不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征

翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润

翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征[J]. 中国生态农业学报 (中英文), 2023, 31(5): 765−775. DOI: 10.12357/cjea.20220517
引用本文: 翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征[J]. 中国生态农业学报 (中英文), 2023, 31(5): 765−775. DOI: 10.12357/cjea.20220517
ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 765−775. DOI: 10.12357/cjea.20220517
Citation: ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 765−775. DOI: 10.12357/cjea.20220517
翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征[J]. 中国生态农业学报 (中英文), 2023, 31(5): 765−775. CSTR: 32371.14.cjea.20220517
引用本文: 翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征[J]. 中国生态农业学报 (中英文), 2023, 31(5): 765−775. CSTR: 32371.14.cjea.20220517
ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 765−775. CSTR: 32371.14.cjea.20220517
Citation: ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 765−775. CSTR: 32371.14.cjea.20220517

不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征

基金项目: 宁夏回族自治区重点研发计划项目(2021BEG03014)、宁夏自然科学基金项目(2021AAC03025)和宁夏回族自治区农业资源环境监测与保护项目(2130135)资助
详细信息
    作者简介:

    翟勇全, 主要从事作物高产高效优质栽培研究。E-mail: zyq6692@163.com

    通讯作者:

    贾彪, 主要从事作物高产高效优质栽培研究。E-mail: jiabiao2008@nxu.edu.cn

  • 中图分类号: S5

Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years

Funds: This study was supported by the Key Research and Development Project of Ningxia Hui Autonomous Region (2021BEG03014), Ningxia Natural Science Foundation Project (2021AAC03025), the Agricultural Resources and Environmental Monitoring and Protection Project of Ningxia Hui Autonomous Region (2130135).
More Information
  • 摘要: 为寻找满足宁夏地区滴灌条件下不同降水年型的科学施肥模式, 缓解不合理施氮导致的资源浪费、黄河水质下降和地下水污染等问题, 于2018—2020年在宁夏平吉堡农场开展氮梯度试验, 分析不同降水年型下不同施氮处理土壤硝态氮残留和淋溶量以及对滴灌玉米氮素吸收利用和产量的影响。结果表明: 土壤硝态氮含量峰值与降水量密切相关, 丰水年(2018年)硝态氮残留量峰值在40~60 cm土层, 枯水年(2019年和2020年)在20~40 cm土层; 不同降水年型土壤硝态氮残留量和淋失量均随施氮量的增加而增加, 且降水量显著影响硝态氮淋失量; 丰水年由降水因素导致的硝态氮淋失量占总淋失量的50.62%, 枯水年占总淋失量的34.82%。回归分析结果表明, 不同降水年型玉米产量随施氮量呈先上升后下降的趋势, 均在N3处理(施N量为270 kg∙hm−2)下达最高产量, 且N3处理的产量和吸氮量与N4处理(施N量为360 kg∙hm−2)无显著差异; 丰水年N3处理的氮肥利用率、氮肥农学效率和氮肥偏生产力比N4处理分别提升11.38%、6.16 kg∙kg−1和13.85 kg∙kg−1, 枯水年分别提升12.10%、5.06 kg∙kg−1和15.00 kg∙kg−1。综合考量不同降水年型0~100 cm土层硝态氮分布特征和硝态氮淋失量及施氮处理下的产量、氮素吸收利用, 推荐宁夏引黄灌区滴灌玉米不同降水年型下施氮量在270 kg∙hm−2时较适宜, 丰水年施氮最大阈值为275.59 kg∙hm−2 , 枯水年施氮最大阈值为320.20 kg∙hm−2
    Abstract: To improve crop yield, excessive nitrogen usage in agricultural production has become increasingly important in recent years. Excessive nitrogen use increases soil nitrate-N accumulation and water pollution, and nitrogen leaching loss varies with precipitation year. It is of great significance to clarify the scientific fertilization model in different precipitation year types under drip irrigation in Ningxia to alleviate the problems of resource waste, water quality decline in the Yellow River, and groundwater pollution caused by unreasonable nitrogen usage. In this study, a 3-year nitrogen gradient experiment was carried out in the Pingjipu Farm, Ningxia Hui Autonomous Region, with five nitrogen application treatments: 360 kg∙hm−2 (N4), 270 kg∙hm−2 (N3), 180 kg∙hm−2 (N2), 90 kg∙hm−2 (N1), and 0 kg∙hm−2 (N0), to analyze the effects of different nitrogen fertilization treatments on soil nitrate-N residues and leaching amounts, as well as on nitrogen uptake, utilization, and yield of maize under drip irrigation in rainy and dry years. The results showed that the peak value of soil nitrate-N content was closely related to precipitation; the peak value of nitrate-N residue was in the 40–60 cm soil layer in the rainy year (2018), and in the 20–40 cm soil layer in the dry years (2019 and 2020). In different precipitation years, soil nitrate-N residues, and leaching increased with the increased nitrogen usage and reached the maximum value under the N4 treatment. Precipitation significantly affected nitrate leaching, and in rainy years, the nitrate-N leaching loss caused by precipitation accounted for 50.62% of the total leaching loss, while in the dry year accounted for 34.82% of the total leaching loss. The regression analysis showed that maize yield initially increased and then decreased by the application rate of nitrogen in different precipitation years. The maximum yield was found under 270 kg∙hm−2 (N3) in different precipitation years, and the yield and nitrogen uptake under the N3 treatment did not differ from 360 kg∙hm−2 (N4). In rainy year, compared with N4, the utilization rate, agronomic utilization rate, and partial nitrogen fertilizer productivity increased by 11.38%, 6.16 kg∙kg−1, and 13.85 kg∙kg−1; and in dry years, they were increased by 12.10%, 5.06 kg∙kg−1, and 15.00 kg∙kg−1, respectively. In summary, when the nitrogen application rate was 270 kg∙hm−2, the yield, nitrogen uptake, and utilization of maize in rainy and dry years were maintained at a high level, and the amount of nitrate leaching was also within an acceptable range. It is recommended that 270 kg∙hm−2 is the appropriate nitrogen application rate for maize under different precipitation patterns in the Ningxia Yellow River irrigation area. The maximum threshold of nitrogen usage in the rainy year is 275.59 kg∙hm−2, and that in the dry year is 320.20 kg∙hm−2. The results from this study can provide a theoretical basis for the decision of scientific nitrogen application in different precipitation years of drip-irrigated maize in the Ningxia Hui Autonomous Region.
  • 氮素是玉米(Zea mays)生长发育所必需的元素, 在玉米生长发育、物质代谢和生命活动调节中起着重要作用, 氮肥的合理施用对玉米产量和品质的形成至关重要[1-4]。中国作为全球最大的氮肥消耗国, 氮肥消耗量占全球总量的33%以上, 但是氮肥利用率仅有28%~41%, 远低于世界平均水平[5]。过量且不合理的施肥方式不仅使得氮肥利用下降, 还会加重土壤硝态氮累积及淋溶风险, 进而导致生态环境破坏[6-7]。宁夏引黄灌区是宁夏地区主要的粮食生产基地之一, 施氮作为提升作物产量的关键措施, 当前在农业生产中存在过量施氮现象[2,8], 过量的氮肥施加导致氮素在土壤中大量累积, 氮素利用率下降, 多余氮素经农田退水和地下淋溶等方式造成地下水和黄河水质污染加重[9-10]

