半干旱区深层土壤CO2浓度对降雨事件的响应

王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利

王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利. 半干旱区深层土壤CO2浓度对降雨事件的响应[J]. 中国生态农业学报 (中英文), 2023, 31(2): 336−344. DOI: 10.12357/cjea.20220586
引用本文: 王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利. 半干旱区深层土壤CO2浓度对降雨事件的响应[J]. 中国生态农业学报 (中英文), 2023, 31(2): 336−344. DOI: 10.12357/cjea.20220586
WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344. DOI: 10.12357/cjea.20220586
Citation: WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344. DOI: 10.12357/cjea.20220586
王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利. 半干旱区深层土壤CO2浓度对降雨事件的响应[J]. 中国生态农业学报 (中英文), 2023, 31(2): 336−344. CSTR: 32371.14.cjea.20220586
引用本文: 王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利. 半干旱区深层土壤CO2浓度对降雨事件的响应[J]. 中国生态农业学报 (中英文), 2023, 31(2): 336−344. CSTR: 32371.14.cjea.20220586
WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344. CSTR: 32371.14.cjea.20220586
Citation: WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344. CSTR: 32371.14.cjea.20220586

半干旱区深层土壤CO2浓度对降雨事件的响应

基金项目: 国家自然科学基金重点项目(41830751)资助
详细信息
    作者简介:

    王晓璐, 主要研究方向为土壤侵蚀。E-mail: wangxiaolu1998@126.com

    通讯作者:

    郭胜利, 主要研究方向为土壤碳氮磷循环与生态环境。E-mail: slguo@ms.iswc.ac.cn

  • 中图分类号: S152

Response of deep soil CO2 concentration to precipitation events in semi-arid areas

Funds: The study was supported by the National Natural Science Foundation of China (41830751).
More Information
  • 摘要: 降雨是干旱半干旱地区土壤CO2产生、传输或扩散的重要影响因素, 并进一步影响土壤和大气中的CO2浓度。目前大量研究集中在地表CO2通量变化与降雨的关系, 深层土壤有机碳储量巨大, 但深层土壤CO2浓度变化对降雨事件的响应机制尚不清楚。本研究通过对10 cm、50 cm和100 cm处土壤CO2浓度进行原位连续监测, 分析不同深度土壤CO2浓度对降雨事件的响应过程及其影响因素。结果表明: 试验期间, 78%的降雨事件能迅速引起10 cm处土壤CO2浓度发生改变, 且随着降雨量增大, 土壤CO2浓度发生变化的深度逐渐增加。当降雨量在10~25 mm时, 50 cm处土壤CO2浓度在91 h后降低; 降雨量>25 mm时, 100 cm处土壤CO2浓度在121 h后降低。当土壤由干变湿时, 降雨量>25 mm的降雨事件促进10 cm处土壤CO2浓度升高30%后开始降低, 而50 cm和100 cm处土壤CO2浓度随水分升高分别降低16.3%和10.9%。在半干旱区, 当土壤含水量较低时, 降雨可以对10 cm处土壤CO2浓度变化产生短暂的正激发效应, 而深层土壤含水量往往高于田间持水量, 水分升高会导致该处土壤CO2浓度降低。降雨对不同深度土壤CO2浓度变化的影响存在差异, 这在很大程度上取决于土壤含水量状况。
    Abstract: In arid and semi-arid areas, soil moisture strongly influences the balance between respiration and diffusion, altering soil CO2 concentration and surface flux. Numerous studies have focused on the relationship between surface soil CO2 flux changes and rainfall events. Subsoil carbon constitutes a large fraction of the total carbon stock, but it is unclear how rainfall events influence subsoil CO2 concentration dynamics. We continuously monitored CO2 concentrations at 10, 50, and 100 cm in the soil profile from 2019 to 2021, and analyzed the various responses of subsoil CO2 concentration to rainfall events. In this study, soil temperature showed apparent seasonal characteristics. As the air temperature changed, the soil temperature of different depths also changed from 100 cm < 50 cm < 10 cm to 10 cm < 50 cm < 100 cm. The soil moisture content of different layers was in the order of 10 cm < 100 cm < 50 cm, and a significant fluctuation was found at 10 cm. The soil CO2 concentration gradually increased with the increase of the depth in the order of 10 cm < 50 cm < 100 cm, with mean values of 0.66×104, 0.87×104, and 1.04×104 μmol∙mol−1, respectively. On sunny days, the soil CO2 concentrations at 10, 50, and 100 cm showed apparent diurnal variations and could be expressed as a single-peak curve. However, rainfall events significantly affected the change trends of CO2 concentrations. Approximately 78% of the rainfall events quickly altered the soil CO2 concentration in 10 cm layer. When the rainfall amount was exceeded 25 mm, the CO2 concentration at 50 and 100 cm decreased after 91 and 121 hours. When the soil moisture status changed from drying to wetting phases under rainfall events, > 25 mm precipitation promoted an increase in soil CO2 concentration at 10 cm by 30% which then began to decrease. The soil CO2 concentrations at 50 and 100 cm decreased by 16.3% and 10.9%, respectively, with an increase in soil moisture. In arid and semi-arid areas, rainfall negatively affects the changes in soil CO2 concentration at 10 cm depth under lower soil moisture content. This is because the decrease in gas diffusivity led to an increase in CO2 concentration. Soil CO2 concentrations at 50 and 100 cm depths decreased under rainfall events, although the soil moisture was higher than the field capacity. This was caused by the high soil moisture content, which inhibited microbial respiration. The responses of soil CO2 concentration at different depths to rainfall differed and largely depended on the soil moisture content.
  • 土壤作为陆地生态系统中最大的有机碳库[1], 30 cm以下有机碳储量占到土壤碳库的30%~75%[2]。与表层土壤相比, 尽管深层土壤(>30 cm)有机碳含量相对稳定, 但其矿化分解也不容忽视[3]。有研究指出深层土壤中CO2浓度更高[4], 并且以较快的速度通过土壤孔隙释放到大气中[5], 因此深层土壤CO2产生和排放的微小变动会显著影响陆地碳循环过程[1,6]

