Activation of phosphorus pools in red soil by maize and soybean intercropping and its response to phosphorus fertilizer
-
摘要: 红壤固磷能力强, 但合理间作可促进磷吸收, 减少磷固定。本研究基于连续4年的田间定位试验, 分别设置玉米大豆间作(MI)和玉米单作(MM) 2种种植模式, 不施磷肥(P0)、施P2O5 60 kg∙hm−2 (P60)、施P2O5 90 kg∙hm−2 (P90)及施P2O5 120 kg∙hm−2 (P120) 4个施磷水平, 采用改良的Hedley磷分级法, 研究了玉米大豆间作对玉米根际土壤磷组分的影响及其磷梯度响应; 通过随机森林模型, 探究了不同磷组分对土壤磷活化系数(PAC)的贡献。玉米大豆间作提高了红壤施磷处理的总磷含量和磷有效性。与玉米单作相比, P0水平下间作玉米根际土壤速效磷含量显著提高70.4% (P<0.01)。玉米大豆间作显著促进了红壤磷的活化和向活性磷库的转化。在P0和P90水平下, 间作土壤PAC较单作分别显著提高87.4% (P<0.05)和34.6% (P<0.01)。间作使红壤活性磷库占总磷比例平均提高15.1%。其中无机活性磷组分中Resin-P在P120水平下含量较单作显著提高53.7% (P<0.05), 有机活性磷库中碳酸氢钠浸提有机磷(NaHCO3-Po)含量在P0、P120水平下分别显著提高117.0%、25.6% (P<0.05)。间作使红壤稳定性磷库占总磷比例降低1.1%, 差异不显著。在P90水平下, 稳定性磷库中稀盐酸浸提无机磷(Conc. HCl-Pi)含量较单作显著降低40.2% (P<0.01)。随机森林模型显示土壤无机磷是PAC的主要决定因素, 其中去除水溶性无机磷(Resin-Pi)的预测值时, 土壤PAC的均方差增加14.7%。玉米大豆间作显著提高了玉米根际土壤有效磷含量及土壤PAC, 提高了玉米根际土壤活性磷库、中稳性磷库的比例, 同时降低了稳定性磷库的比例, 玉米大豆间作对磷库的活化在中低施磷水平下作用显著, 在高施磷水平下活化作用不明显, 而其中土壤无机磷组分对PAC影响较大。说明玉米大豆间作促进了红壤磷的活化和向活性磷库的转化, 特别是在中低施磷条件下, 而在高施磷(P120)条件下间作红壤磷的活化作用不明显。
-
关键词:
- 玉米大豆间作 /
- 施磷水平 /
- 土壤Hedley磷分级 /
- 磷活化系数 /
- 红壤
Abstract: Phosphorus limits the growth of crops and is easily fixated to red soil; however, reasonable intercropping can promote phosphorus absorption and reduce phosphorus fixation. Studying the effects of maize and soybean intercropping on phosphorus transformation and mobilization in red soil in the southwestern drylands under different phosphorus application levels is of great significance. Based on four consecutive years of field positioning experiments, two planting modes — maize and soybean intercropping and maize monocropping — were set; four phosphorus application levels — no phosphate fertilizer (P0), 60 kg∙hm−2 of P2O5 (P60), 90 kg∙hm−2 of P2O5 (P90), and 120 kg∙hm−2 of P2O5 (P120) — were also implemented. The effects of maize and soybean intercropping on phosphorus fractions in maize rhizosphere soil and the response of soil phosphorus to the phosphorus gradient were studied using modified Hedley phosphorus classification method. The contribution of different phosphorus fractions to the soil phosphorus activation coefficient (PAC) was investigated using a random forest model. Maize and soybean intercropping increased the available phosphorus content and phosphorus availability in red soil under phosphorus fertilization. Compared with maize monocropping, at P0 level, the available phosphorus content of the intercropping maize rhizosphere soil increased significantly by 70.4% (P<0.01). Maize and soybean intercropping