    土壤氮素淋失以硝态氮淋失为主, 而土壤硝态氮深处运移是导致淋失的主要前提条件[9,11]。新型滴灌水肥一体化技术可以保证玉米全生育期快速的养分供应, 提高氮肥利用率, 在一定程度上解决由过量施氮导致的土壤深层硝态氮累积和氮素大量淋失问题, 对玉米产量提升和农业可持续发展具有重要意义[12-14]。前人针对滴灌条件下施氮对玉米氮素利用率、产量和土壤硝态氮分布等方面已开展了大量研究[8,15-16], 但忽略了降水丰枯年型对滴灌玉米氮素利用率、产量和土壤硝态氮分布及淋失量的影响, 所得结果存在一定的局限性。从生态环境角度(硝态氮分布)和人类健康角度(氮素淋失量)考虑, 确定滴灌条件下玉米适宜施氮量以及降水丰枯年份施氮量最大阈值的研究更是鲜有报道。为此, 本研究于2018年(丰水年)、2019年和2020年(枯水年)在宁夏平吉堡农场开展3年氮肥定位试验, 探究滴灌条件下降雨丰枯年型不同施氮处理对玉米产量、氮素吸收利用、硝态氮分布和淋溶的影响, 确定满足宁夏灌区滴灌玉米生态环境和施氮效益的适宜施氮量, 并确定滴灌条件下降雨丰枯年份玉米施氮量的最大阈值。

    试验于2018年4月—2020年10月在宁夏平吉堡农场(38°25′30″N, 106°01′47″E)进行, 该地区海拔为1100 m, 属大陆性季风气候, 蒸发强烈, 无霜期较短, 昼夜温差大, 年均气温为8.6 ℃。试验地土壤基础理化性质如表1所示。试验期间日平均气温和日降水量如图1所示。根据60年(1961—2021年)平均降水量(272.6 mm)[17], 采用干旱系数法划分降水丰枯年型[18], 丰枯年型划分标准如下所示:

    表  1  试验地土壤理化性质
    Table  1.  Physical and chemical properties of the tested soils
    土层
    Soil layer
    (cm)
    pH有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total N
    (g∙kg−1)
    全磷
    Total P
    (g∙kg−1)
    全钾
    Total K
    (g∙kg−1)
    碱解氮
    Available N
    (mg∙kg−1)
    速效磷
    Available P
    (mg∙kg−1)
    速效钾
    Available K
    (mg∙kg−1)
    容重
    Bulk density
    (g∙cm−3)
    0~207.8112.310.780.543.3238.0319.37101.821.31
    20~407.955.460.520.343.4518.4517.3786.451.35
    40~607.982.360.360.263.3612.5514.3644.671.32
    60~807.941.450.230.173.288.368.3627.741.29
    80~1007.861.520.180.193.245.484.3212.361.30
    下载: 导出CSV 
    | 显示表格
    图  1  2018年(A)、2019年(B)和2020年(C)玉米生长季(4—9月)降水量和日均气温
    Figure  1.  Rainfall and daily mean temperature during maize growing seasons (from April to September) in 2018 (A), 2019 (B) and 2020 (C)
    $$ \begin{array}{l} 丰水年 ({\rm{ rainy}}\; {\rm{year}}) :\; {R}_{{i}}=\overline{{R}}+0.33 \delta \end{array} $$ (1)
    $$ 枯水年( {\rm{dry}} \;{\rm{year}}) : \;{R}_{{i}}=\overline{{R}}-0.33 \delta $$ (2)

    式中: Ri为年降水量, $\overline{{R}}$为1961—2021年平均降水量, δ为均方差。

    图1可知, 2018年为降水丰年, 2019年和2020年为降水枯年。玉米一年一熟制, 前茬作物为玉米。玉米2018年4月22日播种, 9月28日收获; 2019年4月28日播种, 9月28日收获; 2020年4月19日播种, 9月26日收获。

    采用随机区组设计, 设置5个施氮处理: 以当地常规施氮量(纯氮)360 kg∙hm−2为基础, 按比例依次减少施氮量, 分别为360 kg∙hm−2 (N4)、270 kg∙hm−2 (N3)、180 kg∙hm−2 (N2)、90 kg∙hm−2 (N1)和0 kg∙hm−2 (N0)。每个处理3次重复, 每个小区面积为 4.4 m×10 m=44 m2

    供试玉米品种为‘天赐19’, 宽窄行种植, 宽行行距70 cm, 窄行行距40 cm, 株距20 cm, 种植密度为9.09×104株∙hm−2。供试氮肥为尿素(总N≥46.4%)、磷肥为磷酸二铵(P2O5≥64%)、钾肥为硫酸钾(K2O≥52%), 均为水溶性肥, 磷钾肥(纯磷钾)施用量分别为138 kg∙hm−2和120 kg∙hm−2。玉米全生育时期采用滴灌水肥一体化技术, 肥随水施, 各试验小区为独立的滴灌单元。全生育期灌水总量为2700 m3∙hm−2, 苗期、拔节期、抽雄期和灌浆期灌水量(次数)分别为200 m3∙hm−2 (1次)、600 m3∙hm−2 (3次)、1000 m3∙hm−2 (2次)和900 m3∙hm−2 (3次)。整个生育期共施肥6次, 各生育时期施肥量占总施肥量比例为苗期10%、拔节期45%、吐丝期20%、灌浆期25%。分别为苗期1次、拔节期2次、吐丝期2次, 灌浆期1次, 其他措施同当地田间管理。试验各处理肥料施用情况如表2所示。

    表  2  玉米不同生育期各试验处理的肥料(纯N-P-K)施用量和总施N量
    Table  2.  Application rates of fertilizers (N-P-K) at different growth stages of maize and total N application rate of each treatment
    kg∙hm−2 
    处理
    Treatment
    总施氮量
    Total N application rate
    纯N-P-K施用量 Application rate of N-P-K
    苗期 Seedling stage拔节期 Jointing stage抽雄期 Tasseling stage灌浆期 Grouting period
    N000-13.8-120-62.1-540-27.6-240-34.5-30
    N1909-13.8-1240.5-62.1-5418-27.6-2422.5-34.5-30
    N218018-13.8-1281-62.1-5436-27.6-2445-34.5-30
    N327027-13.8-12121.5-62.1-5454-27.6-2467.5-34.5-30
    N436036-13.8-12162-62.1-5472-27.6-2490-34.5-30
    下载: 导出CSV 
    | 显示表格

    于玉米收获期在每个小区选取3株有代表性植株, 按器官分为茎、叶、苞叶、穗轴、籽粒5部分, 烘干后称重、粉碎、研磨和过筛, 采用H2SO4-H2O2消化, 利用凯氏定氮法测定植株各器官全氮含量, 最后计算植株氮含量[2]

    分别在玉米播种前和收获后及每次灌水和降雨前后, 采用五点取样法用土钻分层采集各试验小区0~100 cm土层土壤, 20 cm一层, 同一小区同一土层采集土壤混合均匀后, 采用四分法取样并放入自封袋中, 带回实验室风干后过筛, 采用紫外分光光度法测定土壤硝态氮含量[19]

    在玉米收获期, 每个小区选取1.1 m×7 m样方, 统计穗数, 并从中选取20个果穗, 脱粒风干, 在实验室进行产量测定。

    本研究中由灌溉和降雨造成的硝态氮淋失量为玉米生长季灌溉和降雨前后60~100 cm土层硝态氮累积量变化之和。土壤硝态氮残留量采用等质量法[20], 计算公式如下:

    $$ {\rm{N}}{{\rm{R}}_{{i}}} = \frac{{{P_i} \times {D_i} \times {M_i}}}{{10}} $$ (3)

    式中: NRi为第i层土壤硝态氮残留量, kg∙hm−2; Pii层土壤容重, g∙cm−3; Di为第i层土壤厚度, cm; Mi为第i层土壤硝态氮含量测定值, mg∙kg−1

    利用收获期干物质累积量计算玉米吸氮量, 通过产量和玉米吸氮量计算氮肥利用率、氮肥农学效率和氮肥偏生产力。其中地上部各器官吸氮量=各器官含氮量×地上部各器官生物量/1000, 地上部植株吸氮量为各器官吸氮量的和; 氮肥回收率(REN)=(施氮吸氮量−不施氮吸氮量)/施氮量×100%; 氮肥农学效率(AEN)=(施氮产量−不施氮产量)/施氮量; 氮肥偏生产力(PFPN)=施氮区产量/施氮量。