    土壤CO2浓度是土体内CO2产生和排放综合作用的结果[7], 由于温度、水分、微生物和底物等影响因素的垂直空间变异性[8-9], 深层土壤CO2浓度变化和表层土壤并不相同。随着深度的增加, 有机质含量和微生物生物量逐渐减少、土壤温度降低等原因导致深层土壤CO2产生较少, 但深层土壤CO2浓度却高于表层[8,10-11]。水分对土壤CO2浓度的影响较为复杂, 土壤干湿变化会强烈影响土壤有机碳矿化速率和CO2排放[12-14], 不仅影响土体内的CO2浓度, 也会影响其与大气中CO2交换[15-16]。研究表明, 0~10 cm处CO2产生量与土壤含水量呈正相关, 而在10~20 cm处CO2产生量与土壤含水量呈负相关[17]。除改变土壤水分状况外, 降雨不仅影响土壤CO2产生, 还可能阻断气体扩散通道, 导致土壤CO2浓度上升, 这一变化在土壤深层尤为明显[18]。Delsarte等[19]发现降雨导致表层和深层土壤CO2浓度均降低。Rachhpal等[20]研究表明降雨后, 表层和深层土壤CO2浓度升高。Fernandez-Bou等[21]和刘合满等[22]却认为表层和深层土壤CO2浓度变化在降雨事件中呈现相反的变化趋势。在干旱半干旱区, 降雨作为土壤水分的主要来源, 其多变性(降雨量、降雨强度等)对土壤CO2浓度的影响仍然存在很大的不确定性[22-23], 尤其深层土壤CO2浓度对降雨的响应尚不清楚。

    本研究在田间原位条件下, 对10 cm、50 cm和100 cm深土壤CO2浓度、土壤温度和土壤水分进行高频率自动监测, 探究深层土壤CO2浓度的变化特征及其对降雨事件的响应和影响因素, 以期进一步了解降雨事件对深层土壤CO2浓度变化的作用机制, 为正确评估干旱区降雨变化对生态系统碳循环影响提供科学基础。

    试验地位于黄土高原南部陕西长武农田生态系统国家野外科学观测研究站(简称长武站, 107°40ʹE, 35°12ʹN), 海拔约1220 m, 属大陆性季风气候。平均温度9.1 ℃, ≥10 ℃积温为3029 ℃, 最低温度为−19.6 ℃, 最高温度为32.4 ℃; 1985—2020年平均降水量580 mm, 其中最高年份为954 mm, 最低年份为296 mm, 并且季节性分布不均, 7—9月份降水占年降水量的55%左右, 最高月份为237 mm。降雨入渗深度最深可达3 m, 地下水位50~80 m。无灌溉条件, 属典型的旱作雨养农业区。土壤类型为黑垆土, 母质是中壤质马兰黄土[24], 不同深度土壤理化性质见表1

    表  1  试验地不同深度土壤基本理化指标
    Table  1.  Soil basic physical and chemical indexes at different depths of the experimental site
    土壤深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g∙cm−3)
    充气孔隙度
    Air-filled porosity
    (cm3∙cm−3)
    pH有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total N
    (g∙kg−1)
    全磷
    Total P
    (g∙kg−1)
    全钾
    Total K
    (g∙kg−1)
    101.250.348.2313.400.980.828.05
    501.300.178.209.140.810.839.12
    1001.300.268.3011.030.630.718.30
    下载: 导出CSV 
    | 显示表格

    黄土高原是优质苹果(Malus domestica)的适生区, 该区域苹果园面积已经超过120万hm2 [25]。基于此, 本研究以苹果园为研究对象, 探讨半干旱区深层土壤CO2浓度对降雨事件的响应。所选苹果园建于2000年, 面积1000 m2, 种植品种为‘红富士’, 株行距为3 m×4 m, 呈南北走向, 平均树高3.5 m, 多年平均产量为42 000 kg∙hm−2 [26]。无灌溉条件, 每年11月施用基肥(氮肥 100 kg∙hm−2和磷肥 375 kg∙hm−2), 次年7月追施氮肥(100 kg∙hm−2)。一般春秋两次修剪, 9月份采摘, 果树生长状况良好, 无病虫害。

    在果园中心选取两株长势均匀、位置相邻且不同行的果树, 取两株果树之间的中心位置作为首个点位, 以该点位为基准, 向正南、正北方向6 m再各选取1个点位, 共计3个点位, 各点位中心点距离两侧果树均为2 m。每个点位并排设置两个100 cm测坑, 分别用于监测10 cm、50 cm和100 cm土层的土壤温度、水分(西侧测坑)和CO2浓度(东侧测坑), 共设置6个测坑。测坑内安装仪器后回填压实, 实时监测各要素变化情况。监测点布设情况如图1所示。

