辽宁省海洋渔业碳收支及驱动因素分析

李源, 李田慧, 梁金水, 李发祥, 刘长发

李源, 李田慧, 梁金水, 李发祥, 刘长发. 辽宁省海洋渔业碳收支及驱动因素分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 253−264. DOI: 10.12357/cjea.20220542
引用本文: 李源, 李田慧, 梁金水, 李发祥, 刘长发. 辽宁省海洋渔业碳收支及驱动因素分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 253−264. DOI: 10.12357/cjea.20220542
LI Y, LI T H, LIANG J S, LI F X, LIU C F. Carbon budget and driving factors in marine fisheries in Liaoning Province, China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 253−264. DOI: 10.12357/cjea.20220542
Citation: LI Y, LI T H, LIANG J S, LI F X, LIU C F. Carbon budget and driving factors in marine fisheries in Liaoning Province, China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 253−264. DOI: 10.12357/cjea.20220542
李源, 李田慧, 梁金水, 李发祥, 刘长发. 辽宁省海洋渔业碳收支及驱动因素分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 253−264. CSTR: 32371.14.cjea.20220542
引用本文: 李源, 李田慧, 梁金水, 李发祥, 刘长发. 辽宁省海洋渔业碳收支及驱动因素分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 253−264. CSTR: 32371.14.cjea.20220542
LI Y, LI T H, LIANG J S, LI F X, LIU C F. Carbon budget and driving factors in marine fisheries in Liaoning Province, China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 253−264. CSTR: 32371.14.cjea.20220542
Citation: LI Y, LI T H, LIANG J S, LI F X, LIU C F. Carbon budget and driving factors in marine fisheries in Liaoning Province, China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 253−264. CSTR: 32371.14.cjea.20220542

辽宁省海洋渔业碳收支及驱动因素分析

基金项目: 辽宁省高校优秀科技人才支持计划(LR2013035)资助
详细信息
    作者简介:

    李源, 主要从事生态资产研究。E-mail: dlouly5205@163.com

    通讯作者:

    刘长发, 主要从事污染物环境生物地球化学过程与控制研究。E-mail: liucf@dlou.edu.cn

  • 中图分类号: F326.4

Carbon budget and driving factors in marine fisheries in Liaoning Province, China

Funds: This study was supported by the Program for Liaoning Excellent Talents in University (LR2013035).
More Information
  • 摘要: 海洋渔业碳汇是海洋碳汇的主要组成部分, 是实现海洋碳增汇的有效途径之一。在碳达峰与碳中和背景下, 海洋渔业兼具“碳源”与“碳汇”的双重属性。利用《中国渔业统计年鉴》《国内机动渔船油价补助用油量测算参考标准》和《中国统计年鉴》数据, 计算了2006—2020年辽宁省渔业净碳汇量和渔业碳汇价值量; 运用时间序列三次指数平滑模型, 预测2021—2030年渔业碳汇量和渔业碳汇价值量; 基于灰色关联模型分析了辽宁省海洋渔业碳源碳汇量变化及其价值量变化的主要驱动要素。结果表明: 2006—2020年辽宁省海洋渔业碳汇收支盈余态势逐年减少, 海洋渔业碳汇赤字情况逐年加剧, 海洋渔业碳源碳汇最大顺差为256.36万t, 最大逆差29.99万t, 其平均差额为116.66万t·a−1。其中, 海洋捕捞鱼类碳汇总量3976.04万t, 但自2016年起急剧下降, 并呈持续下降趋势; 贝藻类碳汇总量241.67万t, 养殖占83%, 变化不大; 海洋捕捞碳排放量为164.52万t·a−1, 其中拖网捕捞渔业占比近50%。2017年后海洋捕捞碳汇量不能补偿碳排放量。辽宁省海洋渔业碳汇价值总量274.23亿元, 年均18.28亿元。辽宁省渔业碳汇总量和渔业碳汇价值总量持续下降, 碳汇价值量与碳汇量呈正相关。海洋渔业碳汇量与海洋捕捞渔获物产量、养殖贝藻类产量呈正相关。基于时间序列预测模型分析显示, 2020—2030年辽宁省海洋渔业碳汇赤字将持续加剧, 海洋渔业碳汇量逐年降低。辽宁省海洋渔业碳汇受国家政策、捕捞渔获物产量、从业人员数量、贝藻类养殖面积和海洋捕捞渔船总功率等因素影响。辽宁省海洋渔业碳源排放量受海洋捕捞渔船总功率、渔业专业户数量和技术推广机构数量影响明显。建议多种养殖方式深度融合, 减少高能耗、低产量捕捞作业方式, 保护海洋生物多样性, 并加强高排放渔船监管, 以促进辽宁省海洋渔业发展。
    Abstract: Marine fisheries are valuable oceanic carbon sinks that store and sequester carbon. They act as both “carbon sources” and “carbon sinks”, and this is particularly important to achieve the established carbon peak and carbon neutrality goals. The amount of carbon sequestered by fisheries and its economic value in Liaoning Province from 2006 to 2020 were calculated based on the China Fisheries Statistical Yearbook, the Calculation Reference of Oil Consumption for Oil Price Subsidy of Domestic Fishing Vessels, and the China Statistical Yearbook. Then, a cubic exponential smoothing method was applied to a time-series forecasting model to predict the same parameters for 2021–2030, and the factors controlling the amount and economic value of carbon sequestered in fisheries in Liaoning Province were examined using gray correlation analysis. The results showed that 1) the surplus of income and expenditure for carbon sequestration in marine fisheries in the region decreased each year from 2006 to 2020, and the deficit is predicted to intensify in 2021–2030. 2) The maximum surplus of carbon (sequestration minus emissions) was 256.36×104 tons and the maximum deficit was 29.99×104 tons, with an average of 116.66×104 tons per year. 3) The total amount of carbon sequestered by shellfish and algae was 241.67×104 tons, 83% of which was attributed to the aquaculture industry, with little change. 4) The average amount of carbon emissions form marine fishing was 164.52×104 tons per year, almost 50% of which was attributed to trawling. The amount of carbon sequestered from marine fishing could not compensate for carbon emissions after 2017. 5) The total economic value of sequestered carbon of marine fisheries of Liaoning Province was 27.423 billion Yuan, with an annual average of 1.828 billion Yuan. 6) The total amount and economic value of carbon sequestered in marine fisheries continued to decline and were positively correlated. 7) The amount of sequestered carbon was also positively correlated with fishing yields, shellfish production, and macroalgal culture. The amount and economic value of carbon sequestered in marine fisheries in Liaoning Province were significantly influenced by national policies, fishing yield, number of employees, area of shellfish and macroalgal aquaculture sites, and the total power of fishing vessels (which determined the vessels’ carbon emissions). To protect marine biodiversity and promote the sustainable development of marine fisheries in the area, it is recommended to integrate multiple aquaculture systems, reduce high-energy-consuming fishing operations, and strengthen the monitoring of highly polluting fishing vessels.
  • 全球气候变化已引起全世界对气候变暖影响和应对方案的探讨, 碳减排增汇是实现“碳中和”的主要渠道之一。国际上对“碳中和”问题的关注源于1997年《京都议定书》的签署[1]。被称为“蓝碳”的海洋碳汇是碳增汇的重要途径之一。2009年, 联合国环境规划署(UNEP)、粮农组织(FAO)和教科文组织政府兼海洋学委员会(IOC/UNESCO)联合发布的《蓝碳: 健康海洋固碳作用的评估报告》中提出“蓝碳是指利用海洋活动及海洋生物吸收大气中的CO2, 并将其固定在海洋中的过程、活动和机制”[2]。我国在2015年首次提出的《生态文明体制改革总体方案》中强烈呼吁构建有利于提升世界海洋碳汇竞争力的综合有效机制, 在增加海洋碳汇的同时加强应对气候变化环境下的国际合作。海洋是地球上最富活跃的碳库, 海洋碳储量约为陆地碳储量总量的20倍, 为大气碳储量的50倍[3-4], 占全球碳总量的55%[1]。海洋蓝碳最早关注海岸带生态系统、渔业碳汇和微型生物碳汇[5-6]。因具有高效碳汇, 海洋固碳能力约为陆地生态系统10倍以上[7], 最早开始研究的有滨海沼泽、红树林以及海草床生态系统[2], 它们是海洋碳汇的主要贡献者, 生物量仅为陆生植物的0.05%, 但两者的碳储量相当[2]。淡水和海洋生态系统中的渔业碳汇也被称为“可产业化的蓝碳”和“可移出的碳汇”。鉴于一部分渔业产业活动具备碳汇功能, 因此将具有碳汇功能、可直接或间接降低大气CO2浓度的渔业生产活动称为“碳汇渔业”, 可囊括为: 贝藻类养殖、滤食性鱼类养殖、渔业增殖、海洋牧场和捕捞渔业等生产活动[8]。碳汇渔业被定义为“能够发挥生物碳汇功能、具有直接或间接降低CO2浓度的渔业生产活动, 是绿色可持续发展理念在渔业领域的具体体现”[9]

    渔业碳汇在海洋碳汇核算以及应对气候变化中发挥积极作用, 中国的海洋渔业和水产养殖业有望实现4.6×108 t∙a−1的固碳量, 约为每年10%的碳减排量[8], 海水养殖是碳“海洋负排放”的践行途径[10]。大型海藻含有其干重28.3%的碳, 滤食性贝类软组织和贝壳平均碳含量分别为其干重的44.3%和11.6%, 据此估算的2002年养殖大型海藻可形成约3.3×105 t∙a−1的渔业碳汇量, 养殖贝类可形成约8.6×105 t∙a−1的渔业碳汇量, 其中贝壳中的约6.7×105 t∙a−1的碳汇量是持久性碳汇[11]。此外, 岳冬冬等[12]估算2006—2010年增养殖海水贝类可形成9.29×105 t∙a−1的渔业碳汇量。孙康等[13]估算2008—2017年增养殖大型海藻可形成1.05×105 t∙a−1的渔业碳汇量, 增养殖海水贝类可形成1.09×106 t∙a−1的渔业碳汇量。张波等[14]估算1980—2010年渤海捕捞业可形成(0.283~1.008)×107 t∙a−1的渔业碳汇量、黄海捕捞业可形成(0.361~2.613)×107 t∙a−1的渔业碳汇量。但是, 中国海洋捕捞业2006—2011年平均温室气体排放量增长2.666×105 t∙a−1, 平均年增长率为1.54%[15]

    尽管渔业活动可以产生净碳汇, 但是渔业生产中的碳足迹仍是碳源汇过程, 即除产生碳汇外, 也产生碳排放, 甚至有学者认为商业捕捞是全球海洋生物碳汇的干扰[16]。因此, 为实施海洋负排放, 提出渔业碳汇扩增对策建议, 践行渔业碳汇扩增战略[2]和“碳中和”战略[17], 渔业碳汇机制研究仍待亟需加强[10]。本文通过对辽宁省海洋渔业碳源汇的核算, 分析近15年来辽宁省海洋渔业碳源汇变化趋势; 通过其驱动要素, 预测海洋渔业碳源汇未来发展态势, 促进辽宁省海洋渔业可持续科学发展。相关研究表明, 渔业是隐藏碳足迹的, 需要“从源头到养殖场(cradle to farm-gate)”量化水产养殖的温室气体排放[18], 也需要从能源消耗量化捕捞渔业的温室气体排放[19-24]。此外, 因海洋捕捞大型海洋鱼类, 其尸体未沉至深海底被封存而被认为渔业提取了海洋蓝碳[25]