greatly promoted the mobilization of phosphorus in red soil and conversion to the active phosphorus pool. At P0 and P90 levels, the soil PAC of intercropping was significantly increased by 87.4% (P<0.05) and 34.6% (P<0.01), respectively, compared with that of monocropping. Intercropping also increased the proportion of active phosphorus pool to total phosphorus by 15.1% averagely. Among them, the Resin-P content in the inorganic active phosphorus component at the P120 level was significantly increased by 53.7% (P<0.05), compared with in monocropping. Furthermore, the NaHCO3-Po (organic P extracted by sodium bicarbonate) content in the organic active phosphorus pool was significantly increased by 117.0% and 25.6%, at the P0 and P120 levels, respectively (P<0.05). Intercropping reduced the proportion of stable phosphorus pool in red soil by 1.1% of the total phosphorus. At P90 level, the content of Conc.HCl-Pi (inorganic P extracted from concentrated hydrochloric acid) in the stable phosphorus pool was significantly decreased by 40.2% (P<0.01) compared with maize monocropping. The random forest model showed that soil inorganic phosphorus was the main determinant of PAC, and the mean square error of PAC increased by 14.7% when the predicted value of water-soluble inorganic phosphorus (Resin-Pi) was removed. Maize and soybean intercropping significantly increased the available phosphorus content and PAC in maize rhizosphere soil, increased the proportion of active phosphorus pool and moderately stable phosphorus pool, and decreased the proportion of stable phosphorus pool in maize rhizosphere soil. The mobilization effect of maize and soybean intercropping on the phosphorus pool was significant at low and medium phosphorus levels, but not at high phosphorus level, while soil inorganic phosphorus components had a greater effect on PAC. The results showed that maize and soybean intercropping promoted the mobilization of phosphorus and the conversion of phosphorus to the active phosphorus pool in red soil, especially under conditions of medium and low phosphorus application. However, the effect of the intercropping of maize and soybean on the mobilization of phosphorus in red soil was not obvious under the condition of high phosphorus application. -
磷(P)是植物所必需的大量元素, 也是保障作物高产稳产的主要肥料之一[1]。红壤是我国南方典型土壤, 因其土壤pH低, 固磷能力强, 磷肥当季利用率仅有10%左右[2], 磷肥固定能力远高于石灰性土壤[3]。因此, 挖掘活化红壤中难溶性磷和红壤磷潜力, 减少红壤磷肥固定, 提高磷肥利用效率具有重要意义。
土壤磷分级能够很好地了解土壤有效磷含量及各磷组分在土壤中的供应状况[4]。改进后的Hedley磷分级法[5]同时兼顾了对无机磷、活性和稳定性有机磷的区分, 更有助于全面评估土壤中各磷素的形态变化[6], 是目前较为合理的磷素分级方法, 已经被越来越多的学者采用[7-9]。