    采用Excel 2010进行数据的整理与分析, 利用SPSS 23进行方差分析, 处理间多重比较采用LSD法, 利用Origin 2019b作图。

    图2可知, 滴灌条件下, 不同施氮处理对0~100 cm土层硝态氮含量有显著的调控作用(P<0.01)。不同施氮处理下, 随土层加深, 硝态氮含量表现为先升后降趋势。各处理下0~100 cm土层硝态氮含量变幅出现差异性, N0和N1处理由于施氮量较低或不施氮, 经过3年种植消耗, 各土层硝态氮含量变幅较小, 基本维持在4.00 mg∙kg−1以下。N3、N4处理由于氮肥投入量大, 经过3年连续施加, 0~100 cm土层硝态氮含量变幅较大, 分别为8.65~18.97 mg∙kg−1和10.83~24.40 mg∙kg−1。滴灌条件下, 不同降水年型间土壤硝态氮含量峰值出现土层也不相同。丰水年(2018年)不同施氮量下土壤硝态氮含量峰值位于40~60 cm土层, N0、N1、N2、N3和N4处理峰值分别为3.27 mg∙kg−1、6.11 mg∙kg−1、10.25 mg∙kg−1、15.48 mg∙kg−1和18.55 mg∙kg−1; 枯水年(2019年和2020年)不同施氮量下土壤硝态氮含量峰值位于20~40 cm土层, 分别为2.89 mg∙kg−1、4.51 mg∙kg−1、6.97 mg∙kg−1、16.96 mg∙kg−1、20.25 mg∙kg−1和2.33 mg∙kg−1、6.12 mg∙kg−1、8.07 mg∙kg−1、18.99 mg∙kg−1、24.11 mg∙kg−1

    图  2  2018—2020年施氮量对玉米播前(S)和收获后(H) 0~100 cm土层硝态氮分布的影响
    N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。“**”表示不同处理间差异极显著(P<0.01), “ns”表示不同处理间差异不显著。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. “**” means significant difference among treatments at P<0.01 level. “ns” means no significant difference among treatments.
    Figure  2.  Effects of nitrogen application rates on nitrate-N distribution in 0−100 cm soil layer before sowing (S) and after harvest (H) of maize from 2018 to 2020

    图3可知, 滴灌条件下, 各处理硝态氮淋失量差异显著(P<0.05), 随着施氮量的增加3年间玉米土壤硝态氮淋失量均有增加。2018年、2019年和2020年均在N4处理农田土壤硝态氮淋失量值最大, 分别为21.00 kg∙hm−2、20.06 kg∙hm−2和19.80 kg∙hm−2。N0、N1处理淋失量较低, 枯水年(2019年和2020年)各施氮处理土壤硝态氮淋失量均低于丰水年(2018年)。不同降水年型间, 不同施氮处理下由降水导致的硝态氮淋失量有显著性差异, 且表现为丰水年(2018年)大于枯水年(2019年和2020年), 而由灌溉导致的硝态氮淋失量在N0、N1和N2处理下表现为丰水年(2018年)大于枯水年(2019年和2020年), N3和N4下表现为枯水年(2019年和2020年)大于丰水年(2018年), 这可能与施氮量高导致土壤硝态氮累积有关。在丰水年(2018年), 各施氮处理由降雨因素导致的硝态氮淋失量占总淋失量的42.43%、38.02%、43.02%、45.34%和50.62%; 在枯水年(2019年和2020年), 各施氮处理下由降雨因素导致的硝态氮淋失量占总淋失量的40.65%、46.20%、37.95%、39.25%、38.78%和42.59%、42.45%、34.33%、33.63%和30.86%。

    图  3  2018—2020年不同施氮量下玉米生长季(4—9月)农田土壤硝态氮总淋失量(T)和灌溉(I)、降水(R)导致的土壤硝态氮淋失量
    N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。不同小写字母表示不同年份间差异显著(P<0.05), “**”和“*”分别表示在P<0.01和P<0.05水平不同施氮处理间差异显著。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. “**” and “*” indicate significant differences among treatments at P<0.01 and P<0.05 levels, respectively. Different lowercase letters show significant differences among different years (P<0.05).
    Figure  3.  Total (T) and irrigation (I) and rainfall (R) induced soil nitrate-N leaching losses in maize growing seasons (April to September) under different nitrogen application treatments from 2018 to 2020

    表3可知, 在滴灌条件下, 增施氮肥可以提高滴灌玉米地上部吸氮量和产量, 且3年规律基本一致。在一定施氮范围内, 玉米产量随施氮水平增加而增加, 但当施氮量达一定值时, 产量不再增加, 且有下降趋势。丰水年(2018年)和枯水年(2019年和2020年)不同施氮水平下玉米产量变幅分别为8309.60~12 969.88 kg∙hm−2和8312.06~13 294.24 kg∙hm−2, 3年均在N3 (270 kg∙hm−2)水平下有最高产量; 2018—2020年均在N4处理下有最大吸氮量, 分别为223.16 kg∙hm−2、237.36 kg∙hm−2和246.71 kg∙hm−2, 但与N3处理吸氮量均无显著差异, 3年平均仅比N3处理高4.96 kg∙hm−2, 说明N3处理在促进滴灌玉米氮吸收方面已接近极限值。氮肥回收利用率、氮肥农学效率和氮肥偏生产力在不同施氮处理间表现出显著差异性, 且随施氮量增加而逐渐降低, 3年表现均为N1>N2>N3>N4。丰水年和枯水年氮肥回收利用率变幅分别为36.92%~57.03%和34.82%~75.36%;氮肥农学效率变幅为11.10~22.18 kg∙kg−1和12.07~26.16 kg∙kg−1; 氮肥偏生产力变幅为34.19~114.51 kg∙kg−1和35.52~121.49 kg∙kg−1。不同降水年型同一施氮处理下滴灌玉米产量、地上部吸氮量、氮肥回收利用率和氮肥农学效率差异性显著, 氮肥偏生产力除N3外差异性显著, 且表现为丰水年(2018年)小于枯水年(2019年和2020年)。

    表  3  2018—2020年滴灌玉米产量、氮素吸收量及利用率
    Table  3.  Yield, nitrogen uptake and utilization rate of drip irrigated maize in 2018−2020
    年份
    Year
    处理
    Treatment
    产量
    Yield
    (kg·hm−2)
    吸氮量
    Nitrogen uptake
    (kg·hm−2)
    氮肥回收利用率
    Recovery efficiency of nitrogen fertilizer
    (%)
    氮肥农学效率
    Agronomic efficiency
    of nitrogen fertilizer (kg·kg−1)
    氮肥偏生产力
    Partial-factor productivity
    of nitrogen fertilizer (kg·kg−1)
    2018N08309.60±150.89Bd79.51±2.28Bd
    N110 305.84±156.17Bc145.87±1.74Bc57.03±3.17Ba22.18±0.06Ba114.51±0.62Ba
    N212 018.66±154.97Bb185.39±3.51Bb51.61±3.08Bab20.61±0.50Ba66.77±0.31Bb
    N312 969.88±34.21Ba219.93±1.01Ba48.20±0.58Bb17.26±0.20Ab48.04±0.13Ac
    N412 308.23±192.14Bab223.16±1.61Ba36.92±0.57Bc11.10±0.15Bc34.19±0.26Bd
    2019N08579.71±100.67Ad104.44±1.58Ad
    N110 934.31±149.99Ac155.77±1.34Ac73.73±1.84Aa26.16±1.30Aa121.49±1.67Aa
    N212 463.31±176.19Ab197.35±5.01Ab55.73±0.95Ab21.58±0.46Ab69.24±0.98Ab
    N313 203.78±28.46Aa234.59±2.36Aa52.00±0.94Ab17.13±0.28Ac48.90±0.10Ac
    N412 925.42±95.03Aab237.36±1.20Aa39.90±0.67Ac12.07±0.14Ad35.90±0.26Ad
    2020N08312.06±131.36Bd121.36±3.88Ad
    N110 507.22±189.18Ac189.18±2.09Ac75.36±2.03Aa24.39±1.24Aa116.75±1.09Aa
    N212 156.17±218.39Ab218.39±4.31Ab53.91±3.58Ab21.36±1.31Ab67.53±1.14Ab
    N313 294.24±237.82aA237.82±1.52Aa46.51±1.51Cc18.45±0.95Ac49.24±0.46Ac
    N412 786.96±68.09Aab246.71±1.54Aa34.82±1.51Bd12.43±0.45Ad35.52±0.19Ad
    方差分析 ANOVA
    降水年型 Rainfall year (R) 37.43** 62.69** 32.70** 21.12** 20.48**
    施氮量 N application rate (N) 995.78** 272.79** 159.37** 288.76** 5447.23**
    R×N 1.62ns 0.70ns 19.51** 3.54* 2.81ns
      N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。不同小写字母表示同一年份不同施氮处理间差异显著(P<0.05), 不同大写字母表示不同年份同一施氮处理差异显著(P<0.05)。“**”和“*”分别表示不同处理间在P<0.01和P<0.05水平差异显著; “ns”表示不同处理间差异不显著。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. Different lowercase letters indicate significant differences among different nitrogen treatments in the same year (P<0.05), and different capital letters indicate significant differences among different years under the same nitrogen treatment (P<0.05). “**” and “*” mean significant differences among different treatments at P<0.01 and P<0.05, respectively. “ns” means no significant difference among treatments.
    下载: 导出CSV 
    | 显示表格