    图  1  苹果园仪器布设图
    Figure  1.  Equipment layout in the apple orchard

    本研究开展于2019—2021年, 通过在测坑中安装土壤水分和温度电导率传感器CS655 (campbell, 美国)、数据采集传送器CR1000X (campbell, 美国)监测记录各土层土壤温度(℃)、土壤含水量(%)的逐时变化情况; 在土壤CO2测坑中水平安装GMP343_SS探头(Vaisala, 芬兰)监测各土层CO2浓度(μmol∙mol−1)的逐时变化情况。上述仪器均依靠太阳能供电, 利用太阳能板TR-SP50Z1 (华益瑞, 中国)、蓄电池TR-J200 (华益瑞, 中国)、防水机箱ENC14/16 (campbell, 美国)做好蓄电防水工作, 确保电量充足和数据采集的稳定性。

    降雨和气温由长武站自动气象站实时观测, 自动记录每小时降雨量(mm∙h−1)和气温(℃)。本研究对降雨事件进行以下判定: 降雨发生前24 h无降水, 且降雨停止后5 h没有降雨作为判定标准。参考国家气象局规定(http://www.cma.gov.cn)对降雨事件进行划分: 降雨量在10 mm以下为小雨, 10~25 mm为中雨, 25 mm以上为大雨。测定时间为春季(4—6月)、夏季(7—9月)、秋季(10—11月) 3个季节。为了探究降雨变化对各土层土壤CO2浓度的影响, 在夏季(雨季)选取小雨(8 mm)、中雨(15.6 mm)、大雨(31.6 mm) 3个典型的降雨事件进行深入分析, 小雨、中雨和大雨分别选取降雨前1 d至降雨停止后3 d、5 d和7 d确保各因素对降雨响应的完整性。

    用“S型采样法”在果园中心选取5颗长势良好、无病虫害的标准果树。以树主干为中心, 沿三等分圆半径方向取0.5 m、1.0 m和2.0 m处为采样点, 在每个采样点垂直向下0.1 m、0.5 m和1.0 m处取土, 并将同一颗树、同一土层的3个土样取等量混匀装袋。将土样冷冻处理, 用于测定土壤微生物量碳(氯仿熏蒸硫酸钾浸提法)。

    基于不同试验条件和研究目的, 有研究者综述了不同土壤扩散系数模型的优劣[27]。考虑本研究为田间原位监测试验, 土壤相对干燥, 充气孔隙度为0.11~0.45, 故选取Moldrup-2000模型计算气体扩散系数[28]:

    $$ \frac{{D}_{S}}{{D}_{0}}=\varepsilon $$ (1)
    $$ {D}_{0}={D}_{a0}{\left(\frac{T}{{T}_{0}}\right)}^{1.75}\left(\frac{{P}_{0}}{P}\right) $$ (2)

    式中: Ds为深度s处CO2的扩散系数(m2∙s−1), D0为CO2在自由大气中扩散系数(m2∙s−1); $ {\varepsilon } $为CO2在土壤中的相对扩散系数; Da0T0 (293 K)、P0 (标准大气压, 1.31×105 Pa) 下CO2在大气中的扩散系数(1.47×10−5 m2∙s−1); TP为实际测量时温度(K)和气压(Pa)。

    $$ \varepsilon =\frac{{(\varphi -\theta )}^{2.5}}{\varphi } $$ (3)
    $$ \varphi =1-\frac{{\rho }_{\mathrm{b}}}{{\rho }_{\mathrm{s}}} $$ (4)

    式中: $\varphi$为土壤孔隙度(cm3∙cm−3); $ {\rho }_{\mathrm{s}} $为土壤比重, 本研究中该值为2.65 g∙cm−3; $ {\rho }_{\mathrm{b}} $为土壤容重; $ \theta $为土壤体积含水量(cm3∙cm−3)。

    利用Excel 2010对原始数据进行整理、筛选和初步分析, 采用Origin 2018软件制作相关的基础图件。

    土壤温度受气温影响, 表现出明显的季节特征。春季土壤温度逐渐升高, 夏季(8月中旬)达到峰值, 秋季随气温下降而逐渐降低(图2a)。观测期内, 10 cm、50 cm、100 cm土壤温度最高可达28.4 ℃、24.1 ℃和21.4 ℃, 最低至4.6 ℃、7.6 ℃和8.4 ℃, 均值为18.2 ℃、17.1 ℃和16.0 ℃。各土层温度存在显著性差异(P<0.05), 在温度上升期表现为100 cm土层<50 cm土层<10 cm土层, 到达峰值后转为10 cm土层<50 cm土层<100 cm土层。

    图  2  试验期间土壤CO2浓度、土壤温度和土壤含水量变化
    Figure  2.  Variations of soil CO2 concentration, soil temperature and soil moisture during the experiment