    辽宁省兼具海洋大省、渔业大省的双重身份, 据《2020年中国渔业统计年鉴》统计, 2019年辽宁省渔业产品产量4.55×106 t, 占全国7.02%, 其中海水养殖产量2.95×106 t, 占全国14.27%; 海洋捕捞产量0.49×106 t, 占全国4.87%; 远洋渔业产量0.26×106 t, 占全国12.21%。2019年辽宁省渔业产值652.22亿元, 占全国5.04%, 其中海水养殖产值353.11亿元, 占全国9.88%; 海洋捕捞产值110.46亿元, 占全国5.22%。因此, 有必要分析辽宁省海洋渔业碳汇收支情况。本研究基于2006—2020年辽宁省海洋捕捞船只碳排放量、海洋捕捞鱼类、捕捞贝藻类和养殖贝藻类, 计算海洋渔业碳源汇量, 运用灰色关联度模型与时间序列预测模型, 分析其海洋渔业碳源汇驱动要素, 预测未来其碳源汇发展态势。以期全面了解辽宁省海洋渔业碳源汇过程与机制, 使海洋渔业产业积极响应国家低碳、绿色的发展理念, 促进产业升级, 从本质上促进海洋渔业供给侧结构性改革, 充分发挥渔业碳汇作用, 寻求海洋碳负排放途径, 制定海洋渔业碳增汇策略。

    计算辽宁省海洋渔业碳汇数据指标来源于2007—2021年《中国渔业统计年鉴》《国内机动渔船油价补助用油测算参考标准》和《中国统计年鉴》中第一产业能源消耗指标数据。

    海水贝藻类碳汇采用辽宁省几种常见的养殖贝藻类进行计算。其中, 贝类碳汇量按表1中公式(1)计算, 海水养殖贝类碳汇总量按表1中公式(2)计算, 参数取值见表2; 藻类碳汇量按表1中公式(3)计算, 参数取值见表3; 海水养殖贝藻类年碳汇总量计算公式见表1中公式(4)。

    表  1  辽宁省海洋渔业碳汇计算公式
    Table  1.  Calculation formula of marine fishery carbon sink in Liaoning Province
    类别
    Category
    公式
    Formula
    符号说明
    Symbol description
    参考文献
    Reference
    贝类碳汇
    Carbon sink of shellfish
    1 Ci=Qi×γ×µ1×ρ1+Qi×
      γ×µ2×ρ2
    $ {C}_{i} $为第i种贝类碳汇量; $ {Q}_{i} $为第i种贝类年总产量; $ \gamma $为贝类干湿转换系数; $ {\mu }_{1} $为贝壳比; $ {\rho }_{1} $为贝壳固碳系数; $ {\mu }_{2} $为软组织比; $ {\rho }_{2} $为软组织固碳系数, 参数取值见表2
    $ {C}_{i} $ is the carbon fixed by i shellfish; $ {Q}_{i} $ is the annual yield of i shellfish; $ \gamma $ is the conversion coefficient wet to dry weight of shellfish; $ {\mu }_{1} $ is the ratio of shell to body weight; $ {\rho }_{1} $ is the carbon fixation coefficient of shell; $ {\mu }_{2} $ is the ratio of soft tissue to body weight; $ {\rho }_{2} $ is the carbon fixation coefficient of soft tissue, whose value is shown in the table 2
    [4]
    贝类碳汇总量
    Total carbon sink of shellfish
    2 ${C}_{{\rm{s}}}=\displaystyle\sum _{i=1}^{n}{C}_{i}$ ${C}_{{\rm{s}}}$为海水养殖贝类碳汇总量
    ${C}_{{\rm{s}}}$ is the total amount of carbon of maricultured shellfish
    藻类碳汇
    Carbon sink of macroalgae
    3 $ {C}_{{\rm{e}}}=\displaystyle\sum _{i=1}^{m}\left({P}_{i}\times {W}_{i}\right)\times 20 {\text{%}} $ $ {C}_{{\rm{e}}} $为不同种类藻类碳汇总量; $ {P}_{i} $为i种藻类的年总产量; $ {W}_{i} $为i种藻类的碳含量百分比, 参数取值见表3
    $ {C}_{{\rm{e}}} $ is the carbon fixed by maricultural macroalgae; $ {P}_{i} $ is the annual harvest of i macroalgae; $ {W}_{i} $ is the percentage of carbon by i macroalgae, whose value is shown in the table 3
    贝藻类碳汇总量
    Total carbon sink of shellfish and macroalgae
    4 $ C={C}_{{\rm{e}}}+{C}_{{\rm{s}}} $ $ C $为海水养殖贝藻类年碳汇总量
    $ C $ is the annual carbon totals by maricultural shellfish and macroalgae
    鱼类营养级
    Fish nutritional level
    5 ${T}_{i}=1+\displaystyle\sum _{j=1}^{n}{D}_{i j}\times {T}_{j}$ $ {T}_{i} $为生物i的营养级; $ {T}_{j} $为生物i摄食的食物j的营养级; ${D}_{i j}$为食物j在生物i的食物中所占的比例
    $ {T}_{i} $ is the trophic level of i fish; $ {T}_{j} $ is the trophic level of j organism being fed on i fish; ${D}_{i j}$ is the proportion of j prey in the food of i predator
    [29]
    被捕食者生物量
    Biomass of prey
    6 ${B}_{j}={Y}_{0} /\left({E}_{ {L}_{0}-1}\times {E}_{ {L}_{0}-2}\right)$ ${B}_{j} $为被捕食者的生物量; $ {Y}_{0} $为渔获量; $ {L}_{0} $为渔获物平均营养级; $ {E}_{{L}_{0}-1} $为营养级$ ({L}_{0}-1) $的生态转换效率; $ {E}_{{L}_{0}-2} $为营养级$ ({L}_{0}-2) $的生态转换效率
    ${B}_{j} $ is the biomass of the prey; $ {Y}_{0} $ is the yield; $ {L}_{0} $ is the average trophic level in catch; $ {E}_{{L}_{0}-1} $ is the ecological conversion efficiency of trophic level $ ({L}_{0}-1) $; $ {E}_{{L}_{0}-2} $ is the ecological conversion efficiency of trophic level $ ({L}_{0}-2) $
    [14]
    摄食浮游植物和有机碎屑的比例
    Proportion of phytoplankton and organic detritus in diet
    7 1×Q+2×(100%−Q) =
      L0−2, 即Q = 4−L0
    $ Q $为摄食浮游植物和有机碎屑的比例; L0为渔获物平均营养级
    $ Q $ is the proportion of phytoplankton and organic detritus in diet. L0 is the average trophic level in catch
    摄食浮游植物和有机碎屑的生物量
    Biomas of phytoplankton and organic detritus in diet
    8 B0=(B1×Q)+B1×
      (100%−Q)/EL=1
    $ {B}_{0} $为摄食浮游植物和有机碎屑的生物量; $ {E}_{L=1} $为初级消费者摄食浮游植物和有机碎屑的生态转换效率
    $ {B}_{0} $ is the biomass of phytoplankton and organic detritus in diets; $ {E}_{L=1} $ is the ecological conversion efficiency of primary consumers to ingest phytoplankton and organic detritus
    被捕食的浮游植物碳含量
    Carbon content of phytoplankton
    9 $ {C}_{1}=4.49 {\text{%}}\times {B}_{0} $ $ {C}_{1} $被捕食的浮游植物的现存碳含量
    $ {C}_{1} $ is the carbon content of phytoplankton
    [30]
    摄食浮游植物固碳量
    Carbon sequestration by feeding phytoplankton
    10 $ {C}_{\mathrm{T}}=45\times {C}_{1} $ $ {C}_{\mathrm{T}} $摄食浮游植物的固碳量
    $ {C}_{\mathrm{T}} $ is the carbon sequestration by feeding phytoplankton
    [31]
    化石燃料燃烧排放CO2
    CO2 emissions from fossil fuel combustion
    11 $ {G}_{k}={T}_{k}\times f\times h $ $ {G}_{k} $为渔船燃烧k燃料时的碳排放量; $ {T}_{k} $为消耗k燃料的量; f为有效氧化分数, h为燃料k的平均含碳量
    $ {G}_{k} $ is the carbon emissions of fishing vessels burning k fuel; $ {T}_{k} $ is the amount of k fuel consumed; f is the effective oxidation fraction; h is the average carbon content of k fuel
    [32]
    海洋渔船产碳量
    Carbon production of marine fishing vessel
    12 ${G}_{n}={T}_{n}\times s\times w\times z\times \varphi$ $ {G}_{n} $为渔船燃烧碳量; $ {T}_{n} $为渔船作业燃油消耗量; s为折标准煤系数1.4571; w为有效氧化分数0.982; z为每吨标煤含碳量0.732 57; $\varphi$为0.813, 即在获得相同热能的条件下, 燃油释放CO2与燃煤释放CO2之间的比值
    $ {G}_{n} $ is the amount of carbon burned by n fishing vessels; $ {T}_{n} $ is the fuel consumption of fishing vessel n operation; s is the standard coal coefficient (1.4571); w is the effective oxidation fraction (0.982); z is the carbon content per ton of standard coal (0.732 57); $\varphi$ is 0.813, the ratio of CO2 released between from fuel oil and from coal under the same thermal energy conditions
    [33]
    海洋捕捞渔船CO2排放量
    CO2 emissions from marine fishing vessels
    13 ${C}_{ {\mathrm{c}\mathrm{o} }_{2} }={G}_{n}\times \partial$ $ {C}_{{\mathrm{c}\mathrm{o}}_{2}} $为$ {\mathrm{C}\mathrm{O}}_{2} $排放量; $ \partial $为碳换算为CO2的常数(3.67)
    $ {C}_{{\mathrm{c}\mathrm{o}}_{2}} $ is the $ {\mathrm{C}\mathrm{O}}_{2} $ emission; $ \partial $ is the constant from carbon to carbon dioxide (3.67)
    燃油消耗量
    Fuel consumption
    14 $ {T}_{n}={\displaystyle\sum }_{j=1}^{m}\left({P}_{j}{\times F}_{j}\right) $ $ {P}_{j} $为海洋捕捞$\mathrm{作}\mathrm{业}\mathrm{功}\mathrm{率},{F}_{j}$为海洋捕捞作业${用}{油}{系}{数}$
    $ {P}_{j} $ is the power of j marine fishing operation; $ {F}_{j} $ is the oil consumption coefficient of j marine fishing operation
    渔业碳汇价值量预测
    Prediction of economic value of carbon sink by fisheries
    15 ${Y}_{t+T}={A}_{t}+{B}_{t}+{C}_{t}\times {T}^{2}$ $ {Y}_{t+T} $为碳汇量预测值; T为预测期数; $ {A}_{t} $、$ {B}_{t} $、$ {C}_{t} $分别为t年预测系数; $ {L}_{t}^{\left(1\right)} $、$ {L}_{t}^{\left(2\right)} $、$ {L}_{t}^{\left(3\right)} $分别为t年一次、二次、三次平滑预测值; $ \omega $为平滑系数; $ {X}_{t} $为t年碳汇量原始值; $ {L}_{0}^{\left(1\right)} $、$ {L}_{0}^{\left(2\right)} $、$ {L}_{0}^{\left(3\right)} $分别为$ {L}_{t}^{\left(1\right)} $、$ {L}_{t}^{\left(2\right)} $、$ {L}_{t}^{\left(3\right)} $的初始值
    $ {Y}_{t+T} $ is the predicted value of carbon sinks; T is the forecast period; $ {A}_{t} $, ${B}_{t}\;and\;$ $ {C}_{t} $ are t year prediction coefficients; $ {L}_{t}^{\left(1\right)} $, $ {L}_{t}^{\left(2\right)} $ and $ {L}_{t}^{\left(3\right)} $ are the first, second and third smoothing predictions in t year, respectively; $ \omega $ is the smoothing coefficient; $ {X}_{t} $ is the original value of the carbon sink in t year; $ {L}_{0}^{\left(1\right)} $, $ {L}_{0}^{\left(2\right)} $, and $ {L}_{0}^{\left(3\right)} $ are the initial values of $ {L}_{t}^{\left(1\right)} $, $ {L}_{t}^{\left(2\right)} $, and $ {L}_{t}^{\left(3\right)} $, respectively
    [34-35]
    $ {A}_{t}=3{L}_{t}^{\left(1\right)}-3{L}_{t}^{\left(2\right)}+{L}_{t}^{\left(3\right)} $
    $B_t={\dfrac{\omega }{2\left(1-\omega \right)^2 }}$$\left[\left(6-5\omega \right){L}_{t}^{\left(1\right)}-2\left(5-4\omega \right){L}_{t}^{\left(2\right)}+\left(4-3\omega \right){L}_{t}^{\left(3\right)}\right] $
    $ {C}_{t}=\dfrac{\omega ^2}{2\left(1-\omega \right)^2}\left[{L}_{t}^{\left(1\right)}-2{L}_{t}^{\left(2\right)}+{L}_{t}^{\left(3\right)}\right] $
    $ {L}_{t}^{\left(1\right)}=\omega {\times X}_{t}+\left(1-\omega \right)\times {L}_{t-1}^{\left(1\right)} $
    $ {L}_{t}^{\left(2\right)}=\omega {\times L}_{t}^{\left(1\right)}+\left(1-\omega \right)\times {L}_{t-1}^{\left(2\right)} $
    $ {L}_{t}^{\left(3\right)}=\omega {\times L}_{t}^{\left(2\right)}+\left(1-\omega \right){\times L}_{t-1}^{\left(3\right)} $
    $ {L}_{0}^{\left(1\right)}={L}_{0}^{\left(2\right)}={L}_{0}^{\left(3\right)}=\dfrac{{X}_{1}+{X}_{2}+{X}_{3}}{3} $
    渔业碳汇价值
    Economic value of fishery carbon sink
    16 ${O}_{_ {\rm{CSV} } }={O}_{_ {\rm{FS} } }\times {C}_{ {\rm{rec} } }$ ${O}_{_ {\rm{CSV} } }$为渔业碳汇价值量, ${O}_{_ {\rm{FS} } }$为渔业碳汇量, $ {C}_{{\rm{rec}}} $为单位的碳减排经济成本价值
    ${O}_{_ {\rm{CSV} } }$ is the value of fishery carbon sink; ${O}_{_ {\rm{FS} } }$ is the amount of fishery carbon sink; $ {C}_{{\rm{rec}}} $ is the economic cost value of carbon emission reduction per unit
    [36-39]
    关联系数
    Correlation coefficient
    17 $\delta_{i j}=\dfrac{\min _j \times \min _k \times \Delta_{i j}(k)+\beta \times \max _j \times \max _k \times \Delta_{i j}(k)}{\Delta_{i j}(k)+\beta \times \max _j \times \max _k \times \Delta_{i j}(k)}$ $\delta_{i j} $为灰色关联系数; $\Delta_{ i j}\left(k\right)={x}_{i}\left(k\right)-{x}_{j}\left(k\right)$为序列i$ \left\{{x}_{i}\left(k\right)\right\} $与序列j$ \left\{{x}_{j}\left(k\right)\right\} $在第k点的绝对差; ${\min}_{j}\times{\min}_{k}\times{\Delta }_{ij}\left(k\right)$为两极最小差; ${\max}_{j}\times{\max}_{k}\times{\Delta }_{ij}\left(k\right)$为两极最大差; $ \beta $为分辨系数, 其值为 0~1, 取$ \beta $ = 0.5
    $\delta_{i j} $ is grey correlation coefficient; $\Delta_{ i j}\left(k\right)={x}_{i}\left(k\right)-{x}_{j}\left(k\right)$ is the absolute difference between sequence i$ \left\{{x}_{i}\left(k\right)\right\} $ and sequence j$ \left\{{x}_{j}\left(k\right)\right\} $ at point k; ${\min}_{j}\times{\min}_{k}\times{\Delta }_{ij}\left(k\right)$ is the minimum difference between two poles; ${\max}_{j}{\max}_{k}{\Delta }_{ij}\left(k\right)$ is the maximum difference between the two poles; $ \beta $ is the resolution coefficient, whose value is 0.5
    [40-41]
    灰色关联度
    Grey correlation
    18 $ {R}_{ij}=\dfrac{1}{n}\displaystyle\sum _{k=1}^{n}{\delta }_{ij}\left(k\right)k=\mathrm{1,2},3,\cdots ,n $ Rij为灰色关联度
    Rij is the grey correlation degree
    下载: 导出CSV 
    | 显示表格
    表  2  海水养殖贝类固碳计算参数
    Table  2.  Calculation parameters of carbon sequestration in mariculture shellfish
    种类
    Shellfish
    干重比
    Dry weight ratio (%)
    质量比 Mass ratio (%)碳汇系数 Carbon sink coefficient (% dry weight)
    软体组织 Soft tissue贝壳 Shell软体组织 Soft tissue贝壳 Shell
    牡蛎 Oyster65.106.1493.8645.8912.68
    贻贝 Mussel75.288.4791.5344.4011.76
    扇贝 Scallop63.8914.3585.6543.9011.40
    蛤 Clam52.551.9898.0244.9011.52
    蛏 Razor clam70.483.2696.7444.9013.24
    其他贝类 Other shellfish64.2111.4188.5943.8711.44
    下载: 导出CSV 
    | 显示表格
    表  3  海水养殖藻类固碳计算参数(藻类干重比为20%)
    Table  3.  Calculation parameters of carbon sink in mariculture macroalgae (dry weight ratio of algae is 20%)
    种类
    Macroalgae
    碳汇系数
    Carbon sink coefficient (% dry weight)
    海带 Kelp31.20
    裙带菜 Wakame26.40
    其他藻类 Other algae27.76
    下载: 导出CSV 
    | 显示表格