    《地下水质量标准》规定, 为满足人类健康, 玉米生长季硝态氮淋失量应低于18.4 kg∙hm−2。由回归分析可知(图4, 表4), 当硝态氮淋失量低于人类健康标准时, 丰水年(2018年)最大施氮量为275.59 kg∙hm−2, 此时的产量为12 714.59 kg∙hm−2, 对应的吸氮量、氮肥回收利用率、氮肥农学效率和氮肥偏生产力分别为221.64 kg∙hm−2、48.14%、14.98 kg∙kg−1和46.09 kg∙kg−1, 与N3相比, 产量、氮肥回收利用率和施氮量无显著性差异, 而氮肥农学效率和氮肥偏生产力分别降低2.28 kg∙kg−1和1.95 kg∙kg−1, 硝态氮淋失量增加3.44 kg∙hm−2。枯水年(2019年和2020年)硝态氮淋失量低于人类健康标准的平均最大施氮量为320.20 kg∙hm−2, 此时的产量为13 110.50 kg∙hm−2, 对应的吸氮量、氮肥回收利用率、氮肥农学效率和氮肥偏生产力分别为237.70 kg∙hm−2、40.19%、14.25 kg∙kg−1和41.95 kg∙kg−1, 与N3相比, 产量和施氮量无差异性, 氮肥回收利用率、氮肥农学效率和氮肥偏生产力分别降低11.69%、5.74 kg∙kg−1和13.53 kg∙kg−1, 硝态氮淋失量增加3.08 kg∙hm−2。因此, 综合产量、氮素吸收利用效率和环境效益等因素, 滴灌条件下推荐施氮270 kg∙hm−2为宁夏引黄灌区滴灌玉米较适宜施氮量, 丰水年施氮量阈值可达275.59 kg∙hm−2, 枯水年施氮量阈值可达320.20 kg∙hm−2

    图  4  丰水年(2018年)和枯水年(2019—2020年)玉米产量、氮素吸收利用、硝态氮淋失量与施氮量回归分析
    REN: 氮肥回收利用率; AEN: 氮肥农学效率; PFPN: 氮肥偏生产力; N uptake: 吸氮量; Nitrate-N leaching: 硝态氮淋失量; N threshold: 硝态氮淋失量阈值。枯水年数据为2019和2020年平均值。REN: recovery efficiency of nitrogen; AEN: agronomic efficiency of nitrogen; PFPN: partial-factor productivity of nitrogen; N uptake: nitrogen uptake; Nitrate-N leaching: nitrate-N leaching loss; N threshold: nitrate-N leaching threshold. The regression data of dry years are the average values of 2019 and 2020.
    Figure  4.  Regression analysis of maize yield, nitrogen absorption and utilization, nitrate-N leaching and nitrogen application in rainy year (2018) and dry year (2019 and 2020)
    表  4  不同降水年型施氮量(x)与土壤硝态氮淋失量和玉米产量、吸氮量、氮肥利用率的回归方程
    Table  4.  Regression models of nitrogen application rate (x) with soil nitrate-N leaching, maize yield, nitrogen uptake and nitrogen use efficiency in different rainfall years
    年份 Year项目 Item (y)回归方程 Regression equationR2
    丰水年 Rainy year 硝态氮淋失量 Nitrate nitrogen leaching y=5.40×102x+3.52 0.984**
    产量 Yield y=−0.05x2+30.72x+8195.93 0.979**
    吸氮量 Nitrogen uptake y=−1.00×10–3x2+0.87x+78.66 0.997**
    氮肥偏生产力 Partial-factor productivity of nitrogen y=−0.23x+111.93 0.820*
    氮肥农学效率 Agronomic efficiency of nitrogen y=−3.90×10–2x+25.73 0.960**
    氮肥回收率 Recovery efficiency of nitrogen y=−1.04×10–2x+75.07 0.892**
    枯水年 Dry years 硝态氮淋失量 Nitrate nitrogen leaching y=0.050x+2.39 0.997**
    产量 Yield y=−5.70×10–2x2+33.07x+8365.58 0.993**
    吸氮量 Nitrogen uptake y=−1.10×10–4x2+0.74x+113.53 0.999**
    氮肥偏生产力 Partial-factor productivity of nitrogen y=−0.21x+107.43 0.804*
    氮肥农学效率 Agronomic efficiency of nitrogen y=−5.10×10–2x+30.58 0.983**
    氮肥回收率 Recovery efficiency of nitrogen y=−0.13x+83.58 0.958**
      *: P<0.05; **: P<0.01
    下载: 导出CSV 
    | 显示表格

    降水年型和施氮对玉米氮吸收和产量形成至关重要, 在一定程度上显著提升玉米产量[2,21]。本研究结果表明, 滴灌玉米产量和吸氮量均与施氮量密切相关, 不同降水年份下在农民常规施氮的基础上减少25% (施氮量为270 kg∙hm−2)对玉米产量和吸氮量影响不显著(表3), 这与刘朋召等[22]、Lai等[23]研究结果一致。这是因为玉米对氮素吸收利用具有一定额度, 当施氮量达到一定限度值时继续增施氮肥对玉米的吸氮量无显著促进作用[24], 同时较高的施氮量会使得植株体内产生亚硝酸盐及氮素大量累积在作物茎秆和叶片等非籽粒器官中[25], 造成作物贪青晚熟, 生长期延长, 籽粒灌浆过程和生长发育进程受阻, 导致作物产量下降[7,22-23]。生育期内降水强度和降水时期显著影响玉米氮素吸收及产量形成[21]。前人研究表明玉米生育期内遭遇水分胁迫会导致作物产量下降[21,26]。本研究发现, 丰水年玉米产量和吸氮量均低于枯水年(表3), 与任宁等[27]研究认为降水正常年份玉米产量和吸氮量均高于枯水年的结果存在差异, 这可能是由于本研究采用滴灌水肥一体化条件, 原定灌水量已满足作物生长发育的需要[28], 宁夏引黄灌区玉米生长季降水量相对较少, 对玉米生长发育作物影响不大, 但丰水年(2018年)玉米抽雄吐丝期降水量为90.7 mm, 而枯水年为18.1 mm。丰水年玉米抽雄吐丝期遭遇水分胁迫和连续阴雨天气(图1)导致作物授粉受精过程受阻, 干物质累积速率减缓, 土壤透气性降低, 进而导致产量低于枯水年。

