。结果表明: 1)播期对产量影响显著, 且受品种和年型综合影响。随播期的延后, 产量呈先增加后降低的趋势, 两年平均以SD1产量最低, SD4产量最高, SD3和SD4间产量差异不显著。SD4产量高的主要原因是穗粒数和百粒重较高。2)通径分析表明, 产量要素对产量的贡献相互影响, 其中对产量直接作用最大的是百粒重。3)采用Logistic模型研究粒重变化特征(R2>0.98, P<0.01) , 粒重的大小由平均灌浆速率(V)和灌浆持续期(D)的乘积决定, 其中D对粒重的直接贡献最大。4)从气象因子对产量和百粒重的影响来看, 播种到吐丝的日平均气温(TAvsf)越高, 吐丝到成熟的日均温差(TRAvfm)越大, 产量越高; 吐丝后10 d ≥35 ℃的天数(D1fa)越多, 吐丝到成熟的日均气温(TAvfm)越高, 产量和百粒重越低; 其中TAvfm对产量和百粒重的直接贡献最大, 且各气象因子对产量和百粒重的作用相互影响。SD1粒重较低的主要原因是TAvfm高、TRAvfm小, 且D1fa高, D较短。SD3和SD4 粒重较高的主要原因是TRAvsf较大, V、D较高。SD5虽然TRAvfm较大, 但因TAvfm较低, 总体D缩短, 最终粒重降低。5)从品种来看, ‘先玉 335’较‘郑单 958’产量高的主要原因是穗粒数和百粒重高, 且‘先玉 335’的V和V×D分别较‘郑单958’高0.19 mg∙grain−1∙d−1和0.73 mg∙grain−1∙d−1。这说明选用产量潜力大、灌浆速率高的品种, 在6月上旬到6月中下旬播种可优化生育期气象要素, 进而提高粒重和产量。Abstract: This study discussed the influence of sowing dates on maize yield. Under the condition of limited water irrigation, the effects of different sowing dates on yield, yield traits, and grain-filling characteristics of maize of one crop cultivation per year, and the correlation of meteorological factors with yield, yield traits, and grain-filling parameters of maize were studied to provide data-based support for high yield and high-efficiency production in low-plain areas. ‘Xianyu 335’ and ‘Zhengdan 958’ were used in the experiment. Five sowing dates were set: May 5 (SD1), May 20 (SD2), June 5 (SD3), June 20 (SD4), and June 30 (SD5). The results showed that: 1) the sowing date had a significant effect on maize yield, which was affected by variety and climate. The grain yield increased initially, followed by a subsequent decrease with the extension of sowing dates. The two-year average yield of SD1 was the lowest, and that of SD4 was the highest. The difference in yield between SD3 and SD4 was not significant. The high yield of SD4 was mainly due to the high grain number per spike and the 100-grain weight. 2) Path analysis showed that the contribution of yield factors to yield affected each other, and the most direct effect on yield was 100-grain weight. 3) For the variation characteristics of grain weight described by the Logistic model, the determination coefficient, R2, was above 0.98, and the difference was significant at P<0.01. The grain weight was determined by the average grain-filling rate (V) and grain-filling duration (D), and D had the largest direct contribution to the grain weight. 4) From the effect of meteorological factors on yield and yield components, the higher the daily average temperature from sowing to silking and the larger the daily temperature difference (TRAvfm) from silking to maturity, the higher the yield. The more days that had temperatures ≥35 ℃ (D1fa) after 10 days of silking, the higher the daily average temperature (TAvfm) from silking to maturity, and the lower the yield and 100-grain weight. TAvfm had the largest direct contribution to the yield and 100-grain weight, and the effects of various meteorological factors on the yield and grain weight were mutually affected. The main reason for the lower grain weight of SD1 was that the accumulated temperature of ≥10 ℃ during the whole growth period and the accumulated temperature of ≥10 ℃ from sowing to silking were higher, TAvfm was higher, TRAvfm was smaller, the days of D1fa were higher, and D was shorter. SD3 and SD4 had larger TRAvfm, higher V and D values, and higher grain weights. Although the sowing date of SD5 was relatively late, the lower TAvfm resulted in a decrease in the accumulated temperature from silking to maturity, and the filling stage was shortened, thereby reducing the final grain weight. 5) In terms of varieties, the main reasons for the higher yield of ‘Xianyu 335’ compared with ‘Zhengdan 958’ were the higher grain number per spike and 100-grain weight, and the product of V and V×D of ‘Xianyu 335’ were 0.19 mg·grain−1 and 0.73 mg·grain−1 higher than those of ‘Zhengdan 958’, respectively. This showed that selecting varieties with high yield potential and a high filling rate and sowing from early June to middle and late June could optimize meteorological factors during the growth period, thereby increasing grain weight and yield.
-
华北平原水资源匮乏、水粮矛盾突出, 因地下水资源的过度开采造成的水环境等问题备受人们关注[1-3]。改变传统的小麦(Triticum aestivum L.)玉米(Zea mays L.)一年两作种植, 压减冬小麦的种植面积, 探索一作玉米高产高效种植模式, 是缓解地下水资源危机, 改善区域地下水环境的有效方法[2,4-5]。而一作玉米何时播种、适宜品种选择显得尤为重要。科学地调控播期, 可避开玉米关键生育期不利气象条件的影响[6], 优化光温水资源, 达到稳产高产目的[7]。
前人就播期对玉米生长发育、产量、灌浆进程等的研究较多[8-10], 播期可调控玉米生长期的光温水等生态要素, 进而影响产量[11]。刘明等[12]提出华北地区春玉米早播由于雨热不同期不利于营养生长期干物质积累和产量形成, 明博等[13]提出通过调整播期可降低玉米生长期间阶段性气象因子带来的不利影响。已有研究表明[14-15]气象因子中温度与玉米的产量和粒重的相关关系密切, 影响玉米产量和产量构成的主要气象因子是积温[8-9,16], 制约黑龙港区玉米产量的重要障碍因素是粒重决定期的温度[17-20]。李潮海等[21]研究认为散粉期日照时数多有利于穗粒数增加, 但开花期和灌浆期降水偏多会影响籽粒发育反而降低产量。孙宏勇等[22]在限水条件下, 提出华北平原推迟一作玉米播期到5月30日, 产量、水分利用效率较高的同时, 还可避开阴雨寡照和灌浆期高温的不利影响。钱春荣等[10]的研究表明, 最大灌浆速率和平均灌浆速率与渐增期 ≥10 ℃有效积温和灌浆期日平均气温显著正相关, 而灌浆特性及对气象因子的响应存在品种间差异 [23-24]。不同基因型品种的产量潜力及对温度和水分等的适应性不同, 耐性强的品种光合叶面积大, 花后维持期长, 易获得高产[25-26]。玉米的产量是系列产量性状的综合反映[27], 而产量性状又是由多基因控制的数量性状, 受遗传和环境共同制约, 且各性状间又相互影响[28], 而不同品种产量性状存在差异[29]。播期改变势必造成生育期气象因子发生变化, 影响产量性状进而影响产量, 因此不同播期下气象因子与产量、产量性状及灌浆特性的关系研究对指导生产意义重大。
本研究结合区域缺水特点, 在仅灌溉底墒水的情况下, 研究一作玉米不同播期对不同品种玉米产量和产量性状及灌浆特性的影响, 探讨不同播期下玉米产量、产量性状及灌浆特征参数对阶段气象因子的响应机理, 以期为低平原区种植结构调整和高产高效种植模式提供数据支撑。
1. 材料和方法
1.1 试验区概况
试验于2017—2018年在河北省农林科学院旱作农业研究所试验站(37°44′N, 115°47′E, 海拔21 m)进行。近14年(2003—2016年)的年平均气温13.6 ℃, 年日照时数平均2488.5 h; 年降水量平均为545.9 mm, 且主要集中在6—8月。2017—2018年5—10月气象要素(图1-图2)与2003—2016年同期气象要素相比, 光照条件好(变异系数0.6%~19.6%), 日均温接近(变异系数0.5%~7.6%), 气温日较差高(变异系数0.2%~16.0%), 变化较大的是降雨量(变异系数5.0%~121.1%), 没有异常天气影响。传统种植模式为小麦玉米一年两作。土壤类型为轻壤质底黏潮土, 2 m土体容重平均1.4 g∙cm−3。播前土壤有机质2.2%、土壤速效氮105.8 mg∙kg−1、速效磷19.7 mg∙kg−1、速效钾121.3 mg∙kg−1。
1.2 试验设计
试验采用二因素随机区组设计, 因素分别为播期和品种。设5个播期, 播期分别为5月 5日、5月20日、6月5日、6月20日和6月30日, 分别用SD1、SD2、SD3、SD4和SD5表示; 品种为当地主推夏玉米品种‘先玉335’和‘郑单958’。每个处理3次重复, 小区面积33.6 m2 (7 m×4.8 m)。
两年的种植密度为6.7万株∙hm−2, 行距60 cm, 株距24 cm, 人工穴播。肥料全部底施, 2017年和2018年分别底施复合肥(14-16-15)和玉米专用肥(22-8-12) 750 kg∙hm−2。2017年和2018年仅播种后浇蒙头水1次, 灌溉量75 mm。其他管理同大田。收获时间2017年分别为9月5日、9月27日、10月14日、10月27日和10月31日, 2018年分别为9月7日、9月27日、10月7日、10月19日和10月30日。
1.3 测定项目及测定方法
1.3.1 产量和产量性状
收获时去掉边行和保护行, 每个小区连续收获40穗, 脱粒考种, 折算产量。从测产样品中, 随机取两个200粒, 称重, 误差小于0.5 g, 折算百粒重。抽取40穗玉米, 逐穗计数穗行数和2行粒数, 折算穗粒数。每小区调查4行的株数、空秆数和双穗数, 折算有效株数。
1.3.2 灌浆速率
在玉米吐丝期每小区选取吐丝一致的玉米植株40株挂牌, 并记载抽雄吐丝时间, 从吐丝第10 天开始取穗, 每10 d取1次, 每次每小区取3穗, 取从穗底部第6行开始向上6~8行的100粒, 80 ℃烘干至恒重后测百粒干物质重, 折算粒重。
采用Logistic曲线模型模拟粒重的增长过程:
$$ Y_{t}=k/(1+{\rm{e}}^{a+bt}) $$ (1) 式中: Yt为t时刻的籽粒干物质重, 即干物质积累量; t为灌浆开始后持续的天数; a、b、k为参数。当t趋于无穷大时, Yt值为其理论粒重; 对方程求一阶导数可得灌浆速率方程, 根据方程可进行曲线作图; 对方程求二阶导数, 并令其值为0, 得到最大灌浆速率出现的时间(Tmax):
$$ T_{{\rm{max}}}={\rm{ln}}a/b $$ (2) 代入一阶导数方程得到最大灌浆速率(Vmax):
$$ V_{{\rm{max}}}=kb/4 $$ (3) 平均灌浆速率(V)=最大干物质累积量(g)/生长持续期(D); 方程曲线两个拐点, 把生长或灌浆过程分为前中后3个时期, 两个拐点的计算公式为:
$$ t_{1,2}=-{\rm{ln}}[(4\pm 3.464)/2a]/b $$ (4) 1.3.3 气象参数
日平均气温(℃)、日最高温度(℃)、日最低温度(℃)、日照时数(h)和降雨量(mm)来源于衡水市深州观测点监测数据, 距离试验田25 km。≥10 ℃积温(℃)为阶段生育期≥10 ℃日平均气温的和, 平均温度(℃)为阶段生育期日平均气温, 日均温差(℃)为日最高温度和最低温度的差值, 降雨量(mm)为阶段降雨量的和。
计算如下指标: 全生育期积温(T, ℃)、播种到吐丝积温(Tsf, ℃)、吐丝到成熟期积温(Tfm, ℃)、全生育期的日平均气温(TAv, ℃)、播种到吐丝的日平均气温(TAvsf, ℃)、吐丝到成熟期的日平均气温(TAvfm, ℃)、全生育期的降雨(F, mm)、播种到吐丝的降雨(Fsf, mm)、吐丝到成熟期的降雨(Ffm, mm)、全生育期的日均温差(TRAv, ℃)、播种到吐丝的日均温差(TRAvsf, ℃)、吐丝到成熟期的日均温差(TRAvfm, ℃)、全生育期日照时数(S, h)、播种到吐丝日照时数(Ssf, h)、吐丝到成熟日照时数(Sfm, h)、灌浆期日平均气温(TAvfm, ℃)、到达第1拐点t1的积温(Tf1, ℃)、到达t1的日平均气温(TAvf1, ℃)、第1拐点t1到第2拐点t2的积温(Tf12, ℃)、t1到t2的日平均气温(TAvf12, ℃)、吐丝前10 d≥35 ℃天数(D1fe, d)、吐丝前10 d≥33 ℃天数(D2fe, d)、吐丝后10 d≥35 ℃天数(D1fa, d)、吐丝后10 d ≥33 ℃天数(D2fa, d)。
1.4 数据处理方法
采用SAS 8.02数据处理系统进行产量和产量性状的方差、Pearson相关和回归分析。处理间差异显著性采用Tukey法(P=0.05水平差异显著性), *和**分别表示在Pearson相关和回归及通径分析中在0.05和0.01水平差异显著, Excel软件进行作图及数据处理。
2. 结果与分析
2.1 播期对不同品种玉米产量和产量性状的影响
不同播期下不同品种玉米产量和产量性状如表1所示。从产量的影响结果看, 年际间、播期间及品种间差异均达极显著水平, 且两两因素间差异达显著或极显著水平, 但三者的交互作用不显著。在2017年, 2个品种的产量均随播期的延后呈先升高后降低的趋势, ‘先玉335’以SD2产量最高, ‘郑单958’以SD3产量最高; 2018年2个品种均在 SD4播期获得最高产量。2年平均以SD4产量最高, 其次为SD3、SD5、SD2和SD1, 其中SD4、SD3间与SD5、SD2间差异不显著但均与SD1差异显著。2017年和2018年‘先玉335’较‘郑单958’平均产量分别增加4.6%和12.8%, 2年产量平均增加8.5%。说明产量的高低不仅受播期的影响, 而且受播期和品种及三者交互作用的影响, 过早或过晚均不利于产量的提高。
表 1 2017年和2018年播期对不同品种玉米产量和产量性状的影响Table 1. Effects of sowing date on yield and yield components of different maize varieties in 2017 and 2018年份