    采用海洋食物网能量效率转换法计算海洋捕捞渔获物中碳移出量, 基于渔获物营养级和其他营养级的生态转换效率, 由海洋捕捞渔获物种类及其营养级逆推各营养级生物的被捕食量和需要摄食浮游植物生物量, 计算被摄食的浮游植物光合作用碳汇量[14]

    大多数海洋生物的食物具有广泛性, 海洋捕捞渔获物通常是消费者功能群海洋生物, 其营养级具有物种和阶段特性, 其营养级是非整数的[26]。我国海洋捕捞渔获物营养级通常分为3~4级[27-28], 碎屑和浮游植物等初级生产者的营养级为1(unity)级, 所有其他类群生物的营养级(平均加权的)被定义为1加上被捕食者营养级乘以其在食物中的比例之和, 营养级计算公式见表1中公式(5)[29]

    通过两营养层级转换估算平均营养级1~2之间被捕食者生物量$ {B}_{j} $, 计算公式见表1中公式(6)。

    依据营养级计算公式(5), 计算被捕食者中浮游植物的有机碎屑物(营养级为1)占比Q, 计算公式见表1中公式(7), 由此估算摄食浮游植物和有机碎屑的生物量$ {B}_{0} $, 计算公式见表1中公式(8)。

    浮游植物对生物碳汇的贡献是初级生产过程与透明胞外聚合颗粒物(TEP)形成的凝聚网沉降过程[30]。因此, 有机碎屑物碳汇量等同于浮游植物碳汇量。按照10种浮游植物碳含量平均值4.49%, 估算被捕食的浮游植物的现存碳含量($ {C}_{1} $), 计算公式见表1中公式(9)。参考孙军等[31]研究的浮游植物固碳量为浮游植物碳含量的45倍, 估算摄食浮游植物的固碳量($ {C}_{\mathrm{T}} $), 计算公式见表1中公式(10)。

    依据美国橡树岭实验室在1989年提出的化石燃料燃烧排放二氧化碳计算公式[见表1中公式(11)[32]]计算渔船碳排放量, 计算公式见表1中公式(12); 海洋捕捞渔船CO2排放量计算公式见表1中公式(13)。海洋捕捞渔船作业方式不同用油系数不同。拖网、围网、刺网、其他、张网和钓具用油系数分别为: 0.480、0.492、0.451、0.312和0.328 (张网和钓具), 燃油消耗量计算公式见表1中公式(14)[33]

    渔业碳汇数据波动受外界影响较大, 即基于时间序列三次指数平滑分析模型[34-35], 对辽宁省未来十年渔业碳汇价值量进行预测, 分析辽宁省海洋渔业碳汇变化。预测模型公式见表1中公式(15)。

    基于《京都议定书》中预估的CO2减排的成本约为150~600美元·t−1, 参考2020年美元兑人民币平均汇率(1美元=6.9元), 折合人民币1035~4140元·t−1。我国造林减排的成本为2001—2020年的平均成本264.2元·t−1 [36-38], 取CO2减排成本下限与我国造林成本均值, 估算出我国单位碳减排经济成本约为649.6元·t−1 [39], 计算渔业碳汇价值量, 公式见表1中公式(16)。

    灰色关联分析法是采用一定方法计算各因子之间的相似度, 比较各因子之间是否存在相互关联的关系[40-41]。对数据进行归一化处理, 把碳源、碳汇、鱼类和贝藻类碳汇分别作为参考序列, 选取渔业经济总产值、渔民人均纯收入、渔业占农业产值比重、技术推广经费、家庭总收入、海洋机动渔船年末拥有量、专业从业人员、技术推广机构、渔业专业户、海水养殖面积和捕捞产量等作为比较序列。关联系数$ {\mathit{\delta }}_{ij} $, 计算公式见表1中公式(17)。由聚集灰色关联系数$ {\mathit{\delta }}_{ij} $在各点k的值, 得灰色关联度$ {R}_{ij} $, 计算公式见表1中公式(18)。

    图1为辽宁省2006—2020年捕捞鱼类碳汇。总碳汇量为3976.04万t, 2006年为碳汇最大值377.71万t, 2020年碳汇为最低值126.63万t, 15年间碳汇量下降254.08万t。2006—2009年碳汇量持续下降, 2010—2016年碳汇量稳定在300万t左右, 2017年较上一年下降155.82万t, 2018—2020年碳汇量持续下降, 最低降至126.63万t。