    氮肥利用率与施氮量和降水年型密切相关[7-8,22]。本研究结果表明, 不同降水年型下施氮量显著影响氮肥回收利用率、氮肥农学效率和氮肥偏生产力, 随施氮量的增加均呈现下降趋势(表3图4), 这与张富仓等[29]、Wang等[19]研究结果一致。这是由于滴灌水肥一体化条件缓解了由于氮肥一次性基施造成作物前期养分供应过量和生育后期供应不足造成的玉米生长发育受阻、氮肥利用率降低等问题。同时生育前期较少的施氮量可促进玉米根系伸长生长, 根体积和根表面积增加[30-31], 提高对深层氮素养分的吸收利用, 进而提高土壤氮素利用率[30-31], 故氮肥利用率表现为随施氮量而降低的趋势。本研究发现, 丰水年(2018年)氮素利用率、氮肥农学效率和氮肥偏生产力低于枯水年(2019年和2020年), 这与前人研究结论[21-22]不同。原因是前人的研究主要基于自然降水, 丰水年降水量高会加快土壤中养分的溶解, 促进作物养分吸收利用和产量形成, 进而导致丰水年氮肥回收利用率、氮肥农学效率和氮肥偏生产力高于枯水年[32-33]; 而本研究是基于水肥一体化条件, 各生育时期少量多次随水施入氮肥(表2), 有利于作物吸收利用, 满足玉米各生育期生长发育的需要。在降水丰年, 自然降水量过高, 加之过量施肥, 会导致土壤氮素向土层深处淋溶, 造成土壤氮素损失导致氮素利用率下降[13,18]。因此, 在不同降水年型下, 滴灌玉米在保证产量的基础上, 适当调控氮肥的施用量, 能提高氮肥利用率。

    降水年型和施氮是影响土壤硝态氮含量分布和淋失的主要因素[18,22]。本研究结果表明, 土壤硝态氮残留量和淋失量随施氮量的增加而增加, 且不同降水年份间土壤硝态氮分布和淋失量差异显著(图2图3), 与枯水年相比, 丰水年硝态氮含量峰值出现在更深土层处, 且硝态氮淋失量增加, 这与Xu等[34]研究结果一致, 是因为较高的降水量进入农田后, 并不能完全被作物利用和储存在土壤中, 过多的水分会逐渐向土层深处运移, 土壤硝态氮随着水分向下运移至土壤深处, 导致土壤硝态氮含量峰值下移和硝态氮淋失量增加[20,35], 对生态环境危害加重。同时前期较少的降水量和适宜的施氮量会促进玉米根系生长[30], 提高深层土壤硝态氮和水分吸收与利用, 促进地上部植株生长发育, 减少土壤水分向深处运移[36]。大量氮素淋溶流失不仅会导致水质退化和水体富营养化加重, 还会导致人类患病风险增加[19,37]。根据《地下水质量标准》规定, 为满足人类健康, 玉米生长季硝态氮淋失量应低于18.4 kg∙hm−2 [38]。因此, 根据不同降水年份确定作物最佳施氮量和施氮量阈值, 是减缓生态环境污染、实现农业绿色可持续发展的关键技术。贾彪等[31]研究表明, 在滴灌条件下, 玉米根系主要集中在0~60 cm土层内, 60 cm土层以下的硝态氮很难被作物吸收利用。为此, 本研究以玉米生长季60~100 cm土层硝态氮增加量为当季淋失量。通过多曲线回归分析表明, 施氮量在270 kg∙hm−2时, 玉米产量与最高产量无显著性差异(表3), 且氮素利用率等均维持在较高水平, 丰水年施氮量最大阈值为275.59 kg∙hm−2, 枯水年施氮量最大阈值为320.20 kg∙hm−2 (图4, 表4)。这与冯浩原等[39]、刘朋召等[22]研究结果不同, 这可能是施氮水平和施肥方式等因素不同造成的。因此, 在玉米生产中, 应根据降水量和降水时期适当调整施肥时期, 减缓土壤硝态氮淋失和硝态氮峰值下移, 在保证产量的同时提高氮肥的利用效率, 实现农业绿色可持续发展。但是由于本试验地区特殊气候条件, 本研究丰水年数据仅有1年, 且表现为玉米抽雄吐丝期到收获期多雨, 不同降水年型和降水时期对玉米施氮量阈值的影响也不尽相同。基于此, 以后研究中需继续开展多年定点试验, 进一步验证和完善不同降水年型间施氮量阈值研究, 为宁夏灌区滴灌玉米“以水定肥”提供科学依据。

    滴灌条件下, 不同降水年份和施氮水平均显著影响宁夏引黄灌区滴灌玉米产量和氮素吸收利用、土壤硝态氮峰值分布和硝态氮淋失量, 丰水年玉米产量、吸氮量及氮素利用率低于枯水年, 硝态氮淋失量高于枯水年。施氮量为270 kg∙hm−2时, 丰水年和枯水年玉米产量、氮素吸收利用率均维持在较高水平, 硝态氮淋失量也在可接受范围内, 丰水年施氮量最大阈值为275.59 kg∙hm−2, 枯水年施氮量最大阈值为320.20 kg∙hm−2

  • 图  1   2018年(A)、2019年(B)和2020年(C)玉米生长季(4—9月)降水量和日均气温

    Figure  1.   Rainfall and daily mean temperature during maize growing seasons (from April to September) in 2018 (A), 2019 (B) and 2020 (C)

    图  2   2018—2020年施氮量对玉米播前(S)和收获后(H) 0~100 cm土层硝态氮分布的影响

    N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。“**”表示不同处理间差异极显著(P<0.01), “ns”表示不同处理间差异不显著。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. “**” means significant difference among treatments at P<0.01 level. “ns” means no significant difference among treatments.

    Figure  2.   Effects of nitrogen application rates on nitrate-N distribution in 0−100 cm soil layer before sowing (S) and after harvest (H) of maize from 2018 to 2020

    图  3   2018—2020年不同施氮量下玉米生长季(4—9月)农田土壤硝态氮总淋失量(T)和灌溉(I)、降水(R)导致的土壤硝态氮淋失量

    N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。不同小写字母表示不同年份间差异显著(P<0.05), “**”和“*”分别表示在P<0.01和P<0.05水平不同施氮处理间差异显著。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. “**” and “*” indicate significant differences among treatments at P<0.01 and P<0.05 levels, respectively. Different lowercase letters show significant differences among different years (P<0.05).

    Figure  3.   Total (T) and irrigation (I) and rainfall (R) induced soil nitrate-N leaching losses in maize growing seasons (April to September) under different nitrogen application treatments from 2018 to 2020

    图  4   丰水年(2018年)和枯水年(2019—2020年)玉米产量、氮素吸收利用、硝态氮淋失量与施氮量回归分析

    REN: 氮肥回收利用率; AEN: 氮肥农学效率; PFPN: 氮肥偏生产力; N uptake: 吸氮量; Nitrate-N leaching: 硝态氮淋失量; N threshold: 硝态氮淋失量阈值。枯水年数据为2019和2020年平均值。REN: recovery efficiency of nitrogen; AEN: agronomic efficiency of nitrogen; PFPN: partial-factor productivity of nitrogen; N uptake: nitrogen uptake; Nitrate-N leaching: nitrate-N leaching loss; N threshold: nitrate-N leaching threshold. The regression data of dry years are the average values of 2019 and 2020.