    试验期间(2019—2021年)共发生降雨事件23次, 小雨(<10 mm)发生频次最多, 共计13次, 占总降水频次的56%, 中雨(10~25 mm)次之, 占总降水频次的26%, 大雨(>25 mm)占比18% (图2b, 表2)。10 cm土壤水分对降雨的响应最为敏感, 雨后土壤含水量最高可达雨前的两倍之多; 50 cm和100 cm处土壤含水量对降雨的响应相对迟缓, 在降雨事件中土壤水分增加量不超过11% (图2c)。10 cm、50 cm和100 cm处土壤含水量最高为31.7%、39.1%和35.0%, 最低至8.7%、30.1%和23.8%, 均值为17.2%、33.7%和27.4%。土层间土壤含水量差异显著(P<0.05), 表现为10 cm土层<100 cm土层<50 cm土层 (图2c)。

    表  2  2019—2021年试验期间降水事件和土壤CO2浓度响应特征
    Table  2.  Characteristics of precipitation events and soil CO2 concentration response during the experiment from 2019 to 2021
    降水类型
    Precipitation type
    降水频次
    Precipitation frequency
    占总降水频次比例
    Proportion in total
    precipitation frequency (%)
    土壤CO2浓度响应频次
    Soil CO2 concentration response frequency
    10 cm土层
    10 cm soil layer
    50 cm土层
    50 cm soil layer
    100 cm土层
    100 cm soil layer
    小雨 Light rain (<10 mm)1356800
    中雨 Moderate rain (10~25 mm)626620
    大雨 Heavy rain (>25 mm)418443
    总计 Total231001863
    下载: 导出CSV 
    | 显示表格

    季节尺度上, 10 cm、50 cm和100 cm处土壤CO2浓度与土壤温度有相似的季节特征和土层间的差异, 即在春季逐渐升高, 于8月份达到全年峰值, 秋季持续下降(图2d)。春末时10 cm、50 cm和100 cm处CO2浓度为春初的2.8倍、2.6倍和2.6倍; 夏季各土层CO2浓度峰值可达1.20×104 μmol∙mol−1、1.56×104 μmol∙mol−1和1.67×104 μmol∙mol−1; 而与CO2浓度峰值相比, 秋季分别降低62%、58%和53%。但与土壤温度不同, 土壤CO2浓度呈现出随着深度增加逐渐上升的趋势, 10 cm、50 cm、100 cm处CO2浓度均值为0.66×104 μmol∙mol−1、0.87×104 μmol∙mol−1和1.04×104 μmol∙mol−1, 50 cm、100 cm处CO2浓度分别为10 cm处的1.3倍和1.6倍。

    晴天时, 10 cm、50 cm和100 cm处土壤CO2浓度均有显著的日变化特征, 其动态变化存在明显的单峰趋势, 并与气温呈相反的变化模式(图3)。10 cm处土壤CO2浓度还与土壤温度的变化趋势基本一致(图3a), 均表现为先降低后升高, 13:00左右达全天最低值, 而在50 cm和100 cm处, 土壤温度对土壤CO2浓度变化的影响不大(图3b, c)。雨天时, 各土层土壤CO2浓度变化趋于平缓, 日变化幅度减小。10 cm处土壤CO2浓度变化趋势与晴天时基本一致(图3d), 而50 cm、100 cm处土壤CO2浓度未出现单峰变化(图3e, f)。

    图  3  晴天(左侧图a, b, c)和雨天(右侧图d, e, f)气温和不同土层土壤温度、CO2浓度的变化
    Figure  3.  Variations of air temperature, soil temperature and soil CO2 concentration in different soil layers under different weather conditions (the left figures are sunny days; the right figures are rainy days)

    土壤CO2浓度对降雨量<10 mm的小雨事件无明显响应。10~25 mm的中雨可以导致10 cm处土壤含水量从32.1%上升至35.7%, 土壤CO2浓度降低5%; 50 cm处土壤含水量和CO2浓度的响应则较为迟缓。>25 mm的大雨事件发生时, 10 cm处土壤含水量仅有10.5%, 该处土壤CO2浓度随着水分上升增加了30%, 表现出明显的激发效应; 当10 cm处土壤含水量升高至19.0%, 持续降雨导致土壤CO2浓度降低。大雨导致50 cm、100 cm土壤含水量从32.0%、24.7%上升至39.1%、35.0%, 土壤CO2浓度分别降低16.3%、10.9%。大雨事件中, 10 cm、50 cm、100 cm土壤CO2响应时间为降雨开始后9 h、91 h和121 h, 土壤含水量和土壤温度对降雨的响应存在类似的滞后现象(图4)。

    图  4  不同降水事件对10 cm、50 cm和100 cm深土壤CO2浓度的影响
    小雨的降雨量为10 cm以下, 中雨的降雨量为10~25 cm, 大雨的降雨量为大于25 cm。pre-指降雨前, post-指降雨后, 其后数字为天数。The precipitation of light rain, moderate rain and heavy rain are <10 cm, 10−25 cm and >25 cm. pre- means before rainfall, post- means after rainfall, the numbers following them are number of days.
    Figure  4.  Effect of different precipitation events on soil CO2 concentration of 10 cm, 50 cm and 100 cm soil layers