    图  1  辽宁省2006—2020年捕捞鱼类碳汇量
    Figure  1.  Carbon sink of fish catched in Liaoning Province from 2006 to 2020

    表4为捕捞鱼类固碳量。小黄鱼(Larimichthys polyactis)固碳量为1017.49万t, 鲅鱼(Scomberomorus niphonius) 835.27万t, 鳀鱼(Engraulis japonicus)和鲐鱼(Scomber japonica)固碳量为620.17万t和479.91万t, 共占捕捞渔业碳汇量的74%; 大黄鱼(Larimichthys crocea)、带鱼(Trichiutus lepturus)和梭鱼(Liza haematocheila)碳汇高于100万t, 占碳汇量的16%; 梅童鱼(Collichthys lucidus)、玉筋鱼(Ammodytes personatus)、鲻鱼(Mugil cephalus)、黄姑鱼(Nibea albiflora)、石斑鱼(Epinephelus sp.)和鲳鱼(Pampus gargenteus)等固碳量在30万t至65万t, 占碳汇量的7%; 竹筴鱼(Trachurus japonicus)、沙丁鱼(Sardina pilchardus)、白姑鱼(Argyrosomus argentatus)和鮸鱼(Miichthys miiuy)的固碳量在10万t至30万t, 占碳汇量的2%; 其他鱼类占碳汇总量的1%。

    表  4  辽宁省2006—2020年不同鱼类碳汇量
    Table  4.  Carbon sinks of different fish species catched in Liaoning Province from 2006 to 2020
    次序
    Order
    鱼类
    Fish species
    碳汇量
    Carbon sink
    次序
    Order
    鱼类
    Fish species
    碳汇量
    Carbon sink
    ×104 t 
    1小黄鱼 Larimichthys polyactis1017.4914竹筴鱼 Trachurus japonicus28.05
    2鲅鱼(蓝点马鲛) Scomberomorus niphonius835.2715沙丁鱼 Sardina pilchardus23.08
    3鳀鱼 Engraulis japonicus620.1716白姑鱼 Argyrosomus argentatus19.64
    4鲐鱼(日本鲭) Scomber japonica479.9117鮸鱼 Miichthys miiuy10.03
    5大黄鱼 Larimichthys crocea295.2218金枪鱼 Thunnus thynnus9.18
    6带鱼 Trichiutus lepturus228.9419马面鲀 Navodon modestus8.45
    7梭鱼 Liza haematocheila107.4820海鳗 Muraenesox cinereus7.19
    8梅童鱼 Collichthys lucidus64.9221鳓鱼 Ilisha elongata3.85
    9玉筋鱼 Ammodytes personatus61.8322金线鱼 Nemipterus virgatus2.14
    10鲻鱼 Mugil cephalus39.9123方头鱼 Branchiostegus japonicus1.83
    11黄姑鱼 Nibea albiflora38.5124鲷鱼 Pagrus pagrus0.93
    12石斑鱼 Epinephelus sp.36.7925蓝圆鯵 Decapterus maruadsi0.24
    13鲳鱼 Pampus gargenteus34.8026鲱鱼 Clupea pallasi0.17
    下载: 导出CSV 
    | 显示表格

    图2a所示, 牡蛎、扇贝、蛤、蚶、海带和裙带菜等碳汇量逐年增加, 养殖贻贝和蛏固碳量逐年下降。蛤在近15年贝藻类碳汇量贡献量最大, 占比43%; 其次是扇贝(23%)、牡蛎(11%)、海带(8%)、裙带菜(6%)、贻贝(3%)、蚶和蛏(3%和2%)。

    图  2  辽宁省2006—2020年不同种类(a)和不同生产方式(b)的贝藻类碳汇量
    Figure  2.  Carbon sinks of different species shellfish and macroalgae (a) with different production methods (b) in Liaoning Province from 2006 to 2020

    图2b所示, 2006—2020年贝藻类碳汇总量为228.83万t, 2019年为最大值19.07万t, 2007年为最低值10.39万t, 年均碳汇量15.26万t。养殖贝类碳汇量为200.59万t, 占比超过80%; 养殖藻类碳汇量维持在2.5万t左右; 捕捞贝类碳汇量下降1.1万t, 捕捞藻类碳汇量无明显变化, 维持在均值0.002万t。

    图3为2006—2020年辽宁省海洋捕捞碳排放量。碳排放总量为2467.87万t, 拖网碳排放量为1208.75万t, 占比49%; 刺网碳排放量为1037.57万t, 占比42%; 其余4种作业方式碳排放量处于小范围波动。拖网、刺网和钓业等作业方式的碳排放量逐年上升, 围网和张网碳排放量呈下降趋势。

    图  3  辽宁省2006—2020年海洋捕捞不同作业方式碳排放量
    Figure  3.  Carbon emissions of different marine fishing operations in Liaoning Province from 2006 to 2020

    图4为近15年海洋渔业碳源碳汇量变化。海洋渔业碳汇为4217.71万t, 年均碳汇量281.18万t; 海洋捕捞碳源排放量为2467.87万t, 年均排放量164.52万t。2006年碳汇为最大值391.8万t, 2020年为最低值139.9万t; 碳源排放在2015年达最大值185.03万t, 2006年为最小值135.45万t。海洋渔业碳源碳汇最大顺差为256.36万t, 最大逆差29.99万t, 平均差额为116.66万t·a−1。海洋渔业碳源碳汇量之比最大为2.80, 最小为0.75, 除2010年波动回到2.14、2013年1.95和2016年1.89之外, 呈现连续波动的下降趋势。

    图  4  辽宁省2006—2020年海洋捕捞碳源碳汇
    Figure  4.  Source and sink of carbon from marine fishing in Liaoning Province from 2006 to 2020

    图5为辽宁省渔业碳汇价值量。渔业碳汇价值总量为114.4亿元, 年均价值量7.63亿元; 渔业碳汇价值量为274.63亿元, 年均价值18.31亿元; 碳源价值量为160.28亿元, 年均价值量10.68亿元。2006—2017年渔业碳汇价值总量中, 碳汇价值量高于碳源价值量, 2018—2020年碳源价值量高于碳汇价值量。在预测的10年期间渔业碳汇碳源价值总量为209.45亿元, 渔业碳汇价值量为94.08亿元, 碳源价值量为115.37亿元。在预测期间捕捞鱼类碳汇价值量呈指数型下降, 贝藻类碳汇价值量和碳源价值量稳定增长。

    图  5  辽宁省2006—2020年海洋渔业碳汇价值量
    Figure  5.  Economic values of carbon sequestration of harvested marine products in Liaoning Province from 2006 to 2020

    表5表6为海洋渔业碳汇驱动要素关联度排名。渔业碳汇关联度前3要素是捕捞产量、技术推广机构数量、海洋捕捞渔船总功率。渔业碳源主要关联要素分别是渔业占农业产值比重、海洋捕捞渔船总功率、渔业专业户数量、专业从业人员数量和技术推广机构数量(表5)。捕捞渔业碳汇主要关联度分别是捕捞产量、技术推广机构数量、海洋捕捞渔船总功率、渔业专业户数量和专业从业人员数量(表6)。养殖贝藻类碳汇主要关联要素分别是渔民人均纯收入、渔业经济总产值、渔业占农业产值比重、海洋捕捞渔船总功率和海水养殖面积(表6)。

    表  5  辽宁省2006—2020年海洋渔业碳源和碳汇的驱动要素
    Table  5.  Driving factors for carbon sources and carbon sinks of marine fisheries in Liaoning Province from 2006 to 2020
    碳源 Carbon source碳汇 Carbon sink
    评价项
    Evaluation item
    关联度Correlation排名Ranking评价项
    Evaluation item
    关联度 Correlation排名Ranking
    渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.9381捕捞产量
    Catch yield
    0.9501
    海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.9352技术推广机构数量
    Number of technology extension agencies
    0.8882
    渔业专业户数量
    Number of specialized fishery households
    0.9193海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.8623
    专业从业人员数量
    Number of employees
    0.8894渔业专业户数量
    Number of specialized fishery households
    0.8624
    技术推广机构数量
    Number of technology extension agencies
    0.8565专业从业人员数量
    Number of employees
    0.8515
    海水养殖面积
    Mariculture area
    0.8486渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.8456
    渔业经济总产值
    Gross economic output value of fisheries
    0.8477海水养殖面积
    Mariculture area
    0.8117
    渔民人均纯收入
    Net income per fisherman
    0.8288渔业经济总产值
    Gross economic output value of fisheries
    0.7948
    捕捞产量
    Catch yield
    0.7969渔民人均纯收入
    Net income per fisherman
    0.770 9
    技术推广经费
    Technology promotion funds
    0.70410技术推广经费
    Technology promotion funds
    0.68210
    家庭总收入
    Total household income
    0.630 11家庭总收入
    Total household income
    0.62311
    下载: 导出CSV 
    | 显示表格
    表  6  辽宁省2006—2020年贝藻类以及捕捞渔业碳汇关联度排名
    Table  6.  Ranking of gray correlation between shellfish, capture fisheries and carbon sink in Liaoning Province from 2006 to 2020
    捕捞渔业 Capture fisheries贝藻类 Shell algae
    评价项
    Evaluation item
    关联度Correlation排名Ranking评价项
    Evaluation item
    关联度 Correlation排名Ranking
    捕捞产量
    Catch yield
    0.9521渔民人均纯收入
    Net income per fisherman
    0.9221
    技术推广机构数量
    Number of technology extension agencies
    0.8832渔业经济总产值
    Gross economic output value of fisheries
    0.8962
    海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.8543渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.8593
    渔业专业户数量
    Number of specialized fishery households
    0.8524海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.8574
    专业从业人员数量
    Number of employees
    0.8435海水养殖面积
    Mariculture area
    0.8445
    渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.8376渔业专业户数量
    Number of specialized fishery households
    0.8376
    海水养殖面积
    Mariculture area
    0.8047技术推广机构数量
    Number of technology extension agencies
    0.8277
    渔业经济总产值
    Gross economic output value of fisheries
    0.7888专业从业人员数量
    Number of employees
    0.8188
    渔民人均纯收入
    Net income per fisherman
    0.7639捕捞产量
    Catch yield
    0.7799
    技术推广经费
    Technology promotion funds
    0.67710技术推广经费
    Technology promotion funds
    0.77310
    家庭总收入
    Total household income
    0.61911家庭总收入
    Total household income
    0.69611
    下载: 导出CSV 
    | 显示表格

    由于海洋生态系统的复杂性和动态性, 同时海洋渔业又具有“碳源”与“碳汇”的双重属性, 海洋渔业碳汇总量变化是受多种要素驱动的, 确定多要素驱动的耦合机制及各要素对其影响程度面临挑战。农业部在2006年印发关于《全国渔业发展第十一个五年规划(2006—2010年)的通知》, 坚持“以养为主” 的渔业发展方针, 加强渔业资源和生态环境保护。故中国海洋渔业捕捞产量在2006—2010年间平均减幅3.8%。2017年农业部制定《2017年渔业渔政工作要点》, 推进产业转型升级, 加大捕捞渔民转产转业力度。2017年以后辽宁省年均渔业碳汇总量下降至174.45万t, 2010年以后年均渔业碳汇总量恢复到300万t左右。可见, 国家海洋政策方针的调整对海洋渔业年均碳汇总量的变化是一个巨大的影响因素。