现有研究表明, 豆科(Fabaceae)禾本科(Gramineae)间作可提高作物对磷养分的吸收利用[10-12], Meta分析表明, 间作显著提高了土地利用效率和磷吸收[13]。豆科禾本科间作可改变根系形态, 促进磷的吸收[14-15], 也可通过改变根际土壤pH[16]、促进有机酸分泌[17]、提高磷酸酶活性[18]、改善微生物群落结构[19]等提高土壤磷的有效性。适当施磷肥可增加土壤有效磷含量, 提高作物产量[20]; 提高间作体系地上部磷素吸收, 进一步提高磷素吸收的间作优势[2]。但酸性土壤上, 豆科禾本科作物间作系统的土壤磷库组分变化及间作对红壤磷库的活化作用尚鲜有报道。因此, 本研究以普遍种植的玉米(Zea mays L.)/大豆(Glycine max L.)间作系统为研究对象, 通过连续4年的田间定位试验, 探讨在不同施磷水平下, 间作对红壤玉米根际土壤磷库组分及磷有效性的影响, 揭示间作对红壤磷库转化的作用, 以期为利用合理间作提高红壤磷有效性和促进磷肥高效利用提供科学依据。
1. 材料与方法
1.1 试验地基本概况
采用连续田间定位试验, 该田间定位小区试验始于2017年。本研究数据为连续定位试验的第4年(2020年5—10月, 每年的11月至次年4月试验地保持休耕模式 )。试验在云南省昆明市官渡区大板桥镇小哨村旱地红壤试验基地(E102°41′~E103°03′、N24°54′~E25°13′)进行, 该地海拔1959 m, 年平均气温15 ℃, 年降水量820 mm。试验地为典型山原红壤, 红壤养分和有机质含量低、酸性强。2017年表层土壤基本理化性质如下: pH 4.78, 硝态氮2.19 mg∙kg−1, 速效磷4.64 mg∙kg−1, 速效钾134.8 mg∙kg−1, 全磷0.19 g∙kg−1, 有机质13.18 g∙kg−1, 容重1.35 g∙cm−3。
1.2 供试材料
供试玉米为当地主栽品种‘云瑞88’, 供试大豆为‘开育12’, 试验用氮肥为尿素(含N 46%), 磷肥为普通过磷酸钙(含P2O5 16%), 钾肥为硫酸钾(K2O 52%)。
1.3 试验设计
田间定位试验采用裂区设计: 主处理为种植模式, 副处理为施磷水平。2种种植模式分别为玉米单作(MM)和玉米大豆间作(MI)。4种施磷水平分别为施P2O5 0 kg∙hm−2、60 kg∙hm−2、90 kg∙hm−2和120 kg∙hm−2 (分别记为P0、P60、P90和P120)。共8个处理, 每处理3次重复, 共24个小区, 采用随机区组排列, 每小区面积为6.5 m×4 m=26 m2。
玉米单作: 玉米行距均50 cm, 每行种植15株, 玉米株距25 cm, 距边25 cm。玉米大豆间作: 采用2行玉米∶2行大豆种植, 玉米、大豆行距均50 cm, 株距均为25 cm, 每行种植15株, 距边25 cm。
玉米供试氮肥、钾肥用量均为当地常规施肥量, N 250 kg∙hm−2, K2O 75 kg∙hm−2。磷肥与钾肥做基肥一次施入, 玉米氮肥施用分3次, 基肥40%, 小喇叭口期追肥25%, 大喇叭口期追肥35%。氮磷钾肥每年施用情况一致。种植后在玉米小喇叭口期之前每周灌溉一次, 每次每小区约30 L水, 大喇叭口期后灌溉方式主要为降雨。试验地不喷洒农药, 定期除草。所有试验小区田间管理措施保持一致。
1.4 样品采集与测定
土壤样品采集: 在玉米大喇叭口期, 避开小区边际和中间产区, 随机选取5株长势均一的玉米, 采用抖土法收集玉米根际土, 混匀后选取一部分带回实验室, 风干、磨样、过筛后用4分法取土并保存于写好标签的干燥自封袋中用于测定土壤指标。
土壤速效磷采用0.5 mol∙L−1 NaHCO3浸提-钼兰比色法测定; 土壤全磷采用NaOH熔融法测定[21]; 土壤磷分级采用经Moir和Tiessen改良后的Hedley磷分级法[22], 分为树脂磷(Resin-P)、碳酸氢钠浸提无机磷(NaHCO3-Pi)、碳酸氢钠浸提有机磷(NaHCO3-Po)、氢氧化钠浸提无机磷(NaOH-Pi)、氢氧化钠浸提有机磷(NaOH-Po)、稀盐酸浸提无机磷(Dil. HCl-Pi)、浓盐酸浸提无机磷(Conc. HCl-Pi)、浓盐酸浸提有机磷(Conc. HCl-Po)、残余态磷(Residual-P)。
其中活性磷库主要包括Resin-P、NaHCO3-Pi、NaHCO3-Po, 中稳性磷库主要包括NaOH-Pi、NaOH-Po、Dil. HCl-Pi, 稳定性磷库主要包括Conc. HCl-Pi、Conc. HCl-Po、Residual-P[23]。
1.5 数据分析方法
磷活化系数(phosphorus activation coefficient, PAC[24])采用下式计算:
$$ {\rm{PAC}}={\rm{AP}}/{\rm{TP}} \times 100 $$ 式中: PAC指磷活化系数(%), AP为土壤有效磷含量(mg∙kg−1), TP为土壤全磷含量(mg∙kg−1)。
使用Microsoft Excel 2016软件进行数据初步整理。用SPSS 20.0软件进行处理间差异显著性分析(多重比较与T检验)和施磷水平与种植模式交互作用分析。Origin 2021软件对数据作图。随机森林分析采用R.4.0.2软件randomForest程序包计算, 并分别用rfUtilities程序包和rfPermute程序包检验模型和每个变量的P值(P<0.05)[25]。
2. 结果与分析
2.1 玉米大豆间作对红壤磷有效性的影响
单作玉米和间作玉米的根际土壤有效磷含量变化如图1A所示。在玉米大喇叭口期, 施用磷肥显著增加了玉米根际土壤有效磷含量, 在P90水平下, 玉米根际土壤有效磷含量最高。