Year品种
Variety播期(月-日)
Sowing date
(month-day)穗粒数
Grain number
per ear百粒重
100-grain
weight (g)有效株数
Effective number of
plants (×104 plant·hm−2)产量
Yield
(kg·hm−2)2017 先玉 335
Xianyu 33505-05 658.6±13.3a 24.2±0.9c 6.3±0.05c 9506.2±195.6c 05-20 454.9±24.5c 41.3±0.7a 6.5±0.03b 12 572.9±112.8a 06-05 524.2±13.7b 36.8±0.5b 6.7±0.00a 12 290.0±544.5a 06-20 456.4±9.8c 40.1±0.9a 6.7±0.03a 12 159.0±138.3a 06-30 473.0±11.7c 36.3±0.6b 6.6±0.00a 10 603.6±230.2b 郑单 958
Zhengdan 95805-05 459.0±26.2b 32.8±0.6c 6.5±0.02b 9146.8±285.8b 05-20 540.6±3.6a 34.8±0.8bc 6.7±0.00a 11 813.5±265.9a 06-05 523.8±14.7a 35.5±0.2b 6.5±0.03b 12 110.5±611.6a 06-20 498.2±23.1ab 38.9±1.0a 6.7±0.01a 11 590.9±353.1a 06-30 493.0±10.9ab 33.5±1.0bc 6.6±0.01b 9948.9±301.1b 2018 先玉 335
Xianyu 33505-05 488.9±11.2a 33.5±0.1b 6.4±0.04 9527.7±369.1c 05-20 494.3±18.3a 31.8±0.4b 6.5±0.04bc 10 050.8±409.9c 06-05 446.4±17.0b 40.9±0.6a 6.7±0.02a 11 222.3±135.7b 06-20 518.1±8.2a 40.2±0.4a 6.6±0.02ab 12 917.1±255.6a 06-30 493.9±14.9a 39.9±0.9a 6.1±0.08d 11 655.5±42.4b 郑单 958
Zhengdan 95805-05 495.5±1.7a 28.3±0.1e 6.5±0.04bc 8510.7±106.5c 05-20 410.2±14.6b 30.0±0.4d 6.5±0.04bc 7676.3±204.3d 06-05 481.3±1.9a 37.3±0.2a 6.7±0.04a 11 238.5±115.8a 06-20 510.6±2.2a 35.3±1.0b 6.4±0.00c 11 566.6±343.0a 06-30 485.5±13.0ab 32.4±0.2c 6.6±0.02ab 10 101.5±260.7b 因素 Factor F值 F value 年际 Year (A) 15.1** 2.6 30.6** 29.6** 播期 Sowing date (B) 6.4** 109.7** 29.9** 58.1** 品种 Variety (C) 2.8 78.1** 10.4** 43.3** A×B 9.4** 38.8** 16.0** 27.9** A×C 0.0 44.3** 3.6 7.9** B×C 10.7** 15.9** 18.8** 3.4* A×B×C 21.7** 24.8** 22.6** 1.2 不同小写字母表示该品种在当年不同播期间差异显著。**和*表示P<0.01和P<0.05水平差异显著。Different lowercase letters indicate significant differences among different sowing dates in the same year for the same variety. ** and * indicate significance at P<0.01 and P<0.05, respectively. 从百粒重结果看, 年际间无显著差异; 但播期、品种及其三者交互作用对百粒重影响均达极显著水平。2017年, ‘先玉 335’百粒重以SD2最高, SD1最低; ‘郑单 958’以SD4最高, SD1最低。2018年2个品种均以SD3百粒重最高。‘先玉 335’较‘郑单958’百粒重平均高7.7%, 说明粒重的高低首先受基因型影响, 而且受环境条件制约, 播种早(SD1)或播种晚(SD5)均不利于粒重提高。
从穗粒数的影响看, 受年型和播期的影响较大, ‘先玉335’在2017年和2018年分别在SD1和SD4播期获得最高穗粒数, 而‘郑单958’分别在SD2和SD4获得最高穗粒数, 2年平均以SD1播期最高(525.5粒), 其次是SD4 (495.8粒)、SD3 (493.9粒)、SD5 (486.3粒)和SD2 (475.0粒)。‘先玉335’较‘郑单958’穗粒数2年平均高2.3%。
有效株数是收获时调查的实际株数减去空秆率和双穗折算的实际穗数, 是出苗率对播期的综合反映, 2年平均有效株数结果为SD3>SD4>SD2>SD5>SD1。‘先玉335’较‘郑单958’在播期一致的情况下有效株数略少, 2年平均少0.7%。因此播期对产量性状的综合调控是提高产量的关键。
将2年不同播期以产量三要素计算的理论产量和实测产量进行回归分析, 回归方程为y=755.6120+0.9802x (F=102.4166, P=0.0021, R2=0.9715), 说明产量要素较好地反映了产量结果。
再将产量三要素与产量做线性回归, 回归方程为y=−15 840.2747+17.4438x1+327.7975x2+989.5866x3 (R2=0.9201), 其中x1为穗粒数, x2为百粒重, x3为有效株数。通径分析结果表明(表2), 对产量影响较大是穗粒数和百粒重, 有效株数的直接作用不显著, 但穗粒数、百粒重和有效株数对产量的影响作用是相互的, 其中百粒重对产量的影响最大, 且与产量的Pearson相关关系达极显著水平(r=0.7968)。本研究结果表明SD3、SD4播期综合产量较高的主要原因是有较多的穗粒数和较高的粒重。
表 2 玉米产量三要素与产量的通径分析Table 2. Path analysis of three factors of yield and yield因子
Factor相关系数
Correlation coefficient直接通径系数
Direct path coefficient间接通径系数 Indirect path coefficient 通过x1 Through x1 通过x2 Through x2 通过x3 Through x3 x1 0.1276 0.5950** −0.4451 −0.0223 x2 0.7968** 1.0267** −0.2578 0.0280 x3 0.2529 0.1033 −0.1288 0.2783 剩余通径系数=0.2826, n=20。x1: 穗粒数, x2: 百粒重, x3: 有效株数。**表示P<0.01。The residual path coefficient is 0.2826, n=20. x1, x2 and x3 represent grains number per ear, 100-grain weight, number of effective plants, respectively. ** indicates significance at the level of P<0.01. 2.2 试验期间气象条件分析
将与产量和产量性状影响显著的气象因子列于表3。因2品种在不同播期下吐丝和成熟时间不同故分别列出。2品种的温度参数随播期的变化基本一致, 但降雨量参数随播期的变化差异较大。随播期的延后播种到吐丝的日均气温(TAvsf)呈先增加后降低的趋势, 以SD4播期最高, 说明该时期播种利于产量和粒重的提高; 从播种到吐丝的降雨量(Fsf)分析看SD2和SD5播期较有利, 因为前期降雨的增多可促进玉米营养生长为后期籽粒灌浆提供足够的营养; 而吐丝到成熟的日均温差(TRAvfm)在2017年以SD3播期最高, 在2018年随播期延后逐渐升高, 较有利于灌浆; 播种到吐丝的日照时数(Ssf)以SD1最长, 但吐丝后10 d ≥35 ℃ (D1fa)和 ≥33 ℃ (D2fa)高温的天数增多, 对籽粒灌浆不利。
表 3 试验期间不同播期对不同玉米品种产量和产量性状影响显著的气象因子状况Table 3. Status of meteorological factors significantly impacting yield and yield components of different maize varieties in 2017 and 2018年份 Year 播期(月-日) Sowing date (month-day) 品种 Variety TAvsf (℃) Fsf (mm) TAvfm (℃) TRAvfm (℃) Ssf (h·d–1) D1fa (d) D2fa (d) 2017 05-05 先玉 335 Xianyu 335 25.0 146.0 26.0 9.4 10.4 7 7 郑单 958 Zhengdan 958 25.1 174.8 25.5 9.5 10.4 6 7 05-20 先玉 335 Xianyu 335 26.3 217.9 24.3 10.6 9.7 1 2 郑单 958 Zhengdan 958 26.4 285.1 24.0 10.6 9.7 1 1 06-05 先玉 335 Xianyu 335 26.9 221.0 21.6 11.1 8.3 1 3 郑单 958 Zhengdan 958 26.9 122.3 21.0 11.1 8.4 1 2 06-20 先玉 335 Xianyu 335 27.3 156.0 19.5 10.5 8.0 0 1 郑单 958 Zhengdan 958 27.3 128.5 19.3 10.5 8.0 0 1 06-30 先玉 335 Xianyu 335 27.3 214.1 18.3 10.8 7.5 0 1 郑单 958 Zhengdan 958 27.2 284.1 18.3 10.8 7.5 0 1 2018 05-05 先玉 335 Xianyu 335 25.0 146.0 27.3 8.5 9.6 2 5 郑单 958 Zhengdan 958 25.0 174.8 27.0 8.9 9.6 3 6 05-20 先玉 335 Xianyu 335 26.4 218.0 25.2 10.0 9.1 6 9 郑单 958 Zhengdan 958 26.5 285.1 24.7 10.2 9.2 4 8 06-05 先玉 335 Xianyu 335 28.1 221.0 22.8 11.4 8.9 4 8 郑单 958 Zhengdan 958 28.1 123.3 22.7 11.4 9.0 4 7 06-20 先玉 335 Xianyu 335 29.1 156.0 20.7 12.2 8.6 1 4 郑单 958 Zhengdan 958 29.1 128.5 20.3 12.4 8.4 1 3 06-30 先玉 335 Xianyu 335 28.1 214.1 17.5 13.8 7.5 0 0 郑单 958 Zhengdan 958 28.1 284.1 17.5 13.8 7.5 0 0 TAvsf: 播种到吐丝的日平均气温; Fsf: 播种到吐丝的降雨; TAvfm: 吐丝到成熟的日平均气温; TRAvfm: 吐丝到成熟的日均温差; Ssf: 播种到吐丝的日照;D1fa: 吐丝后10 d ≥35 ℃的天数; D2fa: 吐丝后10 d ≥33 ℃的天数。TAvsf, Fsf and Ssf represent daily average temperature, rainfall and sunshine hours from sowing to silking. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa and D2fa represent days of ≥35 ℃ and ≥33 ℃ after 10 days of silking, respectively. 2.3 气象要素与玉米产量和产量要素的相关关系
播期的改变势必影响生育期内各气象要素的变化, 将不同播期积温、降雨、日照时数、日均气温、日均温差及阶段气象要素与产量和产量要素做Pearson相关分析, 相关显著或极显著的列于表4。结果表明, 播种到吐丝的日均气温(TAvsf)越高、吐丝到成熟日均气温(TAvfm)越低和播种到吐丝的降雨量(Fsf)越大及吐丝到成熟阶段的日均温差越大(TRAvfm), 产量越高, 但吐丝后10 d ≥35 ℃ (D1fa)和≥33 ℃ (D2
fa)的天数越多越不利于产量的提高。从百粒重看, TAvsf越高、TRAvfm越大, 越有利于粒重提高, 而播种到吐丝日照时数(Ssf)和D1fa越多, TAvfm、吐丝到第1拐点的日均气温(TAvf1)和第1到第2拐点的日均气温(TAvf12)越高, 粒重会越低。对穗粒数和有效株数的影响不显著。 表 4 气象要素与玉米产量和产量性状的相关关系Table 4. Correlation between meteorological factors and yield and yield components of maizeTAvsf TAvfm Fsf TRAvfm Ssf D1fa D2fa TAvf1 TAvf12 穗粒数 Grains number per ear −0.1897 0.1146 −0.0216 −0.0757 0.2376 0.1934 −0.0484 0.0327 −0.0076 百粒重 100-grain weight 0.6153** −0.4996* 0.4133 0.4570* −0.5160* −0.5691** −0.4187 −0.4580* −0.4516* 有效株数 Number of effective plants 0.1727 −0.1011 −0.0092 −0.1047 −0.1214 −0.1358 −0.0082 −0.0890 0.0178 产量 Yield 0.5758** −0.4724* 0.4669* 0.4735** −0.3972 −0.5394* −0.5198* −0.4674* −0.4760* TAvsf: 播种到吐丝的日平均气温; TAvfm: 吐丝到成熟的日平均气温; Fsf: 播种到吐丝的降雨; TRAvfm: 吐丝到成熟的日均温差; Ssf: 播种到吐丝的日照; D1fa: 吐丝后10 d ≥35 ℃的天数; D2fa: 吐丝后10 d ≥33 ℃的天数; TAvf1和TAvf12分别为吐丝到第1和第1到第2拐点的日平均气温。*和**表示P<0.05和P<0.01水平显著相关。TAvsf, Fsf and Ssf represent daily average temperature, rainfall and sunshine hours from sowing to silking, respectively. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa and D2fa represent days of ≥35 ℃ and ≥33 ℃ after 10 days of silking, respectively. TAvf1 and TAvf12 represent daily average temperature range from silking to the first inflection and the first to second inflections, respectively. * and ** indicate significance at P<0.05 and P<0.01, respectively. 将关系密切的气象因子与产量和百粒重做进一步通径分析(表5和表6)。结果表明, 各因子对产量和粒重的影响作用是相互的, 例TAvfm对产量和百粒重的直接贡献最大, 通过TAvsf、D2fa和TAvf12对产量和粒重的贡献作用为负效应, 而通过TRAvfm、D1fa和TAvf1对产量的作用为正效应, 但实际D1fa、D2fa越多, TAvfm、TAvf1和TAvf12越高, 产量和百粒重越低。
表 5 气象要素与玉米产量的通径分析Table 5. Path analysis of meteorological factors and yield of maize因子
Factor相关系数
Correlation
coefficient直接通径系数
Direct path coefficient间接通径系数 Indirect path coefficient 通过TAvsf
Through TAvsf通过TAvfm
Through TAvfm通过Fsf
Through Fsf通过TRAvfm
Through TRAvfm通过D1fa
Through D1fa通过D2fa
Through D2fa通过TAvf1
Through TAvf1通过TAvf12