    2009年广东省贝藻类碳汇总量约为11万t, 在贝藻类养殖海区投放大量的养殖设施, 对海域生境造成胁迫[42], 该养殖模式不利于海区贝藻类的长久增产增收, 不利于海区生态环境的长久动态平衡。2005—2019年浙江省贝藻碳汇总量年均为6.7万t, 主要得益于养殖贝藻品种结构的科学合理, 但是冷冻、台风等造成其产量下降[43]。2014—2019年福建省贝藻类碳汇总量10.7万t∙a−1, 海带、牡蛎、扇贝及蛤等为碳汇总量的主要贡献者, 其养殖产量受气候、养殖面积及市场等因素影响。2006—2020年辽宁省年均贝藻类碳汇总量16.36万t∙a−1, 扇贝、牡蛎、蛤、海带和裙带菜等为碳汇总量的主要贡献者, 其碳汇总量受养殖品种结构、养殖面积和海洋开发等损害海岸生态系统的因素限制。在“双碳”的背景下, 节能减排、节约成本和科学养殖成为海水养殖贝藻类的主流发展模式, 粗放的贝类养殖模式对海域生境造成下行胁迫, 大规模的养殖藻类会扰乱养殖海域生态系统平衡[44-45], 同时大规模的养殖模式将会被逐渐代替。在海洋贝藻类混合养殖模式中, 贝类滤食产生的排泄物和无机氨氮为藻类生长提供营养物质, 藻类光合作用吸收二氧化碳转化为氧气促进贝类生长代谢, 贝藻类在保持各自固碳能力同时, 相互促进对方固碳潜力提升[46], 加快养殖海区碳循环, 维持养殖海区生态系统平衡, 缓解海洋酸化和富营养化。

    辽宁省海洋渔业碳汇价值总量在逐年下降。海洋捕捞渔业碳汇价值总量随海洋捕捞渔获物产量的减少而下降, 海水养殖贝藻类碳汇价值总量随海水养殖贝藻类产量的提升而增加。其海洋渔业碳源价值总量保持在年均10.68亿元。在2006—2020年期间海洋渔业碳汇价值总量中, 碳源的价值总量小于碳汇价值总量, 渔业碳汇前中期处于收支盈余水平。2020—2030年海洋碳汇价值总量小于碳源价值的总量, 渔业碳汇的赤字加剧。基于灰色关联度分析, 以及福建省和广东省的海洋贝藻类养殖概况以及其影响要素分析, 辽宁省海洋渔业碳汇总量的变化主要受海洋捕捞渔获物产量、渔船捕捞作业碳排放量、海水贝藻类养殖面积、海水贝藻类养殖品种构成、海水贝藻类养殖模式、国家海洋渔业政策、渔业经济总价值、专业从业人员和技术推广等影响。表明海洋渔业碳汇价值总量受多种要素驱动影响, 并导致海洋渔业碳汇价值总量下降, 这也是对海洋渔业碳汇收支平衡的响应。

    因此, 从海洋渔业碳增汇的角度, 辽宁省渔业发展建议如下: 1)开展多种养殖模式深度融合。例如, 扩大鱼类和贝藻类的养殖规模和不同品种的养殖比例变化, 建设人工鱼礁和海洋牧场。2)从节能减排的角度出发, 减少高能耗、低产量的捕捞作业方式。针对捕捞渔船的排放量问题, 加快渔船改造升级, 减少海洋捕捞船只碳排放, 加快实现海洋渔业碳平衡。3)保护海洋物种的丰富性与完整性。改变海洋渔业捕捞方式、降低渔网间隔密度, 减少对幼鱼的捕捞; 增殖放流, 设置禁渔区等。4)发挥政府机构的主导作用, 针对高污染、高排放渔船实行监管政策, 推进渔业低碳化、高效化发展; 完善渔民生活的社会保障体系, 增强渔民自主碳减排意识, 促进辽宁省海洋碳汇渔业可持续发展。

    1)辽宁省近15年海洋渔业的碳汇收支盈余, 渔业碳汇总量受海洋捕捞渔获物和养殖贝藻类碳汇总量影响。海洋捕捞碳排放平稳, 各种捕捞方式碳排放存在差异。在研究期间海洋渔业碳汇价值总量持续下降, 捕捞渔业碳汇价值总量持续降低。

    2)辽宁省2006—2020年海洋渔业碳汇变化明显, 基于关联度分析, 海洋渔业碳汇下降与海洋捕捞渔获物产量、养殖贝藻类产量、渔业碳排放、捕捞船只数量、渔业专业户养殖规模和专业人员等密切相关。

    3)在预测的10年间, 辽宁省海洋渔业碳汇总量与价值量持续下降, 其中捕捞鱼类碳汇量持续性下降, 养殖贝藻类碳汇总量与碳排放总量小幅度升高。

  • 图  1   辽宁省2006—2020年捕捞鱼类碳汇量

    Figure  1.   Carbon sink of fish catched in Liaoning Province from 2006 to 2020

    图  2   辽宁省2006—2020年不同种类(a)和不同生产方式(b)的贝藻类碳汇量

    Figure  2.   Carbon sinks of different species shellfish and macroalgae (a) with different production methods (b) in Liaoning Province from 2006 to 2020

    图  3   辽宁省2006—2020年海洋捕捞不同作业方式碳排放量

    Figure  3.   Carbon emissions of different marine fishing operations in Liaoning Province from 2006 to 2020

    图  4   辽宁省2006—2020年海洋捕捞碳源碳汇

    Figure  4.   Source and sink of carbon from marine fishing in Liaoning Province from 2006 to 2020

    图  5   辽宁省2006—2020年海洋渔业碳汇价值量

    Figure  5.   Economic values of carbon sequestration of harvested marine products in Liaoning Province from 2006 to 2020

    表  1   辽宁省海洋渔业碳汇计算公式

    Table  1   Calculation formula of marine fishery carbon sink in Liaoning Province