    Figure  4.   Regression analysis of maize yield, nitrogen absorption and utilization, nitrate-N leaching and nitrogen application in rainy year (2018) and dry year (2019 and 2020)

    表  1   试验地土壤理化性质

    Table  1   Physical and chemical properties of the tested soils

    土层
    Soil layer
    (cm)
    pH有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total N
    (g∙kg−1)
    全磷
    Total P
    (g∙kg−1)
    全钾
    Total K
    (g∙kg−1)
    碱解氮
    Available N
    (mg∙kg−1)
    速效磷
    Available P
    (mg∙kg−1)
    速效钾
    Available K
    (mg∙kg−1)
    容重
    Bulk density
    (g∙cm−3)
    0~207.8112.310.780.543.3238.0319.37101.821.31
    20~407.955.460.520.343.4518.4517.3786.451.35
    40~607.982.360.360.263.3612.5514.3644.671.32
    60~807.941.450.230.173.288.368.3627.741.29
    80~1007.861.520.180.193.245.484.3212.361.30
    下载: 导出CSV

    表  2   玉米不同生育期各试验处理的肥料(纯N-P-K)施用量和总施N量

    Table  2   Application rates of fertilizers (N-P-K) at different growth stages of maize and total N application rate of each treatment

    kg∙hm−2 
    处理
    Treatment
    总施氮量
    Total N application rate
    纯N-P-K施用量 Application rate of N-P-K
    苗期 Seedling stage拔节期 Jointing stage抽雄期 Tasseling stage灌浆期 Grouting period
    N000-13.8-120-62.1-540-27.6-240-34.5-30
    N1909-13.8-1240.5-62.1-5418-27.6-2422.5-34.5-30
    N218018-13.8-1281-62.1-5436-27.6-2445-34.5-30
    N327027-13.8-12121.5-62.1-5454-27.6-2467.5-34.5-30
    N436036-13.8-12162-62.1-5472-27.6-2490-34.5-30
    下载: 导出CSV

    表  3   2018—2020年滴灌玉米产量、氮素吸收量及利用率

    Table  3   Yield, nitrogen uptake and utilization rate of drip irrigated maize in 2018−2020

    年份
    Year
    处理
    Treatment
    产量
    Yield
    (kg·hm−2)
    吸氮量
    Nitrogen uptake
    (kg·hm−2)
    氮肥回收利用率
    Recovery efficiency of nitrogen fertilizer
    (%)
    氮肥农学效率
    Agronomic efficiency
    of nitrogen fertilizer (kg·kg−1)
    氮肥偏生产力
    Partial-factor productivity
    of nitrogen fertilizer (kg·kg−1)
    2018N08309.60±150.89Bd79.51±2.28Bd
    N110 305.84±156.17Bc145.87±1.74Bc57.03±3.17Ba22.18±0.06Ba114.51±0.62Ba
    N212 018.66±154.97Bb185.39±3.51Bb51.61±3.08Bab20.61±0.50Ba66.77±0.31Bb
    N312 969.88±34.21Ba219.93±1.01Ba48.20±0.58Bb17.26±0.20Ab48.04±0.13Ac
    N412 308.23±192.14Bab223.16±1.61Ba36.92±0.57Bc11.10±0.15Bc34.19±0.26Bd
    2019N08579.71±100.67Ad104.44±1.58Ad
    N110 934.31±149.99Ac155.77±1.34Ac73.73±1.84Aa26.16±1.30Aa121.49±1.67Aa
    N212 463.31±176.19Ab197.35±5.01Ab55.73±0.95Ab21.58±0.46Ab69.24±0.98Ab
    N313 203.78±28.46Aa234.59±2.36Aa52.00±0.94Ab17.13±0.28Ac48.90±0.10Ac
    N412 925.42±95.03Aab237.36±1.20Aa39.90±0.67Ac12.07±0.14Ad35.90±0.26Ad
    2020N08312.06±131.36Bd121.36±3.88Ad
    N110 507.22±189.18Ac189.18±2.09Ac75.36±2.03Aa24.39±1.24Aa116.75±1.09Aa
    N212 156.17±218.39Ab218.39±4.31Ab53.91±3.58Ab21.36±1.31Ab67.53±1.14Ab
    N313 294.24±237.82aA237.82±1.52Aa46.51±1.51Cc18.45±0.95Ac49.24±0.46Ac
    N412 786.96±68.09Aab246.71±1.54Aa34.82±1.51Bd12.43±0.45Ad35.52±0.19Ad
    方差分析 ANOVA
    降水年型 Rainfall year (R) 37.43** 62.69** 32.70** 21.12** 20.48**
    施氮量 N application rate (N) 995.78** 272.79** 159.37** 288.76** 5447.23**
    R×N 1.62ns 0.70ns 19.51** 3.54* 2.81ns
      N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。不同小写字母表示同一年份不同施氮处理间差异显著(P<0.05), 不同大写字母表示不同年份同一施氮处理差异显著(P<0.05)。“**”和“*”分别表示不同处理间在P<0.01和P<0.05水平差异显著; “ns”表示不同处理间差异不显著。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. Different lowercase letters indicate significant differences among different nitrogen treatments in the same year (P<0.05), and different capital letters indicate significant differences among different years under the same nitrogen treatment (P<0.05). “**” and “*” mean significant differences among different treatments at P<0.01 and P<0.05, respectively. “ns” means no significant difference among treatments.
    下载: 导出CSV

    表  4   不同降水年型施氮量(x)与土壤硝态氮淋失量和玉米产量、吸氮量、氮肥利用率的回归方程

    Table  4   Regression models of nitrogen application rate (x) with soil nitrate-N leaching, maize yield, nitrogen uptake and nitrogen use efficiency in different rainfall years

    年份 Year项目 Item (y)回归方程 Regression equationR2
    丰水年 Rainy year 硝态氮淋失量 Nitrate nitrogen leaching y=5.40×102x+3.52 0.984**
    产量 Yield y=−0.05x2+30.72x+8195.93 0.979**
    吸氮量 Nitrogen uptake y=−1.00×10–3x2+0.87x+78.66 0.997**
    氮肥偏生产力 Partial-factor productivity of nitrogen y=−0.23x+111.93 0.820*
    氮肥农学效率 Agronomic efficiency of nitrogen y=−3.90×10–2x+25.73 0.960**
    氮肥回收率 Recovery efficiency of nitrogen y=−1.04×10–2x+75.07 0.892**
    枯水年 Dry years 硝态氮淋失量 Nitrate nitrogen leaching y=0.050x+2.39 0.997**
    产量 Yield y=−5.70×10–2x2+33.07x+8365.58 0.993**
    吸氮量 Nitrogen uptake y=−1.10×10–4x2+0.74x+113.53 0.999**
    氮肥偏生产力 Partial-factor productivity of nitrogen y=−0.21x+107.43 0.804*
    氮肥农学效率 Agronomic efficiency of nitrogen y=−5.10×10–2x+30.58 0.983**
    氮肥回收率 Recovery efficiency of nitrogen y=−0.13x+83.58 0.958**
      *: P<0.05; **: P<0.01
    下载: 导出CSV
  • [1] 王艳丽, 吴鹏年, 李培富, 等. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230−1237

    WANG Y L, WU P N, LI P F, et al. Effect of organic fertilizer with nitrogen fertilizer on yield and soil fertility status of drip irrigated spring maize[J]. Acta Agronomica Sinica, 2019, 45(8): 1230−1237

    [2] 贾彪, 付江鹏. 基于临界氮浓度的宁夏玉米氮吸收与亏缺模型研究[J]. 农业机械学报, 2020, 51(1): 256−263 doi: 10.6041/j.issn.1000-1298.2020.01.028

    JIA B, FU J P. A model of N uptake and deficit of maize in Ningxia based on critical N concentration[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(1): 256−263 doi: 10.6041/j.issn.1000-1298.2020.01.028

    [3] 叶盛嘉, 郑晨萌, 张影, 等. 氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响[J]. 中国生态农业学报(中英文), 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658

    YE S J, ZHENG C M, ZHANG Y, et al. Effects of N fertilizer reduction with organic fertilizer on productivity and soil properties of winter wheat-summer maize rotation in central Henan[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658

    [4] 孙继颖, 高聚林, 王志刚, 等. 不同类型青贮玉米饲用产量及营养价值对密度调控的响应[J]. 草地学报, 2019, 27(6): 1733−1742

    SUN J Y, GAO J L, WANG Z G, et al. Response of different types of silage maize forage yield and nutritional value to density regulation[J]. Acta Agrestia Sinica, 2019, 27(6): 1733−1742

    [5] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017, 50(11): 1941−1959 doi: 10.3864/j.issn.0578-1752.2017.11.001