Through TAvf12TAvsf 0.5758** 1.7764 −1.4599 −0.1564 −1.2033 −0.4062 0.9062 −0.6367 0.4618 TAvfm −0.4724* 1.9326 −1.3418 −0.0764 0.8666 0.2744 −1.0633 0.1661 −1.2308 Fsf 0.4669* 0.0872 0.8503 −1.6925 −0.9018 −0.6055 2.0968 −1.2360 0.5592 TRAvfm 0.4735* −1.1025 1.3672 −1.5191 −0.1885 −0.4001 1.2707 −0.7146 0.5560 D1fa −0.5394* 0.3719 −0.8076 1.4260 0.2214 0.7001 −2.3328 1.2697 −0.4001 D2fa −0.5198* −1.4281 −0.5695 1.4388 0.2424 0.7029 0.7375 1.3825 −0.4534 TAv f1 −0.4674* 0.1951 −0.6892 1.6458 0.2461 0.6808 0.6913 −2.3812 −0.5028 TAv f12 −0.4760* −1.3034 −1.1295 1.8250 0.2516 1.1967 0.4921 −1.7643 1.1358 剩余通径系数=0.5483, n=20。TAvsf: 播种到吐丝的日平均气温; TAvfm: 吐丝到成熟的日平均气温; Fsf: 播种到吐丝的降雨; TRAvfm: 吐丝到成熟的日均温差; D1fa: 吐丝后10 d ≥35 ℃的天数; D2fa: 吐丝后10 d ≥33 ℃的天数; TAvf1: 吐丝到第1拐点的日平均气温; TAvf12: 第1到第2拐点的日平均气温。*和**分别表示P<0.05和P<0.01水平显著。The residual path coefficient is 0.5483, n=20. TAvsf and Fsf represent daily average temperature and rainfall from sowing to silking, respectively. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa and D2fa represent days of ≥35 ℃ and ≥33 ℃ after 10 days of silking, respectively. TAvf1 and TAvf12 represent daily average temperature range from silking to the first inflection and the first to second inflections, respectively. * and ** indicate significance at levels of P<0.05 and P<0.01, respectively. 表 6 气象要素与玉米百粒重的通径分析Table 6. Path analysis of meteorological factors and 100-grain weight of maize因子
Factor相关系数
Correlation
coefficient直接通径系数
Direct path
coefficient间接通径系数 Indirect path coefficient 通过TAvsf
Through TAvsf通过TAvfm
Through TAvfm通过TRAvfm
Through TRAvfm通过Ssf
Through Ssf通过D1fa
Through D1fa通过TAvf1
Through TAvf1通过TAvf12
Through TAvf12TAvsf 0.6153** 1.2805 −1.0472 −0.4597 −0.5536 0.2358 0.0657 0.1045 TAvfm −0.4996* 1.3863 −0.9673 0.4969 0.1603 −0.3547 −0.3375 −0.8837 TRAvfm 0.4570* −0.6321 1.0380 −1.0897 −0.4712 0.2323 0.0737 0.1258 Ssf −0.5160* 0.1789 −1.0147 1.2425 0.3826 −0.3301 −0.1089 −0.1118 D1fa −0.5691** −0.4807 −0.6131 1.0229 0.2675 0.4682 −0.1309 −0.0905 TAvf1 −0.4580* −0.3963 −0.5233 1.1805 0.2601 0.4736 −0.4013 −0.1138 TAvf12 −0.4516* −0.9359 −0.8575 1.3091 0.4572 0.5005 −0.2857 −0.1171 剩余通径系数=0.5483, n=20。TAvsf: 播种到吐丝的日平均气温; TAvfm: 吐丝到成熟的日平均气温; TRAvfm: 吐丝到成熟的日均温差; Ssf: 播种到吐丝的日照时数; D1fa: 吐丝后10 d ≥35 ℃的天数; TAvf1: 吐丝到第1拐点的日平均气温; TAvf12: 第1到第2拐点的日平均气温。*和**分别表示P<0.05和P<0.01水平显著。The residual path coefficient is 0.5483, n=20. TAvsf and Ssf represent daily average temperature and sunshine hours from sowing to silking. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa represents days of ≥35 ℃ after 10 days of silking. TAvf1 and TAvf12 represent daily average temperature range from silking to the first inflection and the first to second inflections, respectively. * and ** indicate significance at P<0.05 and P<0.01, respectively. 2.4 播期对玉米粒重的影响
2.4.1 不同播期的粒重及粒重特征方程
从不同播期灌浆测定的粒重看(表7), 两品种平均粒重的变化趋势2017年为SD4>SD5>SD2>SD3>SD1, SD4分别较SD5、SD2、SD3和SD1高34.0 mg、42.9 mg、48.6 mg和95.7 mg; 2018年为SD4>SD3>SD5>SD1>SD2, SD4分别较SD3、SD5、SD1和SD2高0.1 mg、33.1 mg、78.5 mg和87.9 mg。SD3和SD4播期粒重较高, 早播(5月5日)和晚播(6月30日)均不利于玉米粒重的提高。‘先玉335’的粒重均高于‘郑单958’, 平均高33.4 mg, 说明粒重的大小首先决定于基因型。
表 7 不同播期下不同品种玉米粒重及粒重的变化特征方程Table 7. Characteristic equations of grain weight and grain weight change of different maize varieties sown at different dates年份
Year品种
Variety播期(月-日)
Sowing date (month-day)粒重变化特征方程
Grain weight change characteristic equation决定系数(R2)
Coefficient of determination实测粒重
Measured grain weight (mg)2017 先玉335
Xianyu 33505-05 Yt=0.3270/[1+exp(3.0944−0.1123t)] 0.9969** 320.7c 05-20 Yt=0.4033/[1+exp(4.0557−0.1415t)] 0.9962** 396.2a 06-05 Yt=0.3964/[1+exp(2.5405−0.1378t)] 0.9879** 379.2b 06-20 Yt=0.3965/[1+exp(3.7615−0.1365t)] 0.9820** 390.4a 06-30 Yt=0.3928/[1+exp(4.2806−0.1462t)] 0.9900** 388.8ab 郑单958
Zhengdan 95805-05 Yt=0.3138/[1+exp(3.7647−0.1326t)] 0.9970** 307.7d 05-20 Yt=0.3443/[1+exp(3.5721−0.1304t)] 0.9953** 337.9c 06-05 Yt=0.3572/[1+exp(2.6575−0.1399t)] 0.9901** 343.4c 06-20 Yt=0.4264/[1+exp(3.1927−0.0990t)] 0.9830** 429.4a 06-30 Yt=0.3752/[1+exp(3.3797−0.1171t)] 0.9830** 363.0b 2018 先玉335
Xianyu 33505-05 Yt=0.3714/[1+exp(3.4882−0.1419t)] 0.9943** 362.7c 05-20 Yt=0.3424/[1+exp(3.2859−0.1396t)] 0.9968** 335.6d 06-05 Yt=0.4167/[1+exp(3.2712−0.1259t)] 0.9970** 404.8b 06-20 Yt=0.4379/[1+exp(3.6048−0.1150t)] 0.9889** 421.7a 06-30 Yt=0.4187/[1+exp(3.3637−0.1055t)] 0.9897** 407.4b 郑单958
Zhengdan 95805-05 Yt=0.2963/[1+exp(3.1152−0.1285t)] 0.9880** 285.0d 05-20 Yt=0.3059/[1+exp(3.2796−0.1361t)] 0.9886** 293.4d 06-05 Yt=0.4122/[1+exp(3.2118−0.0995t)] 0.9942** 399.8a 06-20 Yt=0.3965/[1+exp(3.4208−0.1198t)] 0.9918** 383.0b 06-30 Yt=0.3373/[1+exp(3.4976−0.1328t)] 0.9986** 331.2c 不同小写字母表示该品种的实测粒重在当年不同播期间差异显著(P<0.05)。**表示P<0.01水平显著。Different lowercase letters indicate significant differences of measured grain weight of the same variety among different sowing dates in the same year at P<0.05. ** indicates significance at P<0.01 level. 用Logistic曲线模型模拟粒重变化特征方程如表7所示, 决定系数R2在0.98以上, 均达极显著水平。将实测粒重和理论粒重作回归分析, 二者呈极显著的线性相关关系, 回归方程为y=1.045x−17.09 (R2=0.863**), 说明粒重特征方程能较好地描述粒重的变化。
表 8 不同播期下不同玉米品种的籽粒灌浆特征参数Table 8. Grain filling characteristic parameters of different maize varieties sown at different dates年份 Year 品种 Variety 播期(月-日) Sowing date (month-day) t1 (d) t2 (d) Vmax (mg∙grain−1∙d−1) V (mg∙grain−1∙d−1) D (d) 2017 先玉 335 Xianyu 335 05-05 15.83 39.28 9.18 4.78 68.47 05-20 19.36 37.97 14.27 6.60 61.14 06-05 8.88 27.99 13.66 7.66 51.78 06-20 17.91 37.20 13.53 6.48 61.22 06-30 20.27 38.29 14.36 6.47 60.71 郑单 958 Zhengdan 958 05-05 18.46 38.32 10.40 4.98 63.05 05-20 17.30 37.49 11.22 5.50 62.63 06-05 9.58 28.41 12.49 6.89 51.84 06-20 18.95 45.55 10.55 5.42 78.66 06-30 17.62 40.11 10.98 5.51 68.10 2018 先玉 335 Xianyu 335 05-05 15.30 33.86 13.18 6.52 56.96 05-20 14.11 32.97 11.95 6.07 56.45 06-05 15.52 36.44 13.12 6.67 62.48 06-20 17.86 40.76 12.59 6.32 69.27 06-30 19.40 44.37 11.04 5.55 75.44 郑单 958 Zhengdan 958 05-05 14.00 34.49 9.52 4.94 60.00 05-20 14.42 33.77 10.41 5.29 57.86 06-05 19.05 45.52 10.25 5.25 78.46 06-20 17.56 39.55 11.88 5.93 66.91 06-30 16.42 36.25 11.20 5.54 60.94 t1: 到达第1拐点的时间; t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。t1 and t2 represent the time to reach the first and the second inflection points, respectively. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. 2.4.2 不同播期的灌浆速率拟合曲线
2017年、2018年两品种籽粒灌浆拟合曲线如图3所示。结果表明, 不同品种在不同年份灌浆进程表现不同。 例如2017年SD3播期, 两品种籽粒灌浆曲线靠前, 说明同期灌浆速率大, 有利于籽粒灌浆, 但后期籽粒灌浆曲线下降较快, 两品种均以SD4播期粒重最高, 其曲线后延, 说明在灌浆的后期养分的转移能力仍很高, 有利于粒重的增加; 而粒重低的SD1播期, 籽粒灌浆曲线峰值低, 说明同期灌浆速率低, 不利于粒重的提高和干物质的积累。图3和表8表明, SD3、SD4播期粒重较高的主要原因是平均灌浆速率较高, 同期曲线靠上, 或曲线后延, 灌浆的时间长。2018年SD5播期‘先玉335’虽然在灌浆后期曲线靠上, 灌浆速率相对较高, 灌浆期长, 但因最大灌浆速率(曲线的峰值)和平均灌浆速率低, 故粒重不高。‘先玉335’较‘郑单958’灌浆速率曲线的峰值总体偏高, 最大灌浆速率高, 且平均灌浆速率也高, 平均粒重较高。‘郑单958’在2017年SD4播期和2018年SD3播期的灌浆期均长于‘先玉335’, 但在2017年SD4播期粒重高于‘先玉335’, 2018年SD3播期却低于‘先玉335’, 说明粒重的提高不仅需高的灌浆速率, 灌浆期也要长。
图 3 2017年和2018年不同播期下玉米品种‘先玉335’(XY335)和‘郑单958’(ZD958)籽粒灌浆拟合曲线SD1、SD2、SD3、SD4和SD5分别指播期为5月5日、5月20日、6月5日、6月20日和 6月30日。Figure 3. Fitting curves of grain filling rate of maize varieties ‘Xianyu335’ (XY335) and ‘Zhengdan958’ (ZD958) sown at different dates in 2017 and 2018SD1, SD2, SD3, SD4, and SD5 are sowing date of May 5, May 20, June 5, June 20 and June 30, respectively.2.4.3 不同播期的籽粒灌浆特征参数
表8籽粒灌浆特征参数揭示了籽粒灌浆进程的快慢和灌浆强度的高低。2017年的SD4播期粒重最高, 虽然较SD3播期最大灌浆速率(Vmax)和平均灌浆速率(V)小, 但灌浆期(D)长, V×D值较SD3播期高41.9 mg∙grain−1; 2018年‘先玉335’在SD4播期V×D值最高, 而‘郑单958’在SD3播期V×D值最高, 说明灌浆特征参数值受年型和品种特性的影响。SD5播期粒重降低的主要原因是V的减小及灌浆后期植株早衰D的缩短。SD1播期粒重较低的主要原因是V低。从品种看, ‘先玉335’的V和V×D分别较‘郑单958’高0.19 mg∙grain−1∙d−1和0.73 mg∙grain−1, 是粒重较高的主要原因。说明选用灌浆速率高、灌浆期长的品种有利于粒重和产量的提高。
2.4.3.1 灌浆特征参数与粒重的关系
表9表明, 灌浆特征参数值与粒重均为正相关关系, 且灌浆特征参数存在互作效应。到达t1和t2的时间越早, V越小、D越长; Vmax和V越大, D反而越短。而V和D共同决定粒重的高低。将与粒重关系较密切的t2、Vmax、V和D进行回归分析, 回归方程为y(粒重)=−340.8113−4.8612 t2+16.9760Vmax+24.4938V+8.5153D, R2=0.9911, 达极显著水平。通径系数见表10, D、Vmax和V的直接作用较大且相关系数达显著水平, 但D通过t2、Vmax和V的作用为负效应, 说明D受t2、Vmax和V的制约, 而V与D为相互影响的负效应关系, 优化玉米灌浆特征参数, 保持较高的V和D, 才能最终提高粒重。
表 9 玉米籽粒灌浆特征参数间和粒重的相关关系Table 9. Correlation between grain filling characteristic parameters and grain weight of maize因子 Factor t1 t2 Vmax V D t2 0.8630** Vmax −0.0544 −0.3440 V −0.4171 −0.5365* 0.9035** D 0.7088** 0.99681** −0.4536* −0.5424* 粒重 Grain weight 0.4013 0.4933* 0.5033* 0.4547* 0.4894* t1: 到达第1拐点的时间; t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。*和**分别表示P<0.05和P<0.01水平显著相关。t1 and t2 represent the time to reach the first and the second inflection points, respectively. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. * and ** indicate significance at P<0.05 and P<0.01 levels, respectively. 表 10 玉米籽粒灌浆特征参数与粒重的通径分析Table 10. Path analysis between grain filling characteristic parameters and grain weight of maize因子