    土壤CO2浓度取决于产生和传输的共同作用。虽然表层土壤根系密度大、微生物活性高, 但CO2能快速排放至大气中, 因此表层土壤CO2浓度低。一般而言, 深层土壤中的微生物量通常比表土低1~2个数量级[29], 氧气浓度也会随着深度增加逐渐降低, 深层土壤生物和根系的生长环境较差[30], 导致深层土壤CO2产生较少。本研究发现深层土壤微生物量显著低于表层(10 cm vs. 50 cm vs. 100 cm: 125.44 mg∙kg−1 vs. 45.92 mg∙kg−1 vs. 12.50 mg∙kg−1)。因此, 深层土壤CO2浓度与微生物关系不大。随着土层加深, 土壤中CO2扩散性降低可能是导致深层CO2浓度升高的主要原因。深层土壤质地紧实(容重=1.30 g∙cm−3), 孔隙度较小, 土壤CO2扩散系数(D)仅为表层土壤的1/8~1/4 (D10 cm=22.6×10−7 m2∙s−1D50 cm=2.7×10−7 m2∙s−1D100 cm=6.7×10−7 m2∙s−1), 导致深层土壤CO2气体的累积并表现为浓度升高[31]。喀斯特[23]、土[32]和森林[33]土层中CO2浓度变化的相关研究也得到了相似的结果。

    不同土层CO2浓度因其土壤孔隙含水量增加而呈降低趋势, 但关系复杂。表层土壤含水量因降雨波动剧烈, 相应地土壤CO2浓度波动范围也较大, 随着土壤含水量升高, 土壤CO2浓度呈降低趋势(图5); 随着深度的增加, 土壤含水量波动范围(32%~35%)变小, CO2浓度波动范围(4000~16 700 μmol∙mol−1)加大(图2), 土壤CO2浓度随着水分升高而降低的相关性得到加强; 当达到100 cm土层深度时, 土壤含水量基本稳定在24%~30%, 因大雨时水分入渗到深层后土壤水分才在短时间内出现变化, 相应地土壤CO2浓度才会出现剧烈变化, 但短时间内出现的水分和土壤CO2浓度变化并不存在简单的线性关系。其中原因需要进一步的田间监测和研究。

    图  5  不同深度土壤CO2浓度和土壤含水量的关系
    Figure  5.  Relationship between soil CO2 concentration and soil moisture in different soil depths

    降雨影响土壤CO2浓度, 但不同土层CO2浓度变化并不相同[34]。大雨初期(前3 d), 随着土壤由干变湿, 10 cm处土壤CO2浓度迅速增加并达到峰值(图4g)。干湿交替引起团聚体破坏(物理学说)或土壤水分引起的微生物群落结构和活性变化促进了土壤CO2产生(生理学说)[2,35]。与10 cm处激发效应不同, 在50 cm和100 cm处由于雨前土壤含水量(W)较高(Wpre-50 cm=32%, Wpre-100 cm=24.7%), 降雨后反而抑制CO2的产生(图6e, f)。深层土壤含水量一般高于表层, 降水导致的深层土壤含水量的进一步升高, 降低了土壤通透性和土壤中O2的供应, 使得好氧微生物的活性受到抑制[36]; 其次, 水分过高还会阻碍土壤溶液中可溶性有机碳(DOC)的扩散, 降低微生物可利用的DOC含量[37-38]。此外, 尽管表层土壤出现了CO2升高的激发效应, 但当土壤含水量超过19%时, 激发效应减弱。这可能与土壤孔隙逐渐被水分填充, 土壤处于厌氧环境中, 微生物呼吸和根系代谢受到抑制有关[39-40]

    图  6  不同降水事件对对10 cm、50 cm和100 cm深土壤CO2扩散系数的影响
    小雨的降雨量为10 cm以下, 中雨的降雨量为10~25 cm, 大雨的降雨量为大于25 cm。pre-指降雨前, post-指降雨后, 其后数字为天数。
    Figure  6.  Effect of different precipitation events on soil CO2 diffusivities in 10 cm, 50 cm and 100 cm soil layers
    The precipitation of light rain, moderate rain and heavy rain are <10 cm, 10−25 cm and >25 cm. pre- means before rainfall, post- means after rainfall, the numbers following them are number of days.

    大雨导致10 cm处CO2浓度升高还与CO2扩散系数降低有关。本研究发现降雨导致CO2扩散系数降低4%~47% (图6)。水分升高阻碍土壤气体向大气中扩散, 从而使得扩散系数降低[23]。但土壤CO2浓度并不总是随着CO2扩散系数的降低而升高, 大雨事件中100 cm处气体扩散系数和土壤CO2浓度均呈降低趋势(图6f)。除此之外, 半干旱地区土壤CO2溶解也会影响其浓度变化。研究地土壤中碳酸盐含量为10.5%、pH值8.2[41], 这会显著影响土体内CO2气体的溶解和固存[42]。Maier等[15]认为入渗的雨水和大气中浓度较低的CO2保持平衡, 进入土壤后, 雨水会对土体内部浓度较高的CO2有稀释作用。而CO2溶解形成碳酸盐溶液所需时间远低于形成碳酸钙的时间$ \left(\text{CaC}{\text{O}}_{\text{3}}\text{+ C}{\text{O}}_{\text{2}}\text{+}{\text{H}}_{\text{2}}\text{O}{\Leftrightarrow}{\text{Ca}}^{\text{2+}}\text{+}2\mathrm{H}\mathrm{C}{\mathrm{O}}_{3}^{-}\right) $, 这也可能是降雨事件中导致土壤CO2浓度降低的重要原因。