    LI S K, ZHAO J R, DONG S T, et al. Progress and prospects of maize cultivation research in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941−1959 doi: 10.3864/j.issn.0578-1752.2017.11.001

    [6] 张爱平, 高霁, 刘汝亮, 等. 应用于水稻生产的增效减负环保型施肥技术比对−以宁夏引黄灌区为例[J]. 农业资源与环境学报, 2015, 32(2): 175−184

    ZHANG A P, GAO J, LIU R L, et al. The comparison of different fertilizer technologies on nitrogen leaching losses and nitrogen use efficiency in rice production — Taking Ningxia Irrigation Region as an example[J]. Journal of Agricultural Resources and Environment, 2015, 32(2): 175−184

    [7]

    QUAN H, WU L H, DING D Y, et al. Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China[J]. Agricultural Water Management, 2022. DOI: 10.1016/j.agwat.2022.107494

    [8] 王西娜, 于金铭, 谭军利, 等. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力[J]. 中国农业科学, 2020, 53(23): 4891−4903 doi: 10.3864/j.issn.0578-1752.2020.23.014

    WANG X N, YU J M, TAN J L, et al. Nitrogen, phosphorus and potassium demand and fertilizer reduction potential of spring wheat in Ningxia Yellow Irrigation Area[J]. Scientia Agricultura Sinica, 2020, 53(23): 4891−4903 doi: 10.3864/j.issn.0578-1752.2020.23.014

    [9]

    GUO J J, FAN J L, XIANG Y Z, et al. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize[J]. Agricultural Water Management, 2022: 261

    [10]

    WANG Y S, LIU Y S, LIU R L, et al. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation[J]. Scientific Reports, 2017, 7(1): 1592 doi: 10.1038/s41598-017-01173-w

    [11] 章明清, 陈防, 林琼, 等. 施肥对菜园土壤养分淋溶流失浓度的影响[J]. 植物营养与肥料学报, 2008, 14(2): 291−299 doi: 10.3321/j.issn:1008-505X.2008.02.014

    ZHANG M Q, CHEN F, LIN Q, et al. Effect of fertilizer application on the concentration of nutrient leaching loss from vegetable gardens[J]. Journal of Plant Nutrition and Fertilizer, 2008, 14(2): 291−299 doi: 10.3321/j.issn:1008-505X.2008.02.014

    [12] 郭丽, 史建硕, 王丽英, 等. 滴灌水肥一体化条件下施氮量对夏玉米氮素吸收利用及土壤硝态氮含量的影响[J]. 中国生态农业学报, 2018, 26(5): 668−676 doi: 10.13930/j.cnki.cjea.170416

    GUO L, SHI J S, WANG L Y, et al. Effect of nitrogen application on nitrogen uptake and utilization and soil nitrate nitrogen content of summer maize under drip irrigation with integrated water and fertilizer[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 668−676 doi: 10.13930/j.cnki.cjea.170416

    [13] 张学军, 赵营, 陈晓群, 等. 氮肥施用量对设施番茄氮素利用及土壤NO3−_N累积的影响[J]. 生态学报, 2007(9): 3761−3768 doi: 10.3321/j.issn:1000-0933.2007.09.026

    ZHANG X J, ZHAO Y, CHEN X Q, et al. Effect of nitrogen fertilizer application on nitrogen utilization and soil NO3-N accumulation in tomatoes[J]. Acta Ecologica Sinica, 2007(9): 3761−3768 doi: 10.3321/j.issn:1000-0933.2007.09.026

    [14]

    LV H F, LIN S, WANG Y F, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental Pollution, 2018, 245: 694−701

    [15]

    WU Y, BIAN S F, LIU Z M, et al. Drip irrigation incorporating water conservation measures: Effects on soil water–nitrogen utilization, root traits and grain production of spring maize in semi-arid areas[J]. Journal of Integrative Agriculture, 2021, 20(12): 3127−3142 doi: 10.1016/S2095-3119(20)63314-7

    [16] 李娟娟, 李利敏, 马理辉. 不同滴灌施肥量对沙地玉米氮效率及硝态氮的影响[J]. 中国土壤与肥料, 2020(5): 56−63 doi: 10.11838/sfsc.1673-6257.19349

    LI J J, LI L M, MA L H. Effects of different drip irrigation fertilization on N efficiency and nitrate nitrogen in sandy maize[J]. Soil and Fertilizer Sciences in China, 2020(5): 56−63 doi: 10.11838/sfsc.1673-6257.19349

    [17] 王素艳, 李欣, 王璠, 等. 宁夏降水资源格局演变特征[J]. 干旱区研究, 2021, 38(3): 733−746 doi: 10.13866/j.azr.2021.03.15

    WANG S Y, LI X, WANG P, et al. Characteristics of the evolution of precipitation resource pattern in Ningxia[J]. Arid Zone Research, 2021, 38(3): 733−746 doi: 10.13866/j.azr.2021.03.15

    [18]

    GUO S L, ZHU H H, DANG T H, et al. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China[J]. Geoderma, 2012, 189/190: 442−450 doi: 10.1016/j.geoderma.2012.06.012

    [19]

    WANG Y, ZHOU M, HOU M, et al. Regulation of nitrogen balance and yield on greenhouse eggplant under biochar addition in Mollisol[J]. Plant, Soil and Environment, 2022, 68(1): 36−48

    [20]

    CAMBOURIS A N, ZEBARTH B J, NOLIN M C, et al. Apparent fertilizer nitrogen recovery and residual soil nitrate under continuous potato cropping: Effect of N fertilization rate and timing[J]. Canadian Journal of Soil Science, 2008, 88(5): 813−825 doi: 10.4141/CJSS07107

    [21] 宁芳, 张元红, 温鹏飞, 等. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777−791 doi: 10.3724/SP.J.1006.2019.83055

    NING F, ZHANG Y H, WEN P F, et al. Response of dryland maize growth and yield to nitrogen application under different precipitation conditions[J]. Acta Agronomica Sinica, 2019, 45(5): 777−791 doi: 10.3724/SP.J.1006.2019.83055

    [22] 刘朋召, 王旭敏, 宁芳, 等. 减量施氮对渭北旱地春玉米产量、氮素利用及土壤硝态氮含量的影响[J]. 应用生态学报, 2020, 31(8): 2621−2629 doi: 10.13287/j.1001-9332.202008.025

    LIU P Z, WANG X M, NING F, et al. Effects of reduced N application on yield, N use and soil nitrate-N content of spring maize in Weibei dryland[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2621−2629 doi: 10.13287/j.1001-9332.202008.025

    [23]

    LAI Z L, FAN J L, YANG R, et al. Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in Northwest China[J]. Agricultural Water Management, 2022. DOI: 10.1016/J.AGWAT.2021.107453 : 263

    [24]

    WOOD C W, TRACY P W, REEVES D W, et al. Determination of cotton nitrogen status with a handheld chlorophyll meter[J]. Journal of Plant Nutrition, 2008, 15(9): 1435−1448

    [25]

    XING H L, ZHOU W B, WANG C, et al. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize[J]. Plant Physiology and Biochemistry, 2021, 166: 1065−1075 doi: 10.1016/j.plaphy.2021.07.014

    [26] 刘朋召, 周栋, 郭星宇, 等. 不同降雨年型旱地冬小麦水分利用及产量对施氮量的响应[J]. 中国农业科学, 2021, 54(14): 3065−3076 doi: 10.3864/j.issn.0578-1752.2021.14.012

    LIU P Z, ZHOU D, GUO X Y, et al. Water use and yield response of dryland winter wheat to N application in different rainfall years[J]. Scientia Agricultura Sinica, 2021, 54(14): 3065−3076 doi: 10.3864/j.issn.0578-1752.2021.14.012

    [27] 任宁, 汪洋, 王改革, 等. 不同降雨年份控释尿素与普通尿素配施对夏玉米产量、氮素利用及经济效益的影响[J]. 植物营养与肥料学报, 2020, 26(4): 681−691 doi: 10.11674/zwyf.19258