Factors相关系数
Correlation coefficient直接通径系数
Direct path coefficients间接通径系数 Indirect path coefficients 通过t2
Through t2通过Vmax
Through Vmax通过V
Through V通过D
Through Dt2 0.4933* −0.5449 −0.2122 −0.2344 1.4847 Vmax 0.5033* 0.6169 0.1874 0.3947 −0.6957 V 0.4547* 0.4368 0.2923 0.5574 −0.8319 D 0.4894* 1.5337 −0.5275 −0.2799 −0.2369 剩余通径系数=0.0946, n=20。t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。* 表示P<0.05水平差异显著。The residual path coefficient=0.0946, n=20. t2 represents the time to reach the second inflection point. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. * indicates significance at the level of P<0.05. 2.4.3.2 灌浆特征参数及粒重与主要气象因子的关系
播期的改变主要影响生育期内温光水等资源的改变[30], 影响籽粒灌浆特性[31], 进而影响粒重的高低。将粒重和与粒重关系密切的t2、Vmax、V和D与播种至成熟阶段可能影响的气象要素分别做Pearson相关分析(表11)。结果表明, 气象因子间相互关联影响, 而且不同因子对灌浆特征参数和灌浆粒重的影响不同。例如生育期≥10℃的积温(T)对粒重的影响是负效应, 使得t2时间提前, 但Tf1越高使得t2时间延后, 而Tf1、Tf12越高, 灌浆期D越长, V会越小。本研究中, SD1播期的T、Tsf较高, TAvsf低、TRAvfm小, 且D1fa的天数多, D短, 是粒重较低的主要原因。SD3、SD4播期TAvsf高, V、D较高, TRAvfm大, 有利于籽粒灌浆, 粒重较高。SD5播期虽然TRAvfm大, 利于灌浆, 但由于TAvf1和TAvf12低而造成Tf1、Tf12的降低, 总体D缩短, 最终粒重降低。因此播期改变是通过改变玉米生育期不同阶段各气象因子, 进而影响灌浆特征参数的变化, 影响决定粒重高低的V和D的改变。本研究SD3、SD4播期播种V和D较高, 获得了较高的粒重, 是产量提高的主要原因。
表 11 气象因子间及灌浆特征参数和粒重与气象因子间的相关关系Table 11. Correlation relationship between meteorological factors, maize grain filling characteristic parameters and grain weight, and meteorological factors因子 Factor T TAvsm Tsf TAvsf TRAvsf Ssf TAvfm TRAvfm D1fa Tf1Av Tf12Av TAvsm 0.9076** Tsf 0.6867** 0.5448* TAvsf −0.5648** −0.5722** −0.5208* TRAvsf 0.7786** 0.7902** 0.5585* −0.8199** Ssf 0.8016** 0.8388** 0.7459** −0.8300** 0.9330** TAvfm 0.9029** 0.9996** 0.5462* −0.5798** 0.7871** 0.8416** TRAvfm −0.6420** −0.6417** 0.8490** −0.7863** −0.7065** −0.7860** Ffm 0.7580** 0.6817** 0.5319* −0.6367** 0.6113** 0.6215** 0.7183** −0.8457** D1fa 0.5808** 0.7349** −0.5015* 0.6337** 0.7020** 0.7378** −0.4940* Tf1 −0.5257* −0.4804* 0.8536** TAvf1 0.8000** 0.9174** 0.4987* 0.6007** 0.7101** 0.8516 ** −0.4804* 0.8536** 0.5514* Tf12 0.4467* 0.5820** −0.4616* 0.5481* 0.5514* T Avf12 0.8315** 0.8960** −0.7014** 0.7971** 0.7505** 0.5788** −0.8444** 0.6076** 0.7636** −0.3696 t2 −0.4520* −0.3335 −0.5958** 0.3679 −0.3072 −0.3764 −0.3307 0.3029 −0.1107 −0.3350 −0.3696 Vmax −0.1115 −0.1837 −0.1798 0.2426 −0.1628 −0.3021 −0.2332 0.1066 −0.4533* −0.2847 −0.0972 V −0.0026 −0.1110 0.0890 0.2481 −0.1668 −0.2222 −0.2008 0.1224 −0.3986 −0.1639 −0.1132 D −0.4110 −0.3023 −0.4776* 0.3864 −0.3256 −0.3474 −0.3212 0.3201 −0.0687 −0.2711 −0.3935 灌浆粒重 Grain weight −0.4543* −0.4549* −0.4912* 0.6599** −0.5173* −0.6255** −0.5550* 0.4478* −0.5122* −0.4890* −0.5145* T: 全生育期≥10 ℃的积温; Tsf: 播种到吐丝≥10 ℃的积温; TAvsf: 播种到吐丝的日平均气温; TRAvsf: 播种到吐丝的日均温差; Ssf: 播种到吐丝的日照时数; TAvfm: 吐丝到成熟的日平均气温; TRAvfm: 吐丝到成熟的日均温差; Ffm: 吐丝到成熟的降雨量; D1fa: 吐丝后10 d ≥35 ℃的天数; Tf1: 吐丝到第1拐点≥10 ℃的积温; Tf12: 第1到第2拐点≥10 ℃的积温; TAvf1: 吐丝到第1拐点的日平均气温; TAvf12: 第1到第2拐点的日平均气温; t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。*和**分别表示P<0.05和P<0.01水平显著相关。T represents accumulated temperatures ≥10 ℃ from sowing to maturity. Tsf, TAvsf, TRAvsf and Ssf represent accumulated temperatures ≥10 ℃, daily average temperatures, daily mean temperature difference and sunshine hours from sowing to silking, respectively. TAvfm, TRAvfm and Ffm represent daily average temperature, daily mean temperature difference and rainfall from silking to maturity, respectively. Tf1 and Tf12 represent accumulated temperatures ≥10 ℃ from silking to the first inflection and from the first to second inflections, respectively. D1fa represents days of ≥35 ℃ after silking. TAvf1 and TAvf12 represent daily average temperatures from silking to the first inflection and from the first to second inflections, respectively. t2 represents the time to reach the second inflection. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. * and ** indicate significance at P<0.05 and P<0.01 levels, respectively. 3. 讨论
3.1 播期可优化玉米生长的气象因子, 提高粒重和产量
在全球变暖背景下, 气候资源对农业生产的影响越来越受到人们关注[32], 且不同区域对气候的响应存在差异[33], 限制华北平原夏玉米产量的主要气象因子是降水和光照[34], 适宜的播期可为玉米生长发育提供有利的温光水资源条件[30,35]。杜霞等[36]研究表明气象因子对玉米的影响主要表现在营养生长阶段, 营养生长期充足的温光水条件可为玉米搭好丰产的架子, 播种过早不利于玉米前期的生长发育, 影响源和库[37], 而且适宜的播期也可躲开花期的高温等气象灾害[6]。因此通过播期调整可优化作物生长的气象因子条件, 进而提高产量。
本研究表明, 随播期延后玉米产量呈先增加后降低趋势, 平均产量和粒重以SD4 (6月20日)播期最高, 与产量关系最为密切的产量性状为百粒重; 气象因子中吐丝到成熟的日平均气温(TAvfm)对产量和百粒重的直接贡献最大, 通过播种到吐丝的日平均气温(TAvsf)、吐丝后10 d≥33 ℃的天数(D2fa)和第1(t1)到第2(t2)拐点的日均气温(TAvf12)对产量的贡献作用为负效应, 通过吐丝到成熟的日均温差(TRAvfm)、吐丝后10 d≥35 ℃的天数(D1fa)和吐丝到第1拐点的日均气温(TAvf1)对产量的作用为正效应, 但实际D1fa、D2fa越多, TAvfm、TAvf1和TAvf12越高, 产量和百粒重越低。说明播期对产量和产量性状的影响是多个气象因子的综合效应。从不同播期来看, 5月5日(SD1)播种的积温条件可满足玉米生长需要, 但降雨主要在7—8月, 雨热不同期, 且播种到吐丝的日均气温(TAvsf)较低、吐丝到成熟阶段的日平均气温(TAvfm)高、D1fa、D2fa的天数多, 与陶志强等[38]在5月上旬播种灌浆期的高温胁迫结果相吻合, 不利于粒重提高, 也是该播期产量低的主要原因。在6月5日(SD3)和6月20日(SD4)播期播种可充分利用降雨资源[39], 而且灌浆期的温度较适宜, TRAvfm大, 花期高温热害和连阴雨发生的几率低[6], 有利于粒重和产量的提高, 与华北平原玉米播种5月25日—6月27日有利于籽粒生长获得高产[18], 及夏播玉米适播期6月9日—6月25日的研究结果较吻合[40]。目前生产上玉米生理成熟需积温2800 ℃左右, ‘郑单958’和‘先玉335’所需的积温分别为2950 ℃和2880 ℃[41]。本研究中, 5月5日—6月5日播种完全能满足玉米生理成熟所需的积温, 6月20日播种(SD4)基本能满足, 6月30日(SD5)播种太晚, 平均积温低于2700 ℃, 不能满足玉米生理成熟所需的积温, 是粒重和产量降低的主要原因, 也印证了李文阳等[42]播种早灌浆期日均温差小, 播种晚积温不够的研究结果。
3.2 气象因子条件通过影响玉米籽粒灌浆特征参数影响粒重
本研究结果表明, 粒重是制约玉米产量提高的主要因素, 粒重的提高受整个生育期气象要素的制约, 而且籽粒灌浆特征参数及影响籽粒灌浆特征参数的气候因子间相互作用显著。全生育期≥10 ℃积温(T )和播种到吐丝≥10 ℃积温(Tsf)越高, 到达第1和第2拐点的时间越早, 灌浆期(D)越短, 粒重会越低; TAvsf越高, TRAvfm越大, 平均灌浆速率(V)和灌浆期越长, 越利于灌浆。例如SD3和SD4播期的TAvsf较高, TRAvfm较大, 其V或D及V×D值较高, 粒重较高。而V和D呈显著的负相关关系, 且灌浆时间和灌浆速率的乘积决定粒重高低[43], 因此灌浆特征参数的综合优化对提高粒重十分关键。SD1播期虽然全生育期积温较高能满足玉米的成熟要求, 由于播种早, 气候干旱不利于玉米前期的生长发育[37], 而“源足、库大、流畅”是高产的基础[44], 加之灌浆期高温, D1fa、D2fa多, 造成灌浆期D短, V×D值低, 粒重低, 说明气象因子可通过影响灌浆期的长短影响粒重的高低。
籽粒灌浆期对温度比较敏感, 玉米籽粒灌浆适宜的日平均温度为22~24 ℃, 温度过高和过低均不利于粒重的提高。本研究表明播期可使玉米籽粒灌浆期的积温、平均温度、缓增期的积温、快增期的温度均发生改变。首先体现在对籽粒灌浆迟滞期的影响上, 吐丝到第1拐点≥10 ℃的积温(Tf1)越高到达t1和t2的时间越晚, 与钱春荣等[10]活跃灌浆期、有效灌浆期与快增期≥10 ℃有效积温显著正相关结果一致。但TAvf1吐丝到第1拐点的平均气温越高, 到达第1和第2拐点的时间越早, 说明灌浆期日平均气温超过一定界限会加速叶片衰老、降低光合能力[45]、缩短灌浆期。本研究中SD1播期不易获得较高粒重的原因是Tfm较高, TAvfm为25.5~27.3 ℃, 而TAvf1为27.6~28.8 ℃, TAvf12为26.0~29.4 ℃, Vmax和V相对较低, 不利于灌浆。SD3、SD4播期吐丝到成熟TAvfm分别为22.7~22.8 ℃和20.3~20.7 ℃, 比较有利于灌浆, SD5播期玉米灌浆期的温度较低, TAvfm (17.5 ℃)低, 灌浆速率下降, 说明温度过高[45]和过低[46]均不利于粒重和产量提高。
3.3 优化播期的同时玉米品种选择对提高粒重和产量也很关键
玉米的产量受品种特性[22]、气候条件[47]、栽培措施[48]等多因素影响, 不同品种的产量潜力[49]和灌浆特性不同[50]。本研究结果表明, 产量和百粒重不仅与播期有关, 而且受年型和品种及三者的综合效应影响, 随播期的延后产量和百粒重呈先增加后降低的趋势, 不同年型不同品种表现不同。2017年‘先玉335’的产量和百粒重均在SD2下最高, ‘郑单958’分别在SD3、SD4下最高; 2018年‘先玉335’和‘郑单 958’均分别在SD4、SD3下获得最高产量和百粒重, 说明不同品种不同年型下对播期的响应是不同的。本研究结果还表明, ‘先玉 335’的V及V×D均高于‘郑单 958’, 粒重高的同时穗粒数多, 是产量高的主要原因。付景等[51]研究表明‘郑单958’和‘先玉335’为2个耐热性不同的品种, 受高温胁迫时, ‘郑单958’的影响幅度小。本研究中同一播期的‘先玉335’不仅粒重和产量高, 而且灌浆速率也较高, 与齐琦等[52]的研究结果一致, 说明产量潜力和灌浆速率高的品种对提高玉米产量也尤为重要。因此播期优化的同时还需选择产量潜力高和抗逆性好的品种[53]。
4. 结论
玉米的产量受播期影响的同时还受品种和气候年型的影响, 产量构成要素中粒重、穗粒数和最终成穗率均受播期影响, 其中粒重对产量的直接作用最大。播种到吐丝的日均温度越高、降雨量越大及吐丝到成熟的日均温差越大, 越有利于籽粒灌浆, 产量越高; 5月5日和6月30日播种均不利于粒重和产量的提高, 优化播期可优化玉米生长发育的气象因子条件, 进而提高粒重和产量。‘先玉335’较‘郑单958’产量高的主要原因是穗粒数和百粒重高, 而且平均灌浆速率高。因此选用产量潜力大、灌浆速率高和综合抗性好的品种, 在6月上旬到6月中下旬播种, 可作为缺水的低平原区季节性休耕条件下玉米高产高效的种植技术措施。
-
图 3 2017年和2018年不同播期下玉米品种‘先玉335’(XY335)和‘郑单958’(ZD958)籽粒灌浆拟合曲线
SD1、SD2、SD3、SD4和SD5分别指播期为5月5日、5月20日、6月5日、6月20日和 6月30日。
Figure 3. Fitting curves of grain filling rate of maize varieties ‘Xianyu335’ (XY335) and ‘Zhengdan958’ (ZD958) sown at different dates in 2017 and 2018
SD1, SD2, SD3, SD4, and SD5 are sowing date of May 5, May 20, June 5, June 20 and June 30, respectively.
表 1 2017年和2018年播期对不同品种玉米产量和产量性状的影响
Table 1 Effects of sowing date on yield and yield components of different maize varieties in 2017 and 2018
年份
Year品种
Variety播期(月-日)
Sowing date
(month-day)穗粒数
Grain number
per ear百粒重
100-grain
weight (g)有效株数
Effective number of
plants (×104 plant·hm−2)产量
Yield
(kg·hm−2)2017 先玉 335
Xianyu 33505-05 658.6±13.3a 24.2±0.9c 6.3±0.05c 9506.2±195.6c 05-20 454.9±24.5c 41.3±0.7a 6.5±0.03b 12 572.9±112.8a 06-05 524.2±13.7b 36.8±0.5b 6.7±0.00a 12 290.0±544.5a 06-20 456.4±9.8c 40.1±0.9a 6.7±0.03a 12 159.0±138.3a 06-30 473.0±11.7c 36.3±0.6b 6.6±0.00a 10 603.6±230.2b 郑单 958