    在半干旱区, 78%的降雨事件可以引发10 cm处CO2浓度变化, 降雨量为10~25 mm、>25 mm的降雨事件分别导致50 cm和100 cm处土壤CO2浓度降低, 响应时间各自滞后91 h、121 h。降雨对土壤CO2浓度的影响取决于土壤含水量状况, 土壤由干变湿时, 降雨可以对10 cm土壤CO2浓度产生正激发效应, 而在含水量较高的深层土壤, 则产生负激发效应。

    致谢: 感谢陕西长武农田生态系统国家野外科学观测研究站对本研究的支持。

  • 图  1   苹果园仪器布设图

    Figure  1.   Equipment layout in the apple orchard

    图  2   试验期间土壤CO2浓度、土壤温度和土壤含水量变化

    Figure  2.   Variations of soil CO2 concentration, soil temperature and soil moisture during the experiment

    图  3   晴天(左侧图a, b, c)和雨天(右侧图d, e, f)气温和不同土层土壤温度、CO2浓度的变化

    Figure  3.   Variations of air temperature, soil temperature and soil CO2 concentration in different soil layers under different weather conditions (the left figures are sunny days; the right figures are rainy days)

    图  4   不同降水事件对10 cm、50 cm和100 cm深土壤CO2浓度的影响

    小雨的降雨量为10 cm以下, 中雨的降雨量为10~25 cm, 大雨的降雨量为大于25 cm。pre-指降雨前, post-指降雨后, 其后数字为天数。The precipitation of light rain, moderate rain and heavy rain are <10 cm, 10−25 cm and >25 cm. pre- means before rainfall, post- means after rainfall, the numbers following them are number of days.

    Figure  4.   Effect of different precipitation events on soil CO2 concentration of 10 cm, 50 cm and 100 cm soil layers

    图  5   不同深度土壤CO2浓度和土壤含水量的关系

    Figure  5.   Relationship between soil CO2 concentration and soil moisture in different soil depths

    图  6   不同降水事件对对10 cm、50 cm和100 cm深土壤CO2扩散系数的影响

    小雨的降雨量为10 cm以下, 中雨的降雨量为10~25 cm, 大雨的降雨量为大于25 cm。pre-指降雨前, post-指降雨后, 其后数字为天数。

    Figure  6.   Effect of different precipitation events on soil CO2 diffusivities in 10 cm, 50 cm and 100 cm soil layers

    The precipitation of light rain, moderate rain and heavy rain are <10 cm, 10−25 cm and >25 cm. pre- means before rainfall, post- means after rainfall, the numbers following them are number of days.

    表  1   试验地不同深度土壤基本理化指标

    Table  1   Soil basic physical and chemical indexes at different depths of the experimental site

    土壤深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g∙cm−3)
    充气孔隙度
    Air-filled porosity
    (cm3∙cm−3)
    pH有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total N
    (g∙kg−1)
    全磷
    Total P
    (g∙kg−1)
    全钾
    Total K
    (g∙kg−1)
    101.250.348.2313.400.980.828.05
    501.300.178.209.140.810.839.12
    1001.300.268.3011.030.630.718.30
    下载: 导出CSV

    表  2   2019—2021年试验期间降水事件和土壤CO2浓度响应特征

    Table  2   Characteristics of precipitation events and soil CO2 concentration response during the experiment from 2019 to 2021

    降水类型
    Precipitation type
    降水频次
    Precipitation frequency
    占总降水频次比例
    Proportion in total
    precipitation frequency (%)
    土壤CO2浓度响应频次
    Soil CO2 concentration response frequency
    10 cm土层
    10 cm soil layer
    50 cm土层
    50 cm soil layer
    100 cm土层
    100 cm soil layer
    小雨 Light rain (<10 mm)1356800
    中雨 Moderate rain (10~25 mm)626620
    大雨 Heavy rain (>25 mm)418443
    总计 Total231001863
    下载: 导出CSV
  • [1]

    NAN W, YUE S, LI S, et al. The factors related to carbon dioxide effluxes and production in the soil profiles of rain-fed maize-fields[J]. Agriculture, Ecosystems & Environment, 2016, 216: 177−187

    [2]

    MIN K, BERHE A A, KHOI C M, et al. Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers[J]. Biogeochemistry, 2020, 148(3): 255−269 doi: 10.1007/s10533-020-00658-7

    [3]

    FIERER N, ALLEN A S, SCHIMEL J P, et al. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons[J]. Global Change Biology, 2010, 9(9): 1322−1332

    [4]

    WANG X L, FU S L, LI J X, et al. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 flux[J]. Forests, 2019, 10(2): 192 doi: 10.3390/f10020192

    [5]

    HARRISONR B, FOOTEN P W, STRAHM B D. Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change[J]. Forest Science, 2011, 57(1): 67−76

    [6]

    RATTAN L. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J]. Global Change Biology, 2018, 24(8): 3285−3301 doi: 10.1111/gcb.14054

    [7]

    RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81−99 doi: 10.3402/tellusb.v44i2.15428

    [8]

    LI X, WANG H H, LI X, et al. Shifts in bacterial community composition increase with depth in three soil types from paddy fields in China[J]. Pedobiologia, 2019, 77: 150589 doi: 10.1016/j.pedobi.2019.150589

    [9]

    GABRIEL C E, KELLMAN L. Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil[J]. Soil Biology & Biochemistry, 2014, 68: 373−384