图 1 不同施磷水平下玉米大豆间作对红壤玉米根际土壤有效磷(A)和Resin-P (B)含量的影响MM和MI分别为玉米单作和玉米大豆间作; 图中不同小写字母表示单作模式或间作模式下不同施磷水平间差异显著(P<0.05); 字母后的*和**分别表示同一施磷水平下单作和间作间差异显著(P<0.05). MM and MI are maize monoculture and maize/soybean intercropping. Different lowercase letters indicate significant differences among different P application levels for the monoculture or intercropping mode (P<0.05). * and ** after letters indicate significant differences between monoculture and intercropping under the same P application level at P<0.05.Figure 1. Effects of maize and soybean intercropping under different P application levels on the contents of available P (A) and Resin-P (B) in maize rhizosphere soil of red soil在无磷和中低施磷水平下, 玉米大豆间作对大喇叭口期玉米根际土壤有效磷含量有较明显的促进作用。与单作玉米相比, 在P0处理下, 间作玉米根际土壤有效磷含量显著增加70.4% (P<0.01), 在P60和P90处理下, 间作较单作分别增加20.6%和20.5%, 但差异不显著。
由图1B可以看出, 在玉米大喇叭口期, 施用磷肥显著增加了单作玉米和间作玉米根际土壤Resin-P含量, 均在P120水平下玉米根际土壤Resin-P含量最高。与单作玉米相比, 在P120水平下, 间作玉米根际Resin-P含量显著增加53.7% (P<0.05)。
2.2 玉米大豆间作对红壤磷活化的影响
土壤磷活化系数(PAC)表征土壤中磷素的活化能力, 即土壤中的全磷转化成有效磷的难易程度。土壤PAC越高, 土壤有效磷在全磷中占比越大, 即磷素有效性也越大。连续4年定位试验之后, 施用磷肥显著提高了红壤磷的活化系数(图2), 以P90处理的土壤PAC最高, 进一步增加磷肥并未进一步显著提高红壤磷的活化系数。
图 2 不同施磷水平下玉米大豆间作对红壤玉米根际土壤磷活化系数的影响MM和MI分别为玉米单作和玉米大豆间作; 图中不同小写字母表示单作模式或间作模式下不同施磷水平间差异显著性(P<0.05); 字母后的*和**分别表示同一施磷水平下单作和间作间差异显著(P<0.05). MM and MI are maize monoculture and maize/soybean intercropping. Different lowercase letters indicate significant differences among different P application levels for the monoculture or intercropping mode (P<0.05). * and ** after letters indicate significant differences between monoculture and intercropping under the same P application level at P<0.05.Figure 2. Effects of maize and soybean intercropping under different P application levels on P activation coefficient of maize rhizosphere soil in red soil玉米大豆间作促进了红壤磷的活化。在P0、P90处理下, 与单作玉米相比, 间作玉米根际土壤PAC分别显著增加87.4% (P<0.05)和34.6% (P<0.01); 但在P120处理下, 间作玉米根际土壤PAC显著低于单作。故, P0水平下间作对PAC的促进效应最为显著, 适量施用磷肥(P90)促进红壤磷的活化效果也较为显著。
2.3 间作和施磷水平对土壤磷有效性的交互作用
结合图1、图2结果, 并由表1可知, 种植模式和施磷水平均显著提高玉米根际土壤有效磷和Resin-P含量及PAC (P<0.05), 且二者对玉米根际土壤Resin-P含量和PAC均有显著交互作用(表1)。种植模式和施磷水平对玉米根际土壤有效磷含量无显著交互作用。
表 1 种植模式和施磷水平对玉米根际土壤有效磷含量、Resin-P含量和磷活化系数的影响Table 1. Effects of planting pattern and P application level on available P content, Resin-P content and P activation coefficient in maize rhizosphere soil因子 Factor 有效磷 Available P 树脂磷 Resin-P 磷活化系数 P activation coefficient 种植模式 Planting pattern (Pp) * ** ** 磷水平 P application level (P) ** ** ** Pp×P ns * ** *: P<0.05; **: P<0.01; ns: P>0.05. 2.4 玉米大豆间作对红壤磷库形态的影响