Zhengdan 95805-05 459.0±26.2b 32.8±0.6c 6.5±0.02b 9146.8±285.8b 05-20 540.6±3.6a 34.8±0.8bc 6.7±0.00a 11 813.5±265.9a 06-05 523.8±14.7a 35.5±0.2b 6.5±0.03b 12 110.5±611.6a 06-20 498.2±23.1ab 38.9±1.0a 6.7±0.01a 11 590.9±353.1a 06-30 493.0±10.9ab 33.5±1.0bc 6.6±0.01b 9948.9±301.1b 2018 先玉 335
Xianyu 33505-05 488.9±11.2a 33.5±0.1b 6.4±0.04 9527.7±369.1c 05-20 494.3±18.3a 31.8±0.4b 6.5±0.04bc 10 050.8±409.9c 06-05 446.4±17.0b 40.9±0.6a 6.7±0.02a 11 222.3±135.7b 06-20 518.1±8.2a 40.2±0.4a 6.6±0.02ab 12 917.1±255.6a 06-30 493.9±14.9a 39.9±0.9a 6.1±0.08d 11 655.5±42.4b 郑单 958
Zhengdan 95805-05 495.5±1.7a 28.3±0.1e 6.5±0.04bc 8510.7±106.5c 05-20 410.2±14.6b 30.0±0.4d 6.5±0.04bc 7676.3±204.3d 06-05 481.3±1.9a 37.3±0.2a 6.7±0.04a 11 238.5±115.8a 06-20 510.6±2.2a 35.3±1.0b 6.4±0.00c 11 566.6±343.0a 06-30 485.5±13.0ab 32.4±0.2c 6.6±0.02ab 10 101.5±260.7b 因素 Factor F值 F value 年际 Year (A) 15.1** 2.6 30.6** 29.6** 播期 Sowing date (B) 6.4** 109.7** 29.9** 58.1** 品种 Variety (C) 2.8 78.1** 10.4** 43.3** A×B 9.4** 38.8** 16.0** 27.9** A×C 0.0 44.3** 3.6 7.9** B×C 10.7** 15.9** 18.8** 3.4* A×B×C 21.7** 24.8** 22.6** 1.2 不同小写字母表示该品种在当年不同播期间差异显著。**和*表示P<0.01和P<0.05水平差异显著。Different lowercase letters indicate significant differences among different sowing dates in the same year for the same variety. ** and * indicate significance at P<0.01 and P<0.05, respectively. 表 2 玉米产量三要素与产量的通径分析
Table 2 Path analysis of three factors of yield and yield
因子
Factor相关系数
Correlation coefficient直接通径系数
Direct path coefficient间接通径系数 Indirect path coefficient 通过x1 Through x1 通过x2 Through x2 通过x3 Through x3 x1 0.1276 0.5950** −0.4451 −0.0223 x2 0.7968** 1.0267** −0.2578 0.0280 x3 0.2529 0.1033 −0.1288 0.2783 剩余通径系数=0.2826, n=20。x1: 穗粒数, x2: 百粒重, x3: 有效株数。**表示P<0.01。The residual path coefficient is 0.2826, n=20. x1, x2 and x3 represent grains number per ear, 100-grain weight, number of effective plants, respectively. ** indicates significance at the level of P<0.01. 表 3 试验期间不同播期对不同玉米品种产量和产量性状影响显著的气象因子状况
Table 3 Status of meteorological factors significantly impacting yield and yield components of different maize varieties in 2017 and 2018
年份 Year 播期(月-日) Sowing date (month-day) 品种 Variety TAvsf (℃) Fsf (mm) TAvfm (℃) TRAvfm (℃) Ssf (h·d–1) D1fa (d) D2fa (d) 2017 05-05 先玉 335 Xianyu 335 25.0 146.0 26.0 9.4 10.4 7 7 郑单 958 Zhengdan 958 25.1 174.8 25.5 9.5 10.4 6 7 05-20 先玉 335 Xianyu 335 26.3 217.9 24.3 10.6 9.7 1 2 郑单 958 Zhengdan 958 26.4 285.1 24.0 10.6 9.7 1 1 06-05 先玉 335 Xianyu 335 26.9 221.0 21.6 11.1 8.3 1 3 郑单 958 Zhengdan 958 26.9 122.3 21.0 11.1 8.4 1 2 06-20 先玉 335 Xianyu 335 27.3 156.0 19.5 10.5 8.0 0 1 郑单 958 Zhengdan 958 27.3 128.5 19.3 10.5 8.0 0 1 06-30 先玉 335 Xianyu 335 27.3 214.1 18.3 10.8 7.5 0 1 郑单 958 Zhengdan 958 27.2 284.1 18.3 10.8 7.5 0 1 2018 05-05 先玉 335 Xianyu 335 25.0 146.0 27.3 8.5 9.6 2 5 郑单 958 Zhengdan 958 25.0 174.8 27.0 8.9 9.6 3 6 05-20 先玉 335 Xianyu 335 26.4 218.0 25.2 10.0 9.1 6 9 郑单 958 Zhengdan 958 26.5 285.1 24.7 10.2 9.2 4 8 06-05 先玉 335 Xianyu 335 28.1 221.0 22.8 11.4 8.9 4 8 郑单 958 Zhengdan 958 28.1 123.3 22.7 11.4 9.0 4 7 06-20 先玉 335 Xianyu 335 29.1 156.0 20.7 12.2 8.6 1 4 郑单 958 Zhengdan 958 29.1 128.5 20.3 12.4 8.4 1 3 06-30 先玉 335 Xianyu 335 28.1 214.1 17.5 13.8 7.5 0 0 郑单 958 Zhengdan 958 28.1 284.1 17.5 13.8 7.5 0 0 TAvsf: 播种到吐丝的日平均气温; Fsf: 播种到吐丝的降雨; TAvfm: 吐丝到成熟的日平均气温; TRAvfm: 吐丝到成熟的日均温差; Ssf: 播种到吐丝的日照;D1fa: 吐丝后10 d ≥35 ℃的天数; D2fa: 吐丝后10 d ≥33 ℃的天数。TAvsf, Fsf and Ssf represent daily average temperature, rainfall and sunshine hours from sowing to silking. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa and D2fa represent days of ≥35 ℃ and ≥33 ℃ after 10 days of silking, respectively. 表 4 气象要素与玉米产量和产量性状的相关关系
Table 4 Correlation between meteorological factors and yield and yield components of maize
TAvsf TAvfm Fsf TRAvfm Ssf D1fa D2fa TAvf1 TAvf12 穗粒数 Grains number per ear −0.1897 0.1146 −0.0216 −0.0757 0.2376 0.1934 −0.0484 0.0327 −0.0076 百粒重 100-grain weight 0.6153** −0.4996* 0.4133 0.4570* −0.5160* −0.5691** −0.4187 −0.4580* −0.4516* 有效株数 Number of effective plants 0.1727 −0.1011 −0.0092 −0.1047 −0.1214 −0.1358 −0.0082 −0.0890 0.0178 产量 Yield 0.5758** −0.4724* 0.4669* 0.4735** −0.3972 −0.5394* −0.5198* −0.4674* −0.4760* TAvsf: 播种到吐丝的日平均气温; TAvfm: 吐丝到成熟的日平均气温; Fsf: 播种到吐丝的降雨; TRAvfm: 吐丝到成熟的日均温差; Ssf: 播种到吐丝的日照; D1fa: 吐丝后10 d ≥35 ℃的天数; D2fa: 吐丝后10 d ≥33 ℃的天数; TAvf1和TAvf12分别为吐丝到第1和第1到第2拐点的日平均气温。*和**表示P<0.05和P<0.01水平显著相关。TAvsf, Fsf and Ssf represent daily average temperature, rainfall and sunshine hours from sowing to silking, respectively. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa and D2fa represent days of ≥35 ℃ and ≥33 ℃ after 10 days of silking, respectively. TAvf1 and TAvf12 represent daily average temperature range from silking to the first inflection and the first to second inflections, respectively. * and ** indicate significance at P<0.05 and P<0.01, respectively. 表 5 气象要素与玉米产量的通径分析
Table 5 Path analysis of meteorological factors and yield of maize
因子
Factor相关系数
Correlation
coefficient直接通径系数
Direct path coefficient间接通径系数 Indirect path coefficient 通过TAvsf
Through TAvsf通过TAvfm
Through TAvfm通过Fsf
Through Fsf通过TRAvfm
Through TRAvfm通过D1fa
Through D1fa通过D2fa
Through D2fa通过TAvf1
Through TAvf1通过TAvf12
Through TAvf12TAvsf 0.5758** 1.7764 −1.4599 −0.1564 −1.2033 −0.4062 0.9062 −0.6367 0.4618 TAvfm −0.4724* 1.9326 −1.3418 −0.0764 0.8666 0.2744 −1.0633 0.1661 −1.2308 Fsf 0.4669* 0.0872 0.8503 −1.6925 −0.9018 −0.6055 2.0968 −1.2360 0.5592 TRAvfm 0.4735* −1.1025 1.3672 −1.5191 −0.1885 −0.4001 1.2707 −0.7146 0.5560 D1fa −0.5394* 0.3719 −0.8076 1.4260 0.2214 0.7001 −2.3328 1.2697 −0.4001 D2fa −0.5198* −1.4281 −0.5695 1.4388 0.2424 0.7029 0.7375 1.3825 −0.4534 TAv f1 −0.4674* 0.1951 −0.6892 1.6458 0.2461 0.6808 0.6913 −2.3812 −0.5028 TAv f12 −0.4760* −1.3034 −1.1295 1.8250 0.2516 1.1967 0.4921 −1.7643 1.1358 剩余通径系数=0.5483, n=20。TAvsf: 播种到吐丝的日平均气温; TAvfm: 吐丝到成熟的日平均气温; Fsf: 播种到吐丝的降雨; TRAvfm: 吐丝到成熟的日均温差; D1fa: 吐丝后10 d ≥35 ℃的天数; D2fa: 吐丝后10 d ≥33 ℃的天数; TAvf1: 吐丝到第1拐点的日平均气温; TAvf12: 第1到第2拐点的日平均气温。*和**分别表示P<0.05和P<0.01水平显著。The residual path coefficient is 0.5483, n=20. TAvsf and Fsf represent daily average temperature and rainfall from sowing to silking, respectively. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa and D2fa represent days of ≥35 ℃ and ≥33 ℃ after 10 days of silking, respectively. TAvf1 and TAvf12 represent daily average temperature range from silking to the first inflection and the first to second inflections, respectively. * and ** indicate significance at levels of P<0.05 and P<0.01, respectively. 表 6 气象要素与玉米百粒重的通径分析
Table 6 Path analysis of meteorological factors and 100-grain weight of maize
因子
Factor相关系数
Correlation
coefficient直接通径系数
Direct path
coefficient间接通径系数 Indirect path coefficient 通过TAvsf
Through TAvsf通过TAvfm
Through TAvfm通过TRAvfm
Through TRAvfm通过Ssf
Through Ssf通过D1fa
Through D1fa通过TAvf1
Through TAvf1通过TAvf12
Through TAvf12TAvsf 0.6153** 1.2805 −1.0472 −0.4597 −0.5536 0.2358 0.0657 0.1045 TAvfm −0.4996* 1.3863 −0.9673 0.4969 0.1603 −0.3547 −0.3375 −0.8837 TRAvfm 0.4570* −0.6321 1.0380 −1.0897 −0.4712 0.2323 0.0737 0.1258 Ssf −0.5160* 0.1789 −1.0147 1.2425 0.3826 −0.3301 −0.1089 −0.1118 D1fa −0.5691** −0.4807 −0.6131 1.0229 0.2675 0.4682 −0.1309 −0.0905 TAvf1 −0.4580* −0.3963 −0.5233 1.1805 0.2601 0.4736 −0.4013 −0.1138 TAvf12 −0.4516* −0.9359 −0.8575 1.3091 0.4572 0.5005 −0.2857 −0.1171 剩余通径系数=0.5483, n=20。TAvsf: 播种到吐丝的日平均气温; TAvfm: 吐丝到成熟的日平均气温; TRAvfm: 吐丝到成熟的日均温差; Ssf: 播种到吐丝的日照时数; D1fa: 吐丝后10 d ≥35 ℃的天数; TAvf1: 吐丝到第1拐点的日平均气温; TAvf12: 第1到第2拐点的日平均气温。*和**分别表示P<0.05和P<0.01水平显著。The residual path coefficient is 0.5483, n=20. TAvsf and Ssf represent daily average temperature and sunshine hours from sowing to silking. TAvfm and TRAvfm represent daily average temperature and daily average temperature difference from silking to maturity, respectively. D1fa represents days of ≥35 ℃ after 10 days of silking. TAvf1 and TAvf12 represent daily average temperature range from silking to the first inflection and the first to second inflections, respectively. * and ** indicate significance at P<0.05 and P<0.01, respectively. 表 7 不同播期下不同品种玉米粒重及粒重的变化特征方程