    [10]

    TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology & Biochemistry, 2002, 34(3): 387−401

    [11]

    TIAN Q X, YANG X L, WANG X G, et al. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil[J]. Biogeochemistry, 2016, 128(1/2): 125−139

    [12]

    SHEN R, PENNELL K G, SUUBERG E M. Influence of soil moisture on soil gas vapor concentration for vapor intrusion[J]. Environmental Engineering Science, 2013, 30(10): 628−637 doi: 10.1089/ees.2013.0133

    [13]

    GHEZZEHEI T A, SULMAN B, ARNOLD C L, et al. On the role of soil water retention characteristic on aerobic microbial respiration[J]. Biogeosciences, 2019, 16(6): 1187−1209 doi: 10.5194/bg-16-1187-2019

    [14]

    LEE X H, WU H J, SIGLER J, et al. Rapid and transient response of soil respiration to rain[J]. Global Change Biology, 2004, 10(6): 1017−1026 doi: 10.1111/j.1529-8817.2003.00787.x

    [15]

    MAIER M, SCHACK-KIRCHNER H, HILDEBRAND E E, et al. Pore-space CO2 dynamics in a deep, well-aerated soil[J]. European Journal of Soil Science, 2010, 61(6): 877−887 doi: 10.1111/j.1365-2389.2010.01287.x

    [16]

    BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere–soil carbon transfer as a function of soil depth[J]. Nature, 2018, 559(7715): 599−602 doi: 10.1038/s41586-018-0328-3

    [17]

    YU Y X, ZHAO C Y, JIA H T, et al. Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China[J]. Geoderma, 2017, 308: 93−103 doi: 10.1016/j.geoderma.2017.07.032

    [18] 郎红东, 杨剑虹. 土壤CO2浓度变化及其影响因素的研究[J]. 西南大学学报(自然科学版), 2004, 26(6): 731−734, 739

    LANG H D, YANG J H. Study of CO2 concentration changes in soil profile and its affecting factors[J]. Journal of Southwest University (Natural Science Edition), 2004, 26(6): 731−734, 739

    [19]

    DELSARTE I, COHEN G J V, MOMTBRUN M, et al. Soil carbon dioxide fluxes to atmosphere: the role of rainfall to control CO2 transport[J]. Applied Geochemistry, 2021, 127: 104854 doi: 10.1016/j.apgeochem.2020.104854

    [20]

    RACHHPAL J, ANDY B, MIKE N, et al. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes[J]. Agricultural and Forest Meteorology, 2005, 130(3): 176−192

    [21]

    FERNANDEZ-BOU A S, DIERICK D, ALLEN M F, et al. Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a neotropical wet forest[J]. Global Change Biology, 2020, 26(9): 5303−5319 doi: 10.1111/gcb.15194

    [22] 刘合满, 曹丽花, 李江荣, 等. 色季拉山急尖长苞冷杉林不同层次土壤CO2浓度对短时降雨的响应[J]. 生态学报, 2020, 40(22): 8354−8363

    LIU H M, CAO L H, LI J R, et al. Response of soil CO2 concentration at different depth of Abies georgei var Smithii forest to short-time rainfall on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2020, 40(22): 8354−8363

    [23]

    CHEN Q. Characteristics of soil profile CO2 concentrations in karst areas and their significance for global carbon cycles and climate change[J]. Earth System Dynamics, 2019, 10(3): 525−538 doi: 10.5194/esd-10-525-2019

    [24] 张芳, 郭胜利, 邹俊亮, 等. 长期施氮和水热条件对夏闲期土壤呼吸的影响[J]. 环境科学, 2011, 32(11): 3174−3180 doi: 10.13227/j.hjkx.2011.11.023

    ZHANG F, GUO S L, ZOU J L, et al. Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season[J]. Environmental Science, 2011, 32(11): 3174−3180 doi: 10.13227/j.hjkx.2011.11.023

    [25] 郭正, 李军, 张玉娇, 等. 黄土高原不同降水量区旱作苹果园地水分生产力和土壤干燥化效应模拟与比较[J]. 自然资源学报, 2016, 31(1): 135−150 doi: 10.11849/zrzyxb.20141498

    GUO Z, LI J, ZHANG Y J, et al. Simulation and comparison of water productivity and soil desiccation effects of apple orchards in different rainfall regions of the loess plateau[J]. Journal of Natural Resources, 2016, 31(1): 135−150 doi: 10.11849/zrzyxb.20141498

    [26] 白岗栓, 邹超煜, 邵发琦, 等. 自然生草和蚯蚓对渭北旱塬苹果园土壤特性及苹果品质的影响[J]. 中国农业大学学报, 2022, 27(3): 146−157 doi: 10.11841/j.issn.1007-4333.2022.03.16

    BAI G S, ZOU C Y, SHAO F Q, et al. Effects of self-sown grass and earthworm on the soil property and apple quality of apple orchard in weibei dry plateau[J]. Journal of China Agricultural University, 2022, 27(3): 146−157 doi: 10.11841/j.issn.1007-4333.2022.03.16

    [27] 苏志慧. 应用浓度梯度法估算农田和草地土壤地表CO2通量[D]. 北京: 中国农业大学, 2016

    SU Z H. Using gradient method to estimate soil surface CO2 flux in crop and grass field[D]. Beijing: China Agricultural University, 2016