    类别
    Category
    公式
    Formula
    符号说明
    Symbol description
    参考文献
    Reference
    贝类碳汇
    Carbon sink of shellfish
    1 Ci=Qi×γ×µ1×ρ1+Qi×
      γ×µ2×ρ2
    $ {C}_{i} $为第i种贝类碳汇量; $ {Q}_{i} $为第i种贝类年总产量; $ \gamma $为贝类干湿转换系数; $ {\mu }_{1} $为贝壳比; $ {\rho }_{1} $为贝壳固碳系数; $ {\mu }_{2} $为软组织比; $ {\rho }_{2} $为软组织固碳系数, 参数取值见表2
    $ {C}_{i} $ is the carbon fixed by i shellfish; $ {Q}_{i} $ is the annual yield of i shellfish; $ \gamma $ is the conversion coefficient wet to dry weight of shellfish; $ {\mu }_{1} $ is the ratio of shell to body weight; $ {\rho }_{1} $ is the carbon fixation coefficient of shell; $ {\mu }_{2} $ is the ratio of soft tissue to body weight; $ {\rho }_{2} $ is the carbon fixation coefficient of soft tissue, whose value is shown in the table 2
    [4]
    贝类碳汇总量
    Total carbon sink of shellfish
    2 ${C}_{{\rm{s}}}=\displaystyle\sum _{i=1}^{n}{C}_{i}$ ${C}_{{\rm{s}}}$为海水养殖贝类碳汇总量
    ${C}_{{\rm{s}}}$ is the total amount of carbon of maricultured shellfish
    藻类碳汇
    Carbon sink of macroalgae
    3 $ {C}_{{\rm{e}}}=\displaystyle\sum _{i=1}^{m}\left({P}_{i}\times {W}_{i}\right)\times 20 {\text{%}} $ $ {C}_{{\rm{e}}} $为不同种类藻类碳汇总量; $ {P}_{i} $为i种藻类的年总产量; $ {W}_{i} $为i种藻类的碳含量百分比, 参数取值见表3
    $ {C}_{{\rm{e}}} $ is the carbon fixed by maricultural macroalgae; $ {P}_{i} $ is the annual harvest of i macroalgae; $ {W}_{i} $ is the percentage of carbon by i macroalgae, whose value is shown in the table 3
    贝藻类碳汇总量
    Total carbon sink of shellfish and macroalgae
    4 $ C={C}_{{\rm{e}}}+{C}_{{\rm{s}}} $ $ C $为海水养殖贝藻类年碳汇总量
    $ C $ is the annual carbon totals by maricultural shellfish and macroalgae
    鱼类营养级
    Fish nutritional level
    5 ${T}_{i}=1+\displaystyle\sum _{j=1}^{n}{D}_{i j}\times {T}_{j}$ $ {T}_{i} $为生物i的营养级; $ {T}_{j} $为生物i摄食的食物j的营养级; ${D}_{i j}$为食物j在生物i的食物中所占的比例
    $ {T}_{i} $ is the trophic level of i fish; $ {T}_{j} $ is the trophic level of j organism being fed on i fish; ${D}_{i j}$ is the proportion of j prey in the food of i predator
    [29]
    被捕食者生物量
    Biomass of prey
    6 ${B}_{j}={Y}_{0} /\left({E}_{ {L}_{0}-1}\times {E}_{ {L}_{0}-2}\right)$ ${B}_{j} $为被捕食者的生物量; $ {Y}_{0} $为渔获量; $ {L}_{0} $为渔获物平均营养级; $ {E}_{{L}_{0}-1} $为营养级$ ({L}_{0}-1) $的生态转换效率; $ {E}_{{L}_{0}-2} $为营养级$ ({L}_{0}-2) $的生态转换效率
    ${B}_{j} $ is the biomass of the prey; $ {Y}_{0} $ is the yield; $ {L}_{0} $ is the average trophic level in catch; $ {E}_{{L}_{0}-1} $ is the ecological conversion efficiency of trophic level $ ({L}_{0}-1) $; $ {E}_{{L}_{0}-2} $ is the ecological conversion efficiency of trophic level $ ({L}_{0}-2) $
    [14]
    摄食浮游植物和有机碎屑的比例
    Proportion of phytoplankton and organic detritus in diet
    7 1×Q+2×(100%−Q) =
      L0−2, 即Q = 4−L0
    $ Q $为摄食浮游植物和有机碎屑的比例; L0为渔获物平均营养级
    $ Q $ is the proportion of phytoplankton and organic detritus in diet. L0 is the average trophic level in catch
    摄食浮游植物和有机碎屑的生物量
    Biomas of phytoplankton and organic detritus in diet
    8 B0=(B1×Q)+B1×
      (100%−Q)/EL=1
    $ {B}_{0} $为摄食浮游植物和有机碎屑的生物量; $ {E}_{L=1} $为初级消费者摄食浮游植物和有机碎屑的生态转换效率
    $ {B}_{0} $ is the biomass of phytoplankton and organic detritus in diets; $ {E}_{L=1} $ is the ecological conversion efficiency of primary consumers to ingest phytoplankton and organic detritus
    被捕食的浮游植物碳含量
    Carbon content of phytoplankton
    9 $ {C}_{1}=4.49 {\text{%}}\times {B}_{0} $ $ {C}_{1} $被捕食的浮游植物的现存碳含量
    $ {C}_{1} $ is the carbon content of phytoplankton
    [30]
    摄食浮游植物固碳量
    Carbon sequestration by feeding phytoplankton
    10 $ {C}_{\mathrm{T}}=45\times {C}_{1} $ $ {C}_{\mathrm{T}} $摄食浮游植物的固碳量
    $ {C}_{\mathrm{T}} $ is the carbon sequestration by feeding phytoplankton
    [31]
    化石燃料燃烧排放CO2
    CO2 emissions from fossil fuel combustion
    11 $ {G}_{k}={T}_{k}\times f\times h $ $ {G}_{k} $为渔船燃烧k燃料时的碳排放量; $ {T}_{k} $为消耗k燃料的量; f为有效氧化分数, h为燃料k的平均含碳量
    $ {G}_{k} $ is the carbon emissions of fishing vessels burning k fuel; $ {T}_{k} $ is the amount of k fuel consumed; f is the effective oxidation fraction; h is the average carbon content of k fuel
    [32]
    海洋渔船产碳量
    Carbon production of marine fishing vessel
    12 ${G}_{n}={T}_{n}\times s\times w\times z\times \varphi$ $ {G}_{n} $为渔船燃烧碳量; $ {T}_{n} $为渔船作业燃油消耗量; s为折标准煤系数1.4571; w为有效氧化分数0.982; z为每吨标煤含碳量0.732 57; $\varphi$为0.813, 即在获得相同热能的条件下, 燃油释放CO2与燃煤释放CO2之间的比值
    $ {G}_{n} $ is the amount of carbon burned by n fishing vessels; $ {T}_{n} $ is the fuel consumption of fishing vessel n operation; s is the standard coal coefficient (1.4571); w is the effective oxidation fraction (0.982); z is the carbon content per ton of standard coal (0.732 57); $\varphi$ is 0.813, the ratio of CO2 released between from fuel oil and from coal under the same thermal energy conditions
    [33]
    海洋捕捞渔船CO2排放量
    CO2 emissions from marine fishing vessels
    13 ${C}_{ {\mathrm{c}\mathrm{o} }_{2} }={G}_{n}\times \partial$ $ {C}_{{\mathrm{c}\mathrm{o}}_{2}} $为$ {\mathrm{C}\mathrm{O}}_{2} $排放量; $ \partial $为碳换算为CO2的常数(3.67)
    $ {C}_{{\mathrm{c}\mathrm{o}}_{2}} $ is the $ {\mathrm{C}\mathrm{O}}_{2} $ emission; $ \partial $ is the constant from carbon to carbon dioxide (3.67)
    燃油消耗量
    Fuel consumption
    14 $ {T}_{n}={\displaystyle\sum }_{j=1}^{m}\left({P}_{j}{\times F}_{j}\right) $ $ {P}_{j} $为海洋捕捞$\mathrm{作}\mathrm{业}\mathrm{功}\mathrm{率},{F}_{j}$为海洋捕捞作业${用}{油}{系}{数}$
    $ {P}_{j} $ is the power of j marine fishing operation; $ {F}_{j} $ is the oil consumption coefficient of j marine fishing operation
    渔业碳汇价值量预测
    Prediction of economic value of carbon sink by fisheries
    15 ${Y}_{t+T}={A}_{t}+{B}_{t}+{C}_{t}\times {T}^{2}$ $ {Y}_{t+T} $为碳汇量预测值; T为预测期数; $ {A}_{t} $、$ {B}_{t} $、$ {C}_{t} $分别为t年预测系数; $ {L}_{t}^{\left(1\right)} $、$ {L}_{t}^{\left(2\right)} $、$ {L}_{t}^{\left(3\right)} $分别为t年一次、二次、三次平滑预测值; $ \omega $为平滑系数; $ {X}_{t} $为t年碳汇量原始值; $ {L}_{0}^{\left(1\right)} $、$ {L}_{0}^{\left(2\right)} $、$ {L}_{0}^{\left(3\right)} $分别为$ {L}_{t}^{\left(1\right)} $、$ {L}_{t}^{\left(2\right)} $、$ {L}_{t}^{\left(3\right)} $的初始值
    $ {Y}_{t+T} $ is the predicted value of carbon sinks; T is the forecast period; $ {A}_{t} $, ${B}_{t}\;and\;$ $ {C}_{t} $ are t year prediction coefficients; $ {L}_{t}^{\left(1\right)} $, $ {L}_{t}^{\left(2\right)} $ and $ {L}_{t}^{\left(3\right)} $ are the first, second and third smoothing predictions in t year, respectively; $ \omega $ is the smoothing coefficient; $ {X}_{t} $ is the original value of the carbon sink in t year; $ {L}_{0}^{\left(1\right)} $, $ {L}_{0}^{\left(2\right)} $, and $ {L}_{0}^{\left(3\right)} $ are the initial values of $ {L}_{t}^{\left(1\right)} $, $ {L}_{t}^{\left(2\right)} $, and $ {L}_{t}^{\left(3\right)} $, respectively
    [34-35]
    $ {A}_{t}=3{L}_{t}^{\left(1\right)}-3{L}_{t}^{\left(2\right)}+{L}_{t}^{\left(3\right)} $
    $B_t={\dfrac{\omega }{2\left(1-\omega \right)^2 }}$$\left[\left(6-5\omega \right){L}_{t}^{\left(1\right)}-2\left(5-4\omega \right){L}_{t}^{\left(2\right)}+\left(4-3\omega \right){L}_{t}^{\left(3\right)}\right] $
    $ {C}_{t}=\dfrac{\omega ^2}{2\left(1-\omega \right)^2}\left[{L}_{t}^{\left(1\right)}-2{L}_{t}^{\left(2\right)}+{L}_{t}^{\left(3\right)}\right] $
    $ {L}_{t}^{\left(1\right)}=\omega {\times X}_{t}+\left(1-\omega \right)\times {L}_{t-1}^{\left(1\right)} $
    $ {L}_{t}^{\left(2\right)}=\omega {\times L}_{t}^{\left(1\right)}+\left(1-\omega \right)\times {L}_{t-1}^{\left(2\right)} $
    $ {L}_{t}^{\left(3\right)}=\omega {\times L}_{t}^{\left(2\right)}+\left(1-\omega \right){\times L}_{t-1}^{\left(3\right)} $
    $ {L}_{0}^{\left(1\right)}={L}_{0}^{\left(2\right)}={L}_{0}^{\left(3\right)}=\dfrac{{X}_{1}+{X}_{2}+{X}_{3}}{3} $
    渔业碳汇价值
    Economic value of fishery carbon sink
    16 ${O}_{_ {\rm{CSV} } }={O}_{_ {\rm{FS} } }\times {C}_{ {\rm{rec} } }$ ${O}_{_ {\rm{CSV} } }$为渔业碳汇价值量, ${O}_{_ {\rm{FS} } }$为渔业碳汇量, $ {C}_{{\rm{rec}}} $为单位的碳减排经济成本价值
    ${O}_{_ {\rm{CSV} } }$ is the value of fishery carbon sink; ${O}_{_ {\rm{FS} } }$ is the amount of fishery carbon sink; $ {C}_{{\rm{rec}}} $ is the economic cost value of carbon emission reduction per unit
    [36-39]
    关联系数
    Correlation coefficient
    17 $\delta_{i j}=\dfrac{\min _j \times \min _k \times \Delta_{i j}(k)+\beta \times \max _j \times \max _k \times \Delta_{i j}(k)}{\Delta_{i j}(k)+\beta \times \max _j \times \max _k \times \Delta_{i j}(k)}$ $\delta_{i j} $为灰色关联系数; $\Delta_{ i j}\left(k\right)={x}_{i}\left(k\right)-{x}_{j}\left(k\right)$为序列i$ \left\{{x}_{i}\left(k\right)\right\} $与序列j$ \left\{{x}_{j}\left(k\right)\right\} $在第k点的绝对差; ${\min}_{j}\times{\min}_{k}\times{\Delta }_{ij}\left(k\right)$为两极最小差; ${\max}_{j}\times{\max}_{k}\times{\Delta }_{ij}\left(k\right)$为两极最大差; $ \beta $为分辨系数, 其值为 0~1, 取$ \beta $ = 0.5
    $\delta_{i j} $ is grey correlation coefficient; $\Delta_{ i j}\left(k\right)={x}_{i}\left(k\right)-{x}_{j}\left(k\right)$ is the absolute difference between sequence i$ \left\{{x}_{i}\left(k\right)\right\} $ and sequence j$ \left\{{x}_{j}\left(k\right)\right\} $ at point k; ${\min}_{j}\times{\min}_{k}\times{\Delta }_{ij}\left(k\right)$ is the minimum difference between two poles; ${\max}_{j}{\max}_{k}{\Delta }_{ij}\left(k\right)$ is the maximum difference between the two poles; $ \beta $ is the resolution coefficient, whose value is 0.5
    [40-41]
    灰色关联度
    Grey correlation
    18 $ {R}_{ij}=\dfrac{1}{n}\displaystyle\sum _{k=1}^{n}{\delta }_{ij}\left(k\right)k=\mathrm{1,2},3,\cdots ,n $ Rij为灰色关联度
    Rij is the grey correlation degree
    下载: 导出CSV

    表  2   海水养殖贝类固碳计算参数

    Table  2   Calculation parameters of carbon sequestration in mariculture shellfish

    种类
    Shellfish
    干重比
    Dry weight ratio (%)
    质量比 Mass ratio (%)碳汇系数 Carbon sink coefficient (% dry weight)
    软体组织 Soft tissue贝壳 Shell软体组织 Soft tissue贝壳 Shell
    牡蛎 Oyster65.106.1493.8645.8912.68
    贻贝 Mussel75.288.4791.5344.4011.76
    扇贝 Scallop63.8914.3585.6543.9011.40
    蛤 Clam52.551.9898.0244.9011.52
    蛏 Razor clam70.483.2696.7444.9013.24
    其他贝类 Other shellfish64.2111.4188.5943.8711.44
    下载: 导出CSV

    表  3   海水养殖藻类固碳计算参数(藻类干重比为20%)

    Table  3   Calculation parameters of carbon sink in mariculture macroalgae (dry weight ratio of algae is 20%)

    种类
    Macroalgae
    碳汇系数
    Carbon sink coefficient (% dry weight)
    海带 Kelp31.20
    裙带菜 Wakame26.40
    其他藻类 Other algae27.76
    下载: 导出CSV

    表  4   辽宁省2006—2020年不同鱼类碳汇量

    Table  4   Carbon sinks of different fish species catched in Liaoning Province from 2006 to 2020