Table 7 Characteristic equations of grain weight and grain weight change of different maize varieties sown at different dates
年份
Year品种
Variety播期(月-日)
Sowing date (month-day)粒重变化特征方程
Grain weight change characteristic equation决定系数(R2)
Coefficient of determination实测粒重
Measured grain weight (mg)2017 先玉335
Xianyu 33505-05 Yt=0.3270/[1+exp(3.0944−0.1123t)] 0.9969** 320.7c 05-20 Yt=0.4033/[1+exp(4.0557−0.1415t)] 0.9962** 396.2a 06-05 Yt=0.3964/[1+exp(2.5405−0.1378t)] 0.9879** 379.2b 06-20 Yt=0.3965/[1+exp(3.7615−0.1365t)] 0.9820** 390.4a 06-30 Yt=0.3928/[1+exp(4.2806−0.1462t)] 0.9900** 388.8ab 郑单958
Zhengdan 95805-05 Yt=0.3138/[1+exp(3.7647−0.1326t)] 0.9970** 307.7d 05-20 Yt=0.3443/[1+exp(3.5721−0.1304t)] 0.9953** 337.9c 06-05 Yt=0.3572/[1+exp(2.6575−0.1399t)] 0.9901** 343.4c 06-20 Yt=0.4264/[1+exp(3.1927−0.0990t)] 0.9830** 429.4a 06-30 Yt=0.3752/[1+exp(3.3797−0.1171t)] 0.9830** 363.0b 2018 先玉335
Xianyu 33505-05 Yt=0.3714/[1+exp(3.4882−0.1419t)] 0.9943** 362.7c 05-20 Yt=0.3424/[1+exp(3.2859−0.1396t)] 0.9968** 335.6d 06-05 Yt=0.4167/[1+exp(3.2712−0.1259t)] 0.9970** 404.8b 06-20 Yt=0.4379/[1+exp(3.6048−0.1150t)] 0.9889** 421.7a 06-30 Yt=0.4187/[1+exp(3.3637−0.1055t)] 0.9897** 407.4b 郑单958
Zhengdan 95805-05 Yt=0.2963/[1+exp(3.1152−0.1285t)] 0.9880** 285.0d 05-20 Yt=0.3059/[1+exp(3.2796−0.1361t)] 0.9886** 293.4d 06-05 Yt=0.4122/[1+exp(3.2118−0.0995t)] 0.9942** 399.8a 06-20 Yt=0.3965/[1+exp(3.4208−0.1198t)] 0.9918** 383.0b 06-30 Yt=0.3373/[1+exp(3.4976−0.1328t)] 0.9986** 331.2c 不同小写字母表示该品种的实测粒重在当年不同播期间差异显著(P<0.05)。**表示P<0.01水平显著。Different lowercase letters indicate significant differences of measured grain weight of the same variety among different sowing dates in the same year at P<0.05. ** indicates significance at P<0.01 level. 表 8 不同播期下不同玉米品种的籽粒灌浆特征参数
Table 8 Grain filling characteristic parameters of different maize varieties sown at different dates
年份 Year 品种 Variety 播期(月-日) Sowing date (month-day) t1 (d) t2 (d) Vmax (mg∙grain−1∙d−1) V (mg∙grain−1∙d−1) D (d) 2017 先玉 335 Xianyu 335 05-05 15.83 39.28 9.18 4.78 68.47 05-20 19.36 37.97 14.27 6.60 61.14 06-05 8.88 27.99 13.66 7.66 51.78 06-20 17.91 37.20 13.53 6.48 61.22 06-30 20.27 38.29 14.36 6.47 60.71 郑单 958 Zhengdan 958 05-05 18.46 38.32 10.40 4.98 63.05 05-20 17.30 37.49 11.22 5.50 62.63 06-05 9.58 28.41 12.49 6.89 51.84 06-20 18.95 45.55 10.55 5.42 78.66 06-30 17.62 40.11 10.98 5.51 68.10 2018 先玉 335 Xianyu 335 05-05 15.30 33.86 13.18 6.52 56.96 05-20 14.11 32.97 11.95 6.07 56.45 06-05 15.52 36.44 13.12 6.67 62.48 06-20 17.86 40.76 12.59 6.32 69.27 06-30 19.40 44.37 11.04 5.55 75.44 郑单 958 Zhengdan 958 05-05 14.00 34.49 9.52 4.94 60.00 05-20 14.42 33.77 10.41 5.29 57.86 06-05 19.05 45.52 10.25 5.25 78.46 06-20 17.56 39.55 11.88 5.93 66.91 06-30 16.42 36.25 11.20 5.54 60.94 t1: 到达第1拐点的时间; t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。t1 and t2 represent the time to reach the first and the second inflection points, respectively. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. 表 9 玉米籽粒灌浆特征参数间和粒重的相关关系
Table 9 Correlation between grain filling characteristic parameters and grain weight of maize
因子 Factor t1 t2 Vmax V D t2 0.8630** Vmax −0.0544 −0.3440 V −0.4171 −0.5365* 0.9035** D 0.7088** 0.99681** −0.4536* −0.5424* 粒重 Grain weight 0.4013 0.4933* 0.5033* 0.4547* 0.4894* t1: 到达第1拐点的时间; t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。*和**分别表示P<0.05和P<0.01水平显著相关。t1 and t2 represent the time to reach the first and the second inflection points, respectively. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. * and ** indicate significance at P<0.05 and P<0.01 levels, respectively. 表 10 玉米籽粒灌浆特征参数与粒重的通径分析
Table 10 Path analysis between grain filling characteristic parameters and grain weight of maize
因子
Factors相关系数
Correlation coefficient直接通径系数
Direct path coefficients间接通径系数 Indirect path coefficients 通过t2
Through t2通过Vmax
Through Vmax通过V
Through V通过D
Through Dt2 0.4933* −0.5449 −0.2122 −0.2344 1.4847 Vmax 0.5033* 0.6169 0.1874 0.3947 −0.6957 V 0.4547* 0.4368 0.2923 0.5574 −0.8319 D 0.4894* 1.5337 −0.5275 −0.2799 −0.2369 剩余通径系数=0.0946, n=20。t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。* 表示P<0.05水平差异显著。The residual path coefficient=0.0946, n=20. t2 represents the time to reach the second inflection point. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. * indicates significance at the level of P<0.05. 表 11 气象因子间及灌浆特征参数和粒重与气象因子间的相关关系
Table 11 Correlation relationship between meteorological factors, maize grain filling characteristic parameters and grain weight, and meteorological factors
因子 Factor T TAvsm Tsf TAvsf TRAvsf Ssf TAvfm TRAvfm D1fa Tf1Av Tf12Av TAvsm 0.9076** Tsf 0.6867** 0.5448* TAvsf −0.5648** −0.5722** −0.5208* TRAvsf 0.7786** 0.7902** 0.5585* −0.8199** Ssf 0.8016** 0.8388** 0.7459** −0.8300** 0.9330** TAvfm 0.9029** 0.9996** 0.5462* −0.5798** 0.7871** 0.8416** TRAvfm −0.6420** −0.6417** 0.8490** −0.7863** −0.7065** −0.7860** Ffm 0.7580** 0.6817** 0.5319* −0.6367** 0.6113** 0.6215** 0.7183** −0.8457** D1fa 0.5808** 0.7349** −0.5015* 0.6337** 0.7020** 0.7378** −0.4940* Tf1 −0.5257* −0.4804* 0.8536** TAvf1 0.8000** 0.9174** 0.4987* 0.6007** 0.7101** 0.8516 ** −0.4804* 0.8536** 0.5514* Tf12 0.4467* 0.5820** −0.4616* 0.5481* 0.5514* T Avf12 0.8315** 0.8960** −0.7014** 0.7971** 0.7505** 0.5788** −0.8444** 0.6076** 0.7636** −0.3696 t2 −0.4520* −0.3335 −0.5958** 0.3679 −0.3072 −0.3764 −0.3307 0.3029 −0.1107 −0.3350 −0.3696 Vmax −0.1115 −0.1837 −0.1798 0.2426 −0.1628 −0.3021 −0.2332 0.1066 −0.4533* −0.2847 −0.0972 V −0.0026 −0.1110 0.0890 0.2481 −0.1668 −0.2222 −0.2008 0.1224 −0.3986 −0.1639 −0.1132 D −0.4110 −0.3023 −0.4776* 0.3864 −0.3256 −0.3474 −0.3212 0.3201 −0.0687 −0.2711 −0.3935 灌浆粒重 Grain weight −0.4543* −0.4549* −0.4912* 0.6599** −0.5173* −0.6255** −0.5550* 0.4478* −0.5122* −0.4890* −0.5145* T: 全生育期≥10 ℃的积温; Tsf: 播种到吐丝≥10 ℃的积温; TAvsf: 播种到吐丝的日平均气温; TRAvsf: 播种到吐丝的日均温差; Ssf: 播种到吐丝的日照时数; TAvfm: 吐丝到成熟的日平均气温; TRAvfm: 吐丝到成熟的日均温差; Ffm: 吐丝到成熟的降雨量; D1fa: 吐丝后10 d ≥35 ℃的天数; Tf1: 吐丝到第1拐点≥10 ℃的积温; Tf12: 第1到第2拐点≥10 ℃的积温; TAvf1: 吐丝到第1拐点的日平均气温; TAvf12: 第1到第2拐点的日平均气温; t2: 到达第2拐点的时间; Vmax: 最大灌浆速率; V: 平均灌浆速率; D: 灌浆持续期。*和**分别表示P<0.05和P<0.01水平显著相关。T represents accumulated temperatures ≥10 ℃ from sowing to maturity. Tsf, TAvsf, TRAvsf and Ssf represent accumulated temperatures ≥10 ℃, daily average temperatures, daily mean temperature difference and sunshine hours from sowing to silking, respectively. TAvfm, TRAvfm and Ffm represent daily average temperature, daily mean temperature difference and rainfall from silking to maturity, respectively. Tf1 and Tf12 represent accumulated temperatures ≥10 ℃ from silking to the first inflection and from the first to second inflections, respectively. D1fa represents days of ≥35 ℃ after silking. TAvf1 and TAvf12 represent daily average temperatures from silking to the first inflection and from the first to second inflections, respectively. t2 represents the time to reach the second inflection. Vmax and V mean the maximum and the average grain-filling rate, respectively. D means grain filling duration. * and ** indicate significance at P<0.05 and P<0.01 levels, respectively. -
[1] WANG X, LI X B, FISCHER G, et al. Impact of the changing area sown to winter wheat on crop water footprint in the North China Plain[J]. Ecological Indicators, 2015, 57: 100−109 doi: 10.1016/j.ecolind.2015.04.023
[2] SHEN Y J, ZHANG Y C, SCANLON B R, et al. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain[J]. Agricultural and Forest Meteorology, 2013, 181: 133−142 doi: 10.1016/j.agrformet.2013.07.013
[3] PAN Y, YU Z R, HOLST J, et al. Integrated assessment of cropping patterns under different policy scenarios in Quzhou County, North China Plain[J]. Land Use Policy, 2014, 40: 131−139 doi: 10.1016/j.landusepol.2013.11.015