    REN N, WANG G Y, WANG G G, et al. Effects of controlled-release urea and regular urea on yield, nitrogen utilization and economic efficiency of summer corn in different rainfall years[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(4): 681−691 doi: 10.11674/zwyf.19258

    [28] 付江鹏, 贾彪, 杨文伟, 等. 基于叶片干物质的滴灌玉米临界氮稀释曲线构建[J]. 应用生态学报, 2020, 31(3): 945−952 doi: 10.13287/j.1001-9332.202003.030

    FU J P, JIA B, YANG W W, et al. Construction of critical nitrogen dilution curve for drip irrigated maize based on leaf dry matter[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 945−952 doi: 10.13287/j.1001-9332.202003.030

    [29] 张富仓, 严富来, 范兴科, 等. 滴灌施肥水平对宁夏春玉米产量和水肥利用效率的影响[J]. 农业工程学报, 2018, 34(22): 111−120 doi: 10.11975/j.issn.1002-6819.2018.22.014

    ZHANG F C, YAN F L, FAN X K, et al. Effect of drip irrigation fertilization level on yield and water and fertilizer use efficiency of spring maize in Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 111−120 doi: 10.11975/j.issn.1002-6819.2018.22.014

    [30]

    HOSSEIN D, NADER K. Interactive effects of nitrogen and drip irrigation rates on root development of corn (Zea mays L.) and residual soil moisture[J]. Gesunde Pflanzen, 2020, 72: 1−15 doi: 10.1007/s10343-019-00495-1

    [31] 贾彪, 李振洲, 王锐, 等. 不同施氮量下覆膜滴灌玉米相对根长密度模型研究[J]. 农业机械学报, 2020, 51(9): 266−273

    JIA B, LI Z Z, WANG R, et al. Modeling the relative root length density of maize under mulch drip irrigation with different N application rates[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(9): 266−273

    [32] 郭星宇, 刘朋召, 王瑞, 等. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262−1272 doi: 10.3724/SP.J.1006.2022.11034

    GUO X Y, LIU P Z, WANG R, et al. Response of dryland winter wheat yield, nitrogen fertilizer utilization and soil nitrogen balance to annual pattern of precipitation and nitrogen application[J]. Acta Agronomica Sinica, 2022, 48(5): 1262−1272 doi: 10.3724/SP.J.1006.2022.11034

    [33] 刘艳妮, 马臣, 于昕阳, 等. 基于不同降水年型渭北旱塬小麦–土壤系统氮素表观平衡的氮肥用量研究[J]. 植物营养与肥料学报, 2018, 24(3): 569−578

    LIU Y N, MA C, YU X Y, et al. Study on nitrogen fertilizer dosage based on the apparent nitrogen balance of wheat-soil system in Weibei dry plateau with different precipitation year types[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(3): 569−578

    [34]

    XU A X, LI L L, XIE J H, et al. Effect of long-term nitrogen addition on wheat yield, nitrogen use efficiency, and residual soil nitrate in a semiarid area of the Loess Plateau of China[J]. Sustainability, 2020, 12(5): 1735−1742 doi: 10.3390/su12051735

    [35]

    CUI Z L, ZHANG F S, CHEN X P, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil N-min test[J]. Field Crops Research, 2008, 105: 48−55 doi: 10.1016/j.fcr.2007.07.008

    [36] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060

    LUO W H, SHI Z J, WANG X M, et al. Effects of water conservation and nitrogen reduction on soil nitrate nitrogen distribution and water nitrogen use efficiency of winter wheat[J]. Acta Agronomica Sinica, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060

    [37] 张春霞, 文宏达, 刘宏斌, 等. 优化施肥对大棚番茄氮素利用和氮素淋溶的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1139−1145 doi: 10.11674/zwyf.2013.0513

    ZHANG C X, WEN H D, LIU H B, et al. Effect of optimal fertilization on nitrogen utilization and nitrogen leaching in greenhouse tomato[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1139−1145 doi: 10.11674/zwyf.2013.0513

    [38] 戴嘉璐, 李瑞平, 李聪聪, 等. 盐渍化灌区玉米施氮量阈值DNDC模型模拟[J]. 农业工程学报, 2021, 37(24): 131−140 doi: 10.11975/j.issn.1002-6819.2021.24.015

    DAI J L, LI R P, LI C C, et al. Simulation of DNDC model with N application threshold for maize in saline irrigated areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 131−140 doi: 10.11975/j.issn.1002-6819.2021.24.015

    [39] 冯浩原, 尹光华, 马宁宁, 等. 不同降水年型地下滴灌追氮对玉米产量的影响[J]. 排灌机械工程学报, 2021, 39(12): 1250−1256

    FENG H Y, YIN G H, MA N N, et al. Effect of subsurface drip irrigation on maize yield in different precipitation years[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(12): 1250−1256

  • 期刊类型引用(12)

    1. 马纪龙,姬丽,马琨,谢铁娜,马建军,李虹,岳翔,苏明,贾彪. 有机肥等氮量替代化肥对玉米氮素吸收利用及土壤氮素淋失的影响. 中国生态农业学报(中英文). 2025(02): 286-300 . 本站查看
    2. 姚举上,刘文娟,马琨,邓江茹. 基于根区水质模型的宁夏引黄灌区春玉米土壤水氮运移及淋溶过程模拟. 农业科学研究(中英文). 2025(01): 1-10 . 百度学术
    3. 马秀霞,仝炳伟,陆阳,王乐. 宁夏引黄灌区典型排域农田退水污染物时空变化规律研究. 陕西水利. 2024(01): 109-111+117 . 百度学术
    4. 王阁,赵园园,韦建玉,王德勋,王政,陈永建,史宏志. 有机肥种类及施用比例对云南洱海烟区植烟土壤氮淋失的影响. 烟草科技. 2024(03): 56-64 . 百度学术
    5. 韩潇杰,任志杰,李双静,田培培,卢素豪,马耕,王丽芳,马冬云,赵亚南,王晨阳. 不同施氮量对土壤团聚体碳氮含量及小麦产量的影响. 中国农业科学. 2024(09): 1766-1778 . 百度学术
    6. 姬丽,马琨,谢铁娜,陈林,李虹,贾彪. 宁夏供港蔬菜田土壤重金属分布特征及生态风险评价. 环境科学. 2024(06): 3512-3522 . 百度学术
    7. 金志强,孙东宝,王庆锁. 基于APSIM模型的旱地春玉米施肥类型及氮肥用量研究. 干旱地区农业研究. 2024(03): 214-224 . 百度学术
    8. 许晓媛,李彤阳,尹高飞,杨壹泽,焦会青,文宏达,王田甜,习斌,李文超. 降雨、施肥对补水河流周边土壤硝态氮迁移分布的影响. 中国生态农业学报(中英文). 2024(07): 1206-1217 . 本站查看
    9. 梁昊枫,党科,范子晗,李哲,常乐乐,李红兵,张岁岐. 不同生态区覆盖方式对玉米氮转运、产量与水氮利用效率的影响. 水土保持研究. 2024(06): 176-187 . 百度学术
    10. 邓江茹,刘文娟,马琨,贾彪,姚举上. 减氮和控释肥替代对宁夏引黄灌区玉米产量及土壤无机氮的影响. 农业环境科学学报. 2024(09): 2069-2079 . 百度学术
    11. 林延荣 ,刘朋召 ,郭星宇 ,张鹏飞 ,邓明珠 ,陈小莉 ,李军 . 平水年和欠水年渭北旱地冬小麦临界氮浓度稀释曲线构建. 农业工程学报. 2023(21): 120-129 . 百度学术
    12. 张晓娟,王湛,杨军学,李凯,程炳文. 氮肥运筹对旱地糜子籽粒产量及氮素吸收的影响. 华北农学报. 2023(S1): 271-279 . 百度学术

    其他类型引用(17)

图(4)  /  表(4)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  289
  • PDF下载量:  87
  • 被引次数: 29
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-10-28
  • 录用日期:  2022-10-28
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-05-09

目录

/

返回文章
返回