    [28]

    MOLDRUP P, OLESEN T, GAMST J, et al. Predicting the gas diffusion coefficient in repacked soil water‐induced linear reduction model[J]. Soil Science Society of America Journal, 2000, 64(5): 1588−1594 doi: 10.2136/sssaj2000.6451588x

    [29]

    EILERS K G, DEBENPORT S, ANDERSON S, et al. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil[J]. Soil Biology & Biochemistry, 2012, 50: 58−65

    [30]

    WORDELL-DIETRICH P, DON A, Helfrich M. Controlling factors for the stability of subsoil carbon in a Dystric Cambisol[J]. Geoderma, 2017, 304: 40−48 doi: 10.1016/j.geoderma.2016.08.023

    [31] 程建中, 李心清, 周志红, 等. 土壤CO2浓度与地表CO2通量的季节变化及其相互关系[J]. 地球与环境, 2011, 39(2): 196−202

    CHENG J Z, LI X Q, ZHOU Z H, et al. Seasonal variation and relationship between soil CO2 concentrations and surface CO2 fluxes[J]. Earth and Environment, 2011, 39(2): 196−202

    [32] 戴万宏, 王益权, 黄耀, 等. 土剖面CO2浓度的动态变化及其受环境因素的影响[J]. 土壤学报, 2004, 41(5): 827−831 doi: 10.3321/j.issn:0564-3929.2004.05.026

    DAI W H, WANG Y Q, HUANG Y, et al. Seasonal dynamic of CO2 concentration in Lou soil and impact by environment factors[J]. Acta Pedologica Sinica, 2004, 41(5): 827−831 doi: 10.3321/j.issn:0564-3929.2004.05.026

    [33]

    ZHOU L X, FU S L, DING M M, et al. Soil CO2 concentration and efflux from three forests in subtropical China[J]. Soil Research, 2012, 50(4): 328−336 doi: 10.1071/SR12109

    [34] 张红星, 王效科, 冯宗炜, 等. 黄土高原小麦田土壤呼吸对强降雨的响应[J]. 生态学报, 2008, 28(12): 6189−6196 doi: 10.3321/j.issn:1000-0933.2008.12.049

    ZHANG H X, WANG X K, FENG Z W, et al. The great rainfall effect on soil respiration of wheat field in semi-arid region of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(12): 6189−6196 doi: 10.3321/j.issn:1000-0933.2008.12.049

    [35]

    LIU Y C, LIU S R, MIAO R H, et al. Seasonal variations in the response of soil CO2 efflux to precipitation pulse under mild drought in a temperate oak (Quercus variabilis) forest[J]. Agricultural and Forest Meteorology, 2019, 271: 240−250 doi: 10.1016/j.agrformet.2019.03.009

    [36]

    SIERRA C A, MALGHANI S, LOESCHER H W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil[J]. Biogeosciences, 2017, 14(3): 703−710 doi: 10.5194/bg-14-703-2017

    [37] 王融融, 余海龙, 李诗瑶, 等. 干湿交替对土壤呼吸和土壤有机碳矿化的影响述评[J]. 水土保持研究, 2022, 29(1): 78−85 doi: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201012

    WANG R R, YU H L, LI S Y, et al. Review on the effects of soil alternate drying-rewetting cycle on soil respiration and soil organic carbon mineralization[J]. Research of Soil and Water Conservation, 2022, 29(1): 78−85 doi: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201012

    [38]

    DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2): 217−227 doi: 10.1046/j.1365-2486.1998.00128.x

    [39]

    ZHU M X, De BOECK H J, XU H, et al. Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation[J]. Science of the Total Environment, 2020, 747: 141222 doi: 10.1016/j.scitotenv.2020.141222

    [40] 王旭, 闫玉春, 闫瑞瑞, 等. 降雨对草地土壤呼吸季节变异性的影响[J]. 生态学报, 2013, 33(18): 5631−5635 doi: 10.5846/stxb201304080631

    WANG X, YAN Y C, YAN R R, et al. Effect of rainfall on the seasonal variation of soil respiration in Hulumber Meadow Steppe[J]. Acta Ecologica Sinica, 2013, 33(18): 5631−5635 doi: 10.5846/stxb201304080631

    [41] 郭胜利, 高会议, 党廷辉. 施氮水平对黄土旱塬区小麦产量和土壤有机碳、氮的影响[J]. 植物营养与肥料学报, 2009, 15(4): 808−814 doi: 10.3321/j.issn:1008-505X.2009.04.011

    GUO S L, GAO H Y, DANG T H. Effects of nitrogen application rates on grain yield, soil organic carbon and nitrogen under a rainfed cropping system in the loess tablelands of China[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 808−814 doi: 10.3321/j.issn:1008-505X.2009.04.011

    [42]

    GAO Y, ZHANG P, LIU J. One third of the abiotically-absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 2020, 374: 11448

  • 期刊类型引用(1)

    1. 方啸宇,徐文清,刘文,李少楠,李文涛,陆爱华,房经贵. 巨峰葡萄9种元素缺素症的研究. 核农学报. 2024(06): 1196-1204 . 百度学术

    其他类型引用(6)

图(6)  /  表(2)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  210
  • PDF下载量:  84
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-07-28
  • 录用日期:  2022-11-24
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-02-09

目录

/

返回文章
返回