[4] 王学, 李秀彬, 辛良杰, 等. 华北地下水超采区冬小麦退耕的生态补偿问题探讨[J]. 地理学报, 2016, 71(5): 829−839 doi: 10.11821/dlxb201605011 WANG X, LI X B, XIN L J, et al. Ecological compensation for winter wheat abandonment in groundwater over-exploited areas in the North China Plain[J]. Acta Geographica Sinica, 2016, 71(5): 829−839 doi: 10.11821/dlxb201605011
[5] FENG Z M, LIU D W, ZHANG Y H. Water requirements and irrigation scheduling of spring maize using GIS and CropWat model in Beijing-Tianjin-Hebei region[J]. Chinese Geographical Science, 2007, 17(1): 56−63 doi: 10.1007/s11769-007-0056-3
[6] 刘佳鸿, 何奇瑾, 管玥, 等. 黄淮海北部地区夏玉米稳产高产的播期优选[J]. 农业工程学报, 2022, 38(5): 131−138 doi: 10.11975/j.issn.1002-6819.2022.05.016 LIU J H, HE Q J, GUAN Y, et al. Suitable sowing date for stable and high yield of summer maize in the northern region of Huang-Huai-Hai, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 131−138 doi: 10.11975/j.issn.1002-6819.2022.05.016
[7] SUN H Y, ZHANG X Y, CHEN S Y, et al. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain[J]. Industrial Crops and Products, 2007, 25(3): 239−247 doi: 10.1016/j.indcrop.2006.12.003
[8] 罗新兰, 崔佳龙, 蔡福, 等. 播期对玉米生长发育和产量的影响[J]. 干旱地区农业研究, 2017, 35(5): 14−20 doi: 10.7606/j.issn.1000-7601.2017.05.03 LUO X L, CUI J L, CAI F, et al. Effect of sowing date on growth and yield of maize[J]. Agricultural Research in the Arid Areas, 2017, 35(5): 14−20 doi: 10.7606/j.issn.1000-7601.2017.05.03
[9] 李洁, 晋凡生, 张冬梅, 等. 播期对不同熟期玉米品种生育期及产量的影响[J]. 农学学报, 2016, 6(12): 1−7 doi: 10.11923/j.issn.2095-4050.cjas16090004 LI J, JIN F S, ZHANG D M, et al. Effects of sowing dates on growth stage and yield of maize varieties with different maturity periods[J]. Journal of Agriculture, 2016, 6(12): 1−7 doi: 10.11923/j.issn.2095-4050.cjas16090004
[10] 钱春荣, 王荣焕, 赵久然, 等. 不同熟期玉米品种的籽粒灌浆特性及其与温度关系研究[J]. 中国农业科技导报, 2017, 19(8): 105−114 QIAN C R, WANG R H, ZHAO J R, et al. Study on the grain filling characteristics and their relationship with temperature of maize hybrids differing in maturities[J]. Journal of Agricultural Science and Technology, 2017, 19(8): 105−114
[11] 郑洪建, 董树亭, 王空军, 等. 生态因素对玉米品种产量影响及调控的研究[J]. 作物学报, 2001, 27(6): 862−868 doi: 10.3321/j.issn:0496-3490.2001.06.029 ZHENG H J, DONG S T, WANG K J, et al. Effects of ecological factors on maize (Zea mays L.) yield of different varieties and corresponding regulative measure[J]. Acta Agronomica Sinica, 2001, 27(6): 862−868 doi: 10.3321/j.issn:0496-3490.2001.06.029
[12] 刘明, 陶洪斌, 王璞, 等. 播期对春玉米生长发育与产量形成的影响[J]. 中国生态农业学报, 2009, 17(1): 18−23 doi: 10.3724/SP.J.1011.2009.00018 LIU M, TAO H B, WANG P, et al. Effect of sowing date on growth and yield of spring-maize[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 18−23 doi: 10.3724/SP.J.1011.2009.00018
[13] 明博, 朱金城, 陶洪斌, 等. 黑龙港流域玉米不同生育阶段气象因子对产量性状的影响[J]. 作物学报, 2013, 39(5): 919−927 doi: 10.3724/SP.J.1006.2013.00919 MING B, ZHU J C, TAO H B, et al. Effects of meteorological factors at different growth stages on yield traits of maize (Zea mays L.) in Heilonggang basin[J]. Acta Agronomica Sinica, 2013, 39(5): 919−927 doi: 10.3724/SP.J.1006.2013.00919
[14] LIU Y E, HOU P, XIE R Z, et al. Spatial adaptabilities of spring maize to variation of climatic conditions[J]. Crop Science, 2013, 53(4): 1693−1703 doi: 10.2135/cropsci2012.12.0688
[15] 王柳, 熊伟, 温小乐, 等. 温度降水等气候因子变化对中国玉米产量的影响[J]. 农业工程学报, 2014, 30(21): 138−146 doi: 10.3969/j.issn.1002-6819.2014.21.017 WANG L, XIONG W, WEN X L, et al. Effect of climatic factors such as temperature, precipitation on maize production in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 138−146 doi: 10.3969/j.issn.1002-6819.2014.21.017
[16] 李言照, 东先旺, 刘光亮, 等. 光温因子对玉米产量及产量构成因素值的影响[J]. 中国生态农业学报, 2002, 10(2): 86−89 LI Y Z, DONG X W, LIU G L, et al. Effects of light and temperature factors on yield and its components in maize[J]. Chinese Journal of Eco-Agriculture, 2002, 10(2): 86−89
[17] TAO Z Q, CHEN Y Q, LI C, et al. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain — A review[J]. Journal of Integrative Agriculture, 2016, 15(12): 2677−2687 doi: 10.1016/S2095-3119(16)61409-0
[18] ZHOU B Y, YUE Y, SUN X F, et al. Maize kernel weight responses to sowing date-associated variation in weather conditions[J]. The Crop Journal, 2017, 5(1): 43−51 doi: 10.1016/j.cj.2016.07.002
[19] 刘哲, 乔红兴, 赵祖亮, 等. 黄淮海夏播玉米花期高温热害空间分布规律研究[J]. 农业机械学报, 2015, 46(7): 272−279 doi: 10.6041/j.issn.1000-1298.2015.07.039 LIU Z, QIAO H X, ZHAO Z L, et al. Spatial distribution of high temperature stress at corn flowering stage in Huang-Huai-Hai Plain of China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 272−279 doi: 10.6041/j.issn.1000-1298.2015.07.039
[20] 肖荷霞, 陈建忠, 席国成. 黑龙港类型区气象生态因子与夏玉米产量性状关系的研究[J]. 华北农学报, 1999, 14(S1): 126−130 XIAO H X, CHEN J Z, XI G C. Relation of ecoclimatic factors with yield properties of summer maize in Heilonggang catchment area[J]. Acta Agriculturae Boreali Sinica, 1999, 14(S1): 126−130
[21] 李潮海, 苏新宏, 谢瑞芝, 等. 超高产栽培条件下夏玉米产量与气候生态条件关系研究[J]. 中国农业科学, 2001, 34(3): 311−316 doi: 10.3321/j.issn:0578-1752.2001.03.015 LI C H, SU X H, XIE R Z, et al. Study on relationship between grain-yield of summer corn and climatic ecological condition under super-high-yield cultivation[J]. Scientia Agricultura Sinica, 2001, 34(3): 311−316 doi: 10.3321/j.issn:0578-1752.2001.03.015
[22] 孙宏勇, 刘小京, 王金涛, 等. 品种和播期对华北春玉米产量及水分利用效率的影响[J]. 中国生态农业学报, 2018, 26(6): 837−846 doi: 10.13930/j.cnki.cjea.170786 SUN H Y, LIU X J, WANG J T, et al. Effects of sowing date and cultivar on grain yield and water use efficiency of spring maize in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 837−846 doi: 10.13930/j.cnki.cjea.170786
[23] 陈传晓, 董志强, 高娇, 等. 不同积温对春玉米灌浆期叶片光合性能的影响[J]. 应用生态学报, 2013, 24(6): 1593−1600 CHEN C X, DONG Z Q, GAO J, et al. Effects of different accumulated temperature on photosynthetic performances of spring maize varieties during grain-filling period[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1593−1600
[24] 徐田军, 吕天放, 陈传永, 等. 播期对玉米干物质积累转运和籽粒灌浆特性的影响[J]. 中国农业科技导报, 2016, 18(6): 112−118 doi: 10.13304/j.nykjdb.2016.292 XU T J, LYU T F, CHEN C Y, et al. Effect of sowing date on maize dry matter accumulation, transformation and grain filling characters[J]. Journal of Agricultural Science and Technology, 2016, 18(6): 112−118 doi: 10.13304/j.nykjdb.2016.292
[25] 韩慧敏, 张磊, 孙淼, 等. 黄淮海不同夏玉米品种生长发育及产量对播期的响应[J]. 玉米科学, 2020, 28(2): 106−114 HAN H M, ZHANG L, SUN M, et al. Response of growth, development and yield of different summer maize cultivars to sowing date in Huang-Huai-Hai Plain[J]. Journal of Maize Sciences, 2020, 28(2): 106−114
[26] 张冬梅, 姜春霞, 黄学芳, 等. 早熟区不同熟期玉米品种产量对播期和施肥方式的响应[J]. 中国农学通报, 2015, 31(24): 59−66 doi: 10.11924/j.issn.1000-6850.casb15050115 ZHANG D M, JIANG C X, HUANG X F, et al. Response of yields of different maturity maize varieties to sowing time and fertilization method in early-mature area[J]. Chinese Agricultural Science Bulletin, 2015, 31(24): 59−66 doi: 10.11924/j.issn.1000-6850.casb15050115
[27] 李清超, 马浪浪, 文琼, 等. 玉米杂交组合产量性状与产量的相关及通径分析[J]. 中国农学通报, 2015, 31(27): 59−62 doi: 10.11924/j.issn.1000-6850.casb15050138 LI Q C, MA L L, WEN Q, et al. Correlation and path analysis of yield and yield characteristics of maize hybrids[J]. Chinese Agricultural Science Bulletin, 2015, 31(27): 59−62 doi: 10.11924/j.issn.1000-6850.casb15050138
[28] 向道权, 黄烈健, 曹永国, 等. 玉米产量性状主基因-多基因遗传效应的初步研究[J]. 华北农学报, 2001, 16(3): 1−5 doi: 10.3321/j.issn:1000-7091.2001.03.001 XIANG D Q, HUANG L J, CAO Y G, et al. A preliminary study on genetic effect of maize yield component traits based on major gene and polygene mixed inheritance[J]. Acta Agriculturae Boreall Sinica, 2001, 16(3): 1−5 doi: 10.3321/j.issn:1000-7091.2001.03.001
[29] 张秋芝, 郝玉兰, 南张杰, 等. 玉米杂交种的产量比较及主要农艺性状的相关和通径分析[J]. 北京农学院学报, 2005, 20(4): 33−39 doi: 10.3969/j.issn.1002-3186.2005.04.009 ZHANG Q Z, HAO Y L, NAN Z J, et al. Yield performance of maize hybrids and analysis of correlation between yield and agronomic characteristics[J]. Journal of Beijing Agricultural College, 2005, 20(4): 33−39 doi: 10.3969/j.issn.1002-3186.2005.04.009
[30] 付晋峰, 王璞. 播期和种植密度对玉米子粒灌浆的影响[J]. 玉米科学, 2016, 24(3): 117−122, 130 FU J F, WANG P. Effects of sowing date and planting density on maize filling[J]. Journal of Maize Sciences, 2016, 24(3): 117−122, 130