    次序
    Order
    鱼类
    Fish species
    碳汇量
    Carbon sink
    次序
    Order
    鱼类
    Fish species
    碳汇量
    Carbon sink
    ×104 t 
    1小黄鱼 Larimichthys polyactis1017.4914竹筴鱼 Trachurus japonicus28.05
    2鲅鱼(蓝点马鲛) Scomberomorus niphonius835.2715沙丁鱼 Sardina pilchardus23.08
    3鳀鱼 Engraulis japonicus620.1716白姑鱼 Argyrosomus argentatus19.64
    4鲐鱼(日本鲭) Scomber japonica479.9117鮸鱼 Miichthys miiuy10.03
    5大黄鱼 Larimichthys crocea295.2218金枪鱼 Thunnus thynnus9.18
    6带鱼 Trichiutus lepturus228.9419马面鲀 Navodon modestus8.45
    7梭鱼 Liza haematocheila107.4820海鳗 Muraenesox cinereus7.19
    8梅童鱼 Collichthys lucidus64.9221鳓鱼 Ilisha elongata3.85
    9玉筋鱼 Ammodytes personatus61.8322金线鱼 Nemipterus virgatus2.14
    10鲻鱼 Mugil cephalus39.9123方头鱼 Branchiostegus japonicus1.83
    11黄姑鱼 Nibea albiflora38.5124鲷鱼 Pagrus pagrus0.93
    12石斑鱼 Epinephelus sp.36.7925蓝圆鯵 Decapterus maruadsi0.24
    13鲳鱼 Pampus gargenteus34.8026鲱鱼 Clupea pallasi0.17
    下载: 导出CSV

    表  5   辽宁省2006—2020年海洋渔业碳源和碳汇的驱动要素

    Table  5   Driving factors for carbon sources and carbon sinks of marine fisheries in Liaoning Province from 2006 to 2020

    碳源 Carbon source碳汇 Carbon sink
    评价项
    Evaluation item
    关联度Correlation排名Ranking评价项
    Evaluation item
    关联度 Correlation排名Ranking
    渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.9381捕捞产量
    Catch yield
    0.9501
    海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.9352技术推广机构数量
    Number of technology extension agencies
    0.8882
    渔业专业户数量
    Number of specialized fishery households
    0.9193海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.8623
    专业从业人员数量
    Number of employees
    0.8894渔业专业户数量
    Number of specialized fishery households
    0.8624
    技术推广机构数量
    Number of technology extension agencies
    0.8565专业从业人员数量
    Number of employees
    0.8515
    海水养殖面积
    Mariculture area
    0.8486渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.8456
    渔业经济总产值
    Gross economic output value of fisheries
    0.8477海水养殖面积
    Mariculture area
    0.8117
    渔民人均纯收入
    Net income per fisherman
    0.8288渔业经济总产值
    Gross economic output value of fisheries
    0.7948
    捕捞产量
    Catch yield
    0.7969渔民人均纯收入
    Net income per fisherman
    0.770 9
    技术推广经费
    Technology promotion funds
    0.70410技术推广经费
    Technology promotion funds
    0.68210
    家庭总收入
    Total household income
    0.630 11家庭总收入
    Total household income
    0.62311
    下载: 导出CSV

    表  6   辽宁省2006—2020年贝藻类以及捕捞渔业碳汇关联度排名

    Table  6   Ranking of gray correlation between shellfish, capture fisheries and carbon sink in Liaoning Province from 2006 to 2020

    捕捞渔业 Capture fisheries贝藻类 Shell algae
    评价项
    Evaluation item
    关联度Correlation排名Ranking评价项
    Evaluation item
    关联度 Correlation排名Ranking
    捕捞产量
    Catch yield
    0.9521渔民人均纯收入
    Net income per fisherman
    0.9221
    技术推广机构数量
    Number of technology extension agencies
    0.8832渔业经济总产值
    Gross economic output value of fisheries
    0.8962
    海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.8543渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.8593
    渔业专业户数量
    Number of specialized fishery households
    0.8524海洋捕捞渔船总功率
    Total power of marine fishing vessels
    0.8574
    专业从业人员数量
    Number of employees
    0.8435海水养殖面积
    Mariculture area
    0.8445
    渔业占农业产值比重
    Proportion of fishery in agricultural output value
    0.8376渔业专业户数量
    Number of specialized fishery households
    0.8376
    海水养殖面积
    Mariculture area
    0.8047技术推广机构数量
    Number of technology extension agencies
    0.8277
    渔业经济总产值
    Gross economic output value of fisheries
    0.7888专业从业人员数量
    Number of employees
    0.8188
    渔民人均纯收入
    Net income per fisherman
    0.7639捕捞产量
    Catch yield
    0.7799
    技术推广经费
    Technology promotion funds
    0.67710技术推广经费
    Technology promotion funds
    0.77310
    家庭总收入
    Total household income
    0.61911家庭总收入
    Total household income
    0.69611
    下载: 导出CSV
  • [1]

    FRIEDLINGSEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269−3340 doi: 10.5194/essd-12-3269-2020

    [2]

    NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue carbon: the role of healthy oceans in binding carbon: a rapidresponse assessment[M]: UNEP GRID-Arendal. Blue Carbon: the Role of Healthy Oceans in Binding Carbon. Birkeland Trykkeri: UNEP, 2009

    [3]

    KHATIWALA S, PRIMEAU F, HALL T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean[J]. Nature, 2009, 462(7271): 346−349 doi: 10.1038/nature08526

    [4] 邵桂兰, 刘冰, 李晨. 我国主要海域海水养殖碳汇能力评估及其影响效应−基于我国9个沿海省份面板数据[J]. 生态学报, 2019, 39(7): 2614−2625

    SHAO G L, LIU B, LI C. Evaluation of carbon dioxide capacity and the effects of decomposition and spatio-temporal differentiation of seawater in China’s main sea area based on panel data from 9 coastal provinces in China[J]. Acta Ecologica Sinica, 2019, 39(7): 2614−2625

    [5] 唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661−670 doi: 10.1360/N072017-00341

    TANG J W, YE S F, CHEN X C, et al. Coastal blue carbon: Concept, study method, and the application to ecological restoration[J]. Scientia Sinica (Terrae), 2018, 48(6): 661−670 doi: 10.1360/N072017-00341

    [6] 李捷, 刘译蔓, 孙辉, 等. 中国海岸带蓝碳现状分析[J]. 环境科学与技术, 2019, 42(10): 207−216

    LI J, LIU Y M, SUN H, et al. Analysis of blue carbon in China’s coastal zone[J]. Environmental Science & Technology, 2019, 42(10): 207−216

    [7]

    MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560 doi: 10.1890/110004

    [8] 唐启升, 刘慧. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 2016, 18(3): 68−73 doi: 10.3969/j.issn.1009-1742.2016.03.012

    TANG Q S, LIU H. Strategy for carbon sink and its amplification in marine fisheries[J]. Engineering Sciences, 2016, 18(3): 68−73 doi: 10.3969/j.issn.1009-1742.2016.03.012

    [9] 唐启升, 蒋增杰, 毛玉泽. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 2022, 43(5): 1–7

    Clarification on the definitions and its relevant issues of fisheries carbon sink and carbon sink fisheries[J]. Progress in Fishery Sciences, 2022, 43(5): 1–7

    [10] 张继红, 刘纪化, 张永雨, 等. 海水养殖践行“海洋负排放”的途径[J]. 中国科学院院刊, 2021, 36(3): 252−258

    ZHANG J H, LIU J H, ZHANG Y Y, et al. Strategic approach for mariculture to practice “ocean negative carbon emission”[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 252−258

    [11] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359−365 doi: 10.3321/j.issn:1001-8166.2005.03.014

    ZHANG J H, FANG J G, TANG Q S. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advance in Earth Sciences, 2005, 20(3): 359−365 doi: 10.3321/j.issn:1001-8166.2005.03.014

    [12] 岳冬冬, 王鲁民. 我国海水养殖贝类产量与其碳汇的关系[J]. 江苏农业科学, 2012, 40(11): 246−248 doi: 10.3969/j.issn.1002-1302.2012.11.098

    YUE D D, WANG L M. The relationship between marine aquaculture shellfish production and its carbon sink in China[J]. Jiangsu Agricultural Sciences, 2012, 40(11): 246−248 doi: 10.3969/j.issn.1002-1302.2012.11.098

    [13] 孙康, 崔茜茜, 苏子晓, 等. 中国海水养殖碳汇经济价值时空演化及影响因素分析[J]. 地理研究, 2020, 39(11): 2508−2520

    SUN K, CUI X X, SU Z X, et al. Spatio-temporal evolution and influencing factors of the economic value for mariculture carbon sinks in China[J]. Geographical Research, 2020, 39(11): 2508−2520

    [14] 张波, 孙珊, 唐启升. 海洋捕捞业的碳汇功能[J]. 渔业科学进展, 2013, 34(1): 70−74 doi: 10.3969/j.issn.1000-7075.2013.01.011

    ZHANG B, SUN S, TANG Q S. Carbon sink by marine fishing industry[J]. Progress in Fishery Sciences, 2013, 34(1): 70−74 doi: 10.3969/j.issn.1000-7075.2013.01.011

    [15] 岳冬冬, 王鲁民, 阮雯, 等. 中国海洋捕捞渔业温室气体排放时序分析与因素分解[J]. 长江流域资源与环境, 2014, 23(8): 1057−1063 doi: 10.11870/cjlyzyyhj201408003

    YUE D D, WANG L M, RUAN W, et al. Time series analysis and factor decomposition of greenhouse gas emissions of marine fishing in China[J]. Resources and Environment in the Yangtze Basin, 2014, 23(8): 1057−1063 doi: 10.11870/cjlyzyyhj201408003

    [16]

    CAVAN E L, HILL S L. Commercial fishery disturbance of the global ocean biological carbon sink[J]. Global Change Biology, 2022, 28(4): 1212−1221 doi: 10.1111/gcb.16019

    [17] 焦念志, 刘纪化, 石拓, 等. 实施海洋负排放践行碳中和战略[J]. 中国科学: 地球科学, 2021, 51(4): 632−643 doi: 10.1360/SSTe-2020-0358

    JIAO N Z, LIU J H, SHI T, et al. Deploying ocean negative carbon emissions to implement the carbon neutrality strategy[J]. Scientia Sinica (Terrae), 2021, 51(4): 632−643 doi: 10.1360/SSTe-2020-0358

    [18]

    MACLEOD M J, HASAN M R, ROBB D H F, et al. Quantifying greenhouse gas emissions from global aquaculture[J]. Scientific Reports, 2020, 10(1): 11679 doi: 10.1038/s41598-020-68231-8

    [19] 邵桂兰, 孔海峥, 于谨凯, 等. 基于LMDI法的我国海洋渔业碳排放驱动因素分解研究[J]. 农业技术经济, 2015(6): 119−128

    SHAO G L, KONG H Z, YU J K, et al. Decomposition of my country’s marine fishery carbon emission drivers based on LMDI method[J]. Journal of Agrotechnical Economics, 2015(6): 119−128

    [20]

    SCHAU E M, ELLINGSEN H, ENDAL A, et al. Energy consumption in the Norwegian fisheries[J]. Journal of Cleaner Production, 2009, 17(3): 325−334 doi: 10.1016/j.jclepro.2008.08.015

    [21]

    PARKER R W R, BLANCHARD J L, GARDNER C, et al. Fuel use and greenhouse gas emissions of world fisheries[J]. Nature Climate Change, 2018, 8(4): 333−337 doi: 10.1038/s41558-018-0117-x