[31] 王文琼, 卓名旭, 邹康平, 等. 播期对不同玉米品种形态特征与产量的影响[J]. 湖南农业科学, 2018, 390(3): 13−17 WANG W Q, ZHUO M X, ZOU K P, et al. Effects of sowing date on morphological characteristics and yield of different maize cultiveas[J]. Hunan Agricultural Sciences, 2018, 390(3): 13−17
[32] 江铭诺, 刘朝顺, 高炜. 华北平原夏玉米潜在产量时空演变及其对气候变化的响应[J]. 中国生态农业学报, 2018, 26(6): 865−876 JIANG M N, LIU C S, GAO W. Analysis of spatial and temporal variation in potential summer maize yield and its response to climate change in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 865−876
[33] 孟林, 刘新建, 邬定荣, 等. 华北平原夏玉米主要生育期对气候变化的响应[J]. 中国农业气象, 2015, 36(4): 375−382 doi: 10.3969/j.issn.1000-6362.2015.04.001 MENG L, LIU X J, WU D R, et al. Responses of summer maize main phenology to climate change in the North China Plain[J]. Chinese Journal of Agrometeorology, 2015, 36(4): 375−382 doi: 10.3969/j.issn.1000-6362.2015.04.001
[34] 马雪晴, 胡琦, 潘学标, 等. 1961—2015年华北平原夏玉米生长季气候年型及其影响分析[J]. 中国农业气象, 2019, 40(2): 65−75 doi: 10.3969/j.issn.1000-6362.2019.02.001 MA X Q, HU Q, PAN X B, et al. Analysis of annual climate types and its impact on summer maize in the North China Plain over the period 1961–2015[J]. Chinese Journal of Agrometeorology, 2019, 40(2): 65−75 doi: 10.3969/j.issn.1000-6362.2019.02.001
[35] 孔德胤, 杨松, 陶建光, 等. 播期对河套地区玉米灌浆进度的影响[J]. 中国农学通报, 2020, 36(4): 30−35 doi: 10.11924/j.issn.1000-6850.casb18100124 KONG D Y, YANG S, TAO J G, et al. Sowing date affects grain filling progress of maize in Hetao Area[J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 30−35 doi: 10.11924/j.issn.1000-6850.casb18100124
[36] 杜霞, 豆攀, 陈祥, 等. 气象条件对川中丘陵地区玉米生长和产量的影响及播期优化−以中江为例[J]. 湖南农业大学学报(自然科学版), 2022, 48(3): 257−264 doi: 10.13331/j.cnki.jhau.2022.03.002 DU X, DOU P, CHEN X, et al. Effects of meteorological conditions on maize growth and yield in hilly area of central Sichuan and optimization of sowing date: a case study of Zhongjiang, Sichuan[J]. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(3): 257−264 doi: 10.13331/j.cnki.jhau.2022.03.002
[37] 刘明, 陶洪斌, 王璞, 等. 播期对春玉米生长发育、产量及水分利用的影响[J]. 玉米科学, 2009, 17(2): 108−111 LIU M, TAO H B, WANG P, et al. Effects of sowing date on growth, yield formation and water utilization of spring maize[J]. Journal of Maize Sciences, 2009, 17(2): 108−111
[38] 陶志强, 陈源泉, 李超, 等. 华北低平原不同播种期春玉米的产量表现及其与气象因子的通径分析[J]. 作物学报, 2013, 39(9): 1628−1634 doi: 10.3724/SP.J.1006.2013.01628 TAO Z Q, CHEN Y Q, LI C, et al. Path analysis between yield of spring maize and meteorological factors at different sowing times in North China low plain[J]. Acta Agronomica Sinica, 2013, 39(9): 1628−1634 doi: 10.3724/SP.J.1006.2013.01628
[39] 魏钟博, 边大红, 杜雄, 等. 黑龙港流域夏玉米生育期降水、需水和干旱时空分布特征[J]. 农业工程学报, 2020, 36(9): 124−133 doi: 10.11975/j.issn.1002-6819.2020.09.014 WEI Z B, BIAN D H, DU X, et al. Characteristics of spatial-temporal distribution of precipitation, water requirement and drought for summer maize growth period in Heilonggang Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 124−133 doi: 10.11975/j.issn.1002-6819.2020.09.014
[40] 和骅芸, 胡琦, 潘学标, 等. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析[J]. 中国农业气象, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001 HE H Y, HU Q, PAN X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001
[41] 任佰朝, 高飞, 魏玉君, 等. 冬小麦–夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性[J]. 作物学报, 2018, 44: 137−143 doi: 10.3724/SP.J.1006.2018.00137 REN B C, GAO F, WEI Y J, et al. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system[J]. Acta Agronomic Sinica, 2018, 44: 137−143 doi: 10.3724/SP.J.1006.2018.00137
[42] 李文阳, 王长进, 张子学, 等. 不同播期夏玉米籽粒灌浆特性及与主要气象因子的关系[J]. 安徽科技学院学报, 2013, 27(5): 21−26 doi: 10.3969/j.issn.1673-8772.2013.05.005 LI W Y, WANG C J, ZHANG Z X, et al. The relationship between grain filling characteristics of summer maize and main meteorological factors during grain filling under different planting date[J]. Journal of Anhui Science and Technology University, 2013, 27(5): 21−26 doi: 10.3969/j.issn.1673-8772.2013.05.005
[43] 马冲, 邹仁峰, 苏波, 等. 不同熟期玉米籽粒灌浆特性的研究[J]. 作物研究, 2000, 14(4): 17−19 doi: 10.16848/j.cnki.issn.1001-5280.2000.04.006 MA C, ZOU R F, SU B, et al. Studies on grain filling characteristics of hybrid corn with different growth durations[J]. Crop Research, 2000, 14(4): 17−19 doi: 10.16848/j.cnki.issn.1001-5280.2000.04.006
[44] 盛得昌, 王媛媛, 黄收兵, 等. 高温对玉米植株形态与功能、产量构成及子粒养分的影响[J]. 玉米科学, 2020, 28(5): 86−92 doi: 10.13597/j.cnki.maize.science.20200513 SHENG D C, WANG Y Y, HUANG S B, et al. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants[J]. Journal of Maize Sciences, 2020, 28(5): 86−92 doi: 10.13597/j.cnki.maize.science.20200513
[45] 刘萍, 徐顺飞, 杜庆平, 等. 播期对夏玉米产量与光合特性的影响[J]. 南京农业大学学报, 2016, 39(5): 722−729 doi: 10.7685/jnau.201602019 LIU P, XU S F, DU Q P, et al. Effects of sowing date on yield and photosynthetic characteristics of summer maize[J]. Journal of Nanjing Agricultural University, 2016, 39(5): 722−729 doi: 10.7685/jnau.201602019
[46] 王若男, 任伟, 李叶蓓, 等. 灌浆期低温对夏玉米光合性能及产量的影响[J]. 中国农业大学学报, 2016, 21(2): 1−8 doi: 10.11841/j.issn.1007-4333.2016.02.01 WANG R N, REN W, LI Y B, et al. Effects of low temperature during grain filling stage on photosynthetic characteristics and yield of summer maize[J]. Journal of China Agricultural University, 2016, 21(2): 1−8 doi: 10.11841/j.issn.1007-4333.2016.02.01
[47] 高军波, 楚冰洋, 闫军辉, 等. 1960年以来河南省玉米气候生产潜力估算与种植空间优化[J]. 农业机械学报, 2019, 50(1): 245−254 doi: 10.6041/j.issn.1000-1298.2019.01.027 GAO J B, CHU B Y, YAN J H, et al. Estimation of climate production potential of corn and optimization of planting space in Henan Province from 1960[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 245−254 doi: 10.6041/j.issn.1000-1298.2019.01.027
[48] TAO Z Q, SUI P, CHEN Y Q, et al. Subsoiling and ridge tillage alleviate the high temperature stress in spring maize in the North China Plain[J]. Journal of Integrative Agriculture, 2013, 12(12): 2179−2188 doi: 10.1016/S2095-3119(13)60347-0
[49] 曹彩云, 党红凯, 郑春莲, 等. 低平原区一季玉米种植产量和水分利用效率对播期的响应研究[J]. 河北农业大学学报, 2020, 43(3): 9−16, 22 doi: 10.13320/j.cnki.jauh.2020.0045 CAO C Y, DANG H K, ZHENG C L, et al. Response of sowing date to yield and water use efficiency of one season maize in lowland plain area[J]. Journal of Hebei Agricultural University, 2020, 43(3): 9−16, 22 doi: 10.13320/j.cnki.jauh.2020.0045
[50] 徐田军, 吕天放, 赵久然, 等. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(3): 414−422 doi: 10.3724/SP.J.1006.2018.00414 XU T J, LYU T F, ZHAO J R, et al. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production[J]. Acta Agronomica Sinica, 2018, 44(3): 414−422 doi: 10.3724/SP.J.1006.2018.00414
[51] 付景, 孙宁宁, 刘天学, 等. 穗期高温对玉米子粒灌浆生理及产量的影响[J]. 作物杂志, 2019(3): 118−125 doi: 10.16035/j.issn.1001-7283.2019.03.019 FU J, SUN N N, LIU T X, et al. The effects of high temperature at spike stage on grain-filling physiology and yield of maize[J]. Crops, 2019(3): 118−125 doi: 10.16035/j.issn.1001-7283.2019.03.019
[52] 齐琦, 胡凯, 张敖, 等. 高产玉米‘郑单958’和‘先玉335’的灌浆和叶片光合特性的比较[J]. 植物生理学报, 2015, 51(9): 1489−1494 doi: 10.13592/j.cnki.ppj.2015.0125 QI Q, HU K, ZHANG A, et al. Comparion of grain filling and leaf photosynthetic characteristics in high yield maize ‘Zhengdan 958’ and ‘Xianyu 335’[J]. Plant Physiology Journal, 2015, 51(9): 1489−1494 doi: 10.13592/j.cnki.ppj.2015.0125
[53] 赵霞, 穆心愿, 马智艳, 等. 不同玉米杂交种对花期高温、干旱复合胁迫的响应[J]. 河南农业科学, 2017, 46(8): 32−37 doi: 10.15933/j.cnki.1004-3268.2017.08.006 ZHAO X, MU X Y, MA Z Y, et al. Response of different maize hybrids to high temperature and drought stresses at flowering stage[J]. Journal of Henan Agricultural Sciences, 2017, 46(8): 32−37 doi: 10.15933/j.cnki.1004-3268.2017.08.006
-
期刊类型引用(4)
1. 邝雨欣,张体彬,程煜,高伟强,梁青,童建康,冯浩,郁明军. 有机无机肥配施对盐渍化农田无机态氮迁移和玉米生长的影响. 干旱地区农业研究. 2025(02): 105-115+137 . 百度学术
2. 杨熙昊. 2023年泰安市冬小麦、夏玉米生长气象条件分析. 园艺与种苗. 2024(04): 94-95+102 . 百度学术
3. 薛瑶,吕东辉,孙涛,韦昊彤,赵锐,初征. 基于气象条件的齐齐哈尔市玉米适播期分析. 现代农业研究. 2024(10): 78-86 . 百度学术
4. 李方杰,史大坤,卫晓轶,魏锋,洪德峰,刘经纬,王稼苜. 有效灌浆期内气象因子对玉米籽粒灌浆特性的影响. 耕作与栽培. 2024(06): 17-22+42 . 百度学术
其他类型引用(7)