    [22]

    LEE J, KIM T, ELLINGSEN H, et al. Energy consumption and greenhouse gas emission of Korean offshore fisheries[J]. Journal of Ocean University of China, 2018, 17(3): 675−682 doi: 10.1007/s11802-018-3511-0

    [23]

    PARKER R W R, HARTMANN K, GREEN B S, et al. Environmental and economic dimensions of fuel use in Australian fisheries[J]. Journal of Cleaner Production, 2015, 87: 78−86 doi: 10.1016/j.jclepro.2014.09.081

    [24] 邵桂兰, 侯涵涵, 李晨. 我国沿海地区海洋渔业碳排放时空分异研究−基于省际数据的ESDA分析[J]. 山东财经大学学报, 2018, 30(1): 27−34 doi: 10.3969/j.issn.1008-2670.2018.01.004

    SHAO G L, HOU H H, LI C. Carbon emission spatial-temporal differentiation in China coastal marine fisheries: based on ESDA analysis of interprovincial data[J]. Journal of Shandong University of Finance and Economics, 2018, 30(1): 27−34 doi: 10.3969/j.issn.1008-2670.2018.01.004

    [25]

    MARIANI G, CHEUNG W W L, LYET A, et al. Let more big fish sink: fisheries prevent blue carbon sequestration-half in unprofitable areas[J]. Science Advances, 2020, 6(44): eabb4848 doi: 10.1126/sciadv.abb4848

    [26]

    PAULY D, WATSON R. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1454): 415−423 doi: 10.1098/rstb.2004.1597

    [27] 邓景耀, 孟田湘, 任胜民. 渤海鱼类食物关系的初步研究[J]. 生态学报, 1986, 6(4): 356−364

    DENG J Y, MENG T X, REN S M. Food web of fishes in Bohai Sea[J]. Acta Ecologica Sinica, 1986, 6(4): 356−364

    [28]

    CHRISTENSEN V, PAULY D. ECOPATH II — A software for balancing steady-state ecosystem models and calculating network characteristics[J]. Ecological Modelling, 1992, 61(3/4): 169−185

    [29] 李继龙, 曹坤, 丁放, 等. 基于渔获物统计的中国近海鱼类营养级结构变换及其与捕捞作业的关系[J]. 中国水产科学, 2017, 24(1): 109−119 doi: 10.3724/SP.J.1118.2017.16164

    LI J L, CAO K, DING F, et al. Changes in trophic-level structure of the main fish species caught by China and their relationship with fishing method[J]. Journal of Fishery Sciences of China, 2017, 24(1): 109−119 doi: 10.3724/SP.J.1118.2017.16164

    [30] 孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18): 5372−5378

    SUN J. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18): 5372−5378

    [31] 孙军, 刘东艳, 钱树本. 浮游植物生物量研究 Ⅰ. 浮游植物生物量细胞体积转化法[J]. 海洋学报, 1999, 21(2): 75−85

    SUN J, LIU D Y, QIAN S B. Study on phytoplankton biomass Ⅰ. Phytoplankton measurement biomass from cell volume or plasma volume[J]. Acta Oceanologica Sinica, 1999, 21(2): 75−85

    [32]

    MARLAND G, BODEN T A, GRIFFIN R C, et al. Estimates of CO2 emissions from fossil fuel burning and cement manufacturing, based on the United Nations energy statistics and the US Bureau of Mines cement manufacturing data[R]. Office of Scientific and Technical Information (OSTI), 1989

    [33] 张祝利, 王玮, 何雅萍. 我国渔船作业过程碳排放的估算[J]. 上海海洋大学学报, 2010, 19(6): 848−852

    ZHANG Z L, WANG W, HE Y P. The calculation of emissions of carbon during the process of fishing boats operations in China[J]. Journal of Shanghai Ocean University, 2010, 19(6): 848−852

    [34] 宋大德, 汪金涛, 陈新军, 等. 时间序列分析模型在黄海南部小黄鱼资源量预测中的应用[J]. 海洋学报, 2020, 42(12): 26−33

    SONG D D, WANG J T, CHEN X J, et al. Application of time series analysis model on stock prediction of small yellow croaker (Larimichthys polyactis) in the southern Yellow Sea[J]. Acta Oceanologica Sinica, 2020, 42(12): 26−33

    [35] 徐丽丽, 余骏, 高鑫鑫, 等. 一种基于时间序列分析的赤潮预测新方法研究−以浙江海域为例[J]. 海洋预报, 2020, 37(5): 95−103 doi: 10.11737/j.issn.1003-0239.2020.05.011

    XU L L, YU J, GAO X X, et al. Study on the red tide prediction based on time series analysis — A case study in Zhejiang Sea Area[J]. Marine Forecasts, 2020, 37(5): 95−103 doi: 10.11737/j.issn.1003-0239.2020.05.011

    [36] 杨怀宇, 王春晓, 郭宗香, 等. 池塘养殖生态系统空气调节服务价值的实证研究[J]. 长江流域资源与环境, 2009, 18(5): 432−438 doi: 10.3969/j.issn.1004-8227.2009.05.007

    YANG H Y, WANG C X, GUO Z X, et al. Study on the value of gas regulation service of pond aquaculture ecosystem[J]. Resources and Environment in the Yangtze Basin, 2009, 18(5): 432−438 doi: 10.3969/j.issn.1004-8227.2009.05.007

    [37] 徐婕, 潘洪义, 曹文亚, 等. 基于LUCC的眉山市县域碳排放效应[J]. 四川师范大学学报(自然科学版), 2020, 43(5): 683−689

    XU J, PAN H Y, CAO W Y, et al. County carbon emission effect of Meishan City based on LUCC[J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(5): 683−689

    [38] 李昂, 刘存歧, 董梦荟, 等. 河北省海水养殖贝类与藻类碳汇能力评估[J]. 南方农业学报, 2013, 44(7): 1201−1204 doi: 10.3969/j:issn.2095-1191.2013.7.1201

    LI A, LIU C Q, DONG M H, et al. Assessing carbon sink capacity of marine bivalves and seaweeds in Hebei Province[J]. Journal of Southern Agriculture, 2013, 44(7): 1201−1204 doi: 10.3969/j:issn.2095-1191.2013.7.1201

    [39] 辛琨, 肖笃宁. 盘锦地区湿地生态系统服务功能价值估算[J]. 生态学报, 2002, 22(8): 1345−1349 doi: 10.3321/j.issn:1000-0933.2002.08.025

    XIN K, XIAO D N. Wetland ecosystem service valuation — A case researches on Panjin area[J]. Acta Ecologica Sinica, 2002, 22(8): 1345−1349 doi: 10.3321/j.issn:1000-0933.2002.08.025

    [40] 刘慧媛, 陈孟婕, 徐硕. 基于灰色关联度分析的我国渔业经济产值影响因素评价[J]. 渔业信息与战略, 2014, 29(3): 192−198 doi: 10.3969/j.issn.1004-8340.2014.03.005

    LIU H Y, CHEN M J, XU S. Evaluation on total output value and related factors of fishery economy based on grey relational analysis[J]. Fishery Information & Strategy, 2014, 29(3): 192−198 doi: 10.3969/j.issn.1004-8340.2014.03.005

    [41] 徐杰, 张兰婷. 基于灰色关联分析的我国海洋渔业产业结构[J]. 海洋开发与管理, 2018, 35(10): 55−59 doi: 10.3969/j.issn.1005-9857.2018.10.013

    XU J, ZHANG L T. The structure of China’s marine fisheries industry based on grey correlation analysis[J]. Ocean Development and Management, 2018, 35(10): 55−59 doi: 10.3969/j.issn.1005-9857.2018.10.013

    [42] 齐占会, 王珺, 黄洪辉, 等. 广东省海水养殖贝藻类碳汇潜力评估[J]. 南方水产科学, 2012, 8(1): 30−35 doi: 10.3969/j.issn.2095-0780.2012.01.005

    QI Z H, WANG J, HUANG H H, et al. Potential assessment of carbon sink capacity by marine bivalves and seaweeds in Guangdong Province[J]. South China Fisheries Science, 2012, 8(1): 30−35 doi: 10.3969/j.issn.2095-0780.2012.01.005

    [43] 顾波军, 朱梓豪. 浙江省海水贝藻养殖碳汇能力测算及时空演化[J]. 中国渔业经济, 2021, 39(6): 88−95 doi: 10.3969/j.issn.1009-590X.2021.06.011

    GU B J, ZHU Z H. An estimation of carbon sink capacity of shellfish and algae culture and its spatio-temporal evolution in Zhejiang Province[J]. Chinese Fisheries Economics, 2021, 39(6): 88−95 doi: 10.3969/j.issn.1009-590X.2021.06.011

    [44] 张永雨, 张继红, 梁彦韬, 等. 中国近海养殖环境碳汇形成过程与机制[J]. 中国科学: 地球科学, 2017, 47(12): 1414−1424 doi: 10.1360/N072017-00344

    ZHANG Y Y, ZHANG J H, LIANG Y T, et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Scientia Sinica (Terrae), 2017, 47(12): 1414−1424 doi: 10.1360/N072017-00344

    [45] 唐启升, 韩冬, 毛玉泽, 等. 中国水产养殖种类组成、不投饵率和营养级[J]. 中国水产科学, 2016, 23(4): 729−758

    TANG Q S, HAN D, MAO Y Z, et al. Species composition, non-fed rate and trophic level of Chinese aquaculture[J]. Journal of Fishery Sciences of China, 2016, 23(4): 729−758

    [46] 吴杭纬经, 赵泓睿, 彭苑媛, 等. 贝藻混养对舟山东极岛养殖海域二氧化碳的影响[J]. 安徽农业科学, 2019, 47(15): 53−55, 59 doi: 10.3969/j.issn.0517-6611.2019.15.016

    WU H W J, ZHAO H R, PENG Y Y, et al. Effect of algae-shellfish polyculture on CO2 in the aquaculture zone located at Dongji Island of Zhoushan[J]. Journal of Anhui Agricultural Sciences, 2019, 47(15): 53−55, 59 doi: 10.3969/j.issn.0517-6611.2019.15.016

  • 期刊类型引用(4)

    1. 焦琦斐,李鹏,吴昕浩,盖美,张鹏. 海洋渔业碳汇估算方法与应用研究——以环渤海地区为例. 地理研究. 2024(06): 1611-1626 . 百度学术
    2. 何柳,李学山,高佳,杨富淋,刘伟. 我国生态系统碳汇发展形势与建议. 南方能源建设. 2024(05): 75-85 . 百度学术
    3. 高攀,梁流涛,诸培新. 耕地公共生态产品供给状况及能力提升路径——以河南省为例. 自然资源学报. 2023(07): 1815-1832 . 百度学术
    4. 李姗珊,王权明. 基于GIS的土地利用碳收支时空分异及碳平衡分区研究——以大连市为例. 绿色科技. 2023(24): 257-264 . 百度学术

    其他类型引用(7)

图(5)  /  表(6)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  280
  • PDF下载量:  118
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2022-11-28
  • 录用日期:  2022-11-29
  • 网络出版日期:  2022-12-25
  • 刊出日期:  2023-02-09

目录

/

返回文章
返回