如图3所示, 在不施磷(P0)下, 土壤主要磷库是稳定性磷库; 在施磷(P60、P90、P120)条件下, 土壤主要磷库主要是中稳性磷库, 活性磷库是最小的磷库。图4表明, 在不施磷(P0)下, 主要磷组分是Residual-P, 占总磷的33%以上; 其次是Conc.HCl-P, 占总磷的27%以上; NaHCO3-Po、Dil.HCl-Pi、NaHCO3-Pi、Resin-Pi约占总磷的3%。在施磷(P60、P90、P120)条件下, 最大的磷组分是NaOH-Pi, 占总磷的30%以上; NaOH-Po占总磷20%左右; NaHCO3-Po、Dil.HCl-Pi、Resin-Pi占总磷2%以上; 施磷条件下活性磷库中的NaHCO3-Pi占总磷的百分比上升到2%~3%。
图 3 不同施磷水平下玉米大豆间作对红壤玉米根际土壤不同活性磷库的影响M和I分别为玉米单作和玉米大豆间作; P0、P60、P90和P120分别表示施P2O5 0 kg∙hm−2、60 kg∙hm−2、90 kg∙hm−2和120 kg∙hm−2。图中刻度线的值表示磷库的含量值, 单位为mg∙kg−1。M and I are maize monoculture and maize/soybean intercropping; P0, P60, P90 and P120 are P application levels of 0 kg(P2O5)∙hm−2, 60 kg(P2O5)∙hm−2, 90 kg(P2O5)∙hm−2 and 120 kg(P2O5)∙hm−2. The value of the scale line represents the P pool content in mg∙kg−1.Figure 3. Effects of maize and soybean intercropping under different P application levels on different active P pools in maize rhizosphere soil of red soil图 4 不同施磷水平下与大豆间作的红壤玉米根际土壤各磷组分占总磷百分比MM和MI分别为玉米单作和玉米大豆间作。Resin-Pi为交换性树脂浸提的树脂磷, NaHCO3-Pi为碳酸氢钠浸提的无机磷, NaHCO3-Po为碳酸氢钠浸提的有机磷, NaOH-Pi为氢氧化钠浸提的无机磷, NaOH-Po为氢氧化钠浸提的有机磷, Dil.HCl-Pi为稀盐酸浸提的无机磷, Conc.HCl-Pi为浓盐酸浸提的无机磷, Conc.HCl-Po为浓盐酸浸提的有机磷, Residual-P为残余态磷。MM and MI are maize monoculture and maize/soybean intercropping. Resin-Pi is Resin P extracted by exchange Resin, NaHCO3-Pi is inorganic P extracted by sodium bicarbonate, NaHCO3-Po is organic P extracted by sodium bicarbonate, NaOH-Pi is inorganic P extracted by sodium hydroxide, NaOH-Po is organic P extracted by sodium hydroxide, Dil.HCl-Pi is inorganic P extracted from dilute hydrochloric acid, Conc.HCl-Pi is inorganic P extracted from concentrated hydrochloric acid, Conc.HCl-Po is organic P extracted from concentrated hydrochloric acid, and Residue-P is Residual P.Figure 4. Percentages of P components in total P in rhizosphere soil of maize intercropped with soybean in red soil在不同施磷水平下, 单作玉米旱地红壤活性磷库平均占3.6%, 中稳定性磷库平均占45.9%, 稳定性磷库平均占50.6%; 间作玉米旱地红壤活性磷库平均占4.1%, 中稳性磷库平均占45.9%, 稳定性磷库平均占50.0%。其中, 玉米大豆间作分别提高了红壤活性磷库中Resin-Pi和NaHCO3-Pi组分含量的36.3%和12.1%, 降低了稳定性磷库中Conc.HCl-Pi组分含量的1.9%。在高施磷(P120)水平下, 活性磷库间作比单作显著提高10.6%, 而中稳性磷库、稳定性磷库间作比单作分别降低0.5%、0.7%。相对于单作玉米, P0水平下, 间作玉米显著增加土壤活性磷库中NaHCO3-Po含量的117.0% (P<0.01); P120水平下, 间作玉米分别显著提高了玉米根际土壤活性磷库中Resin-Pi、NaHCO3-Po组分含量的53.7%、25.6% (P<0.05)。P90、P120水平下, 间作玉米显著降低了玉米根际土壤稳定性磷库中Conc.HCl-Pi、Cone HCl-Po组分含量的40.2%、11.5% (P<0.01)。
2.5 土壤磷组分对磷活化的影响
土壤磷活化用PAC表征, 以土壤磷组分与PAC构建随机森林模型, 预测结果如图5所示, 该回归的R2为0.7317, 可以解释73.17%的总方差, 表明土壤各磷组分与土壤磷活化系数密切相关(P=0.01)。Resin-Pi、NaOH-Pi (P<0.01)和Conc HCl-Pi、Residual-P (P<0.05)是土壤PAC主要决定因素。当分别去除Resin-Pi、NaOH-Pi、Conc HCl-Pi以及Residual-P的预测值时, 土壤PAC的均方差分别增加14.7%、7.2%、6.8%和10.2%。由此可以看出决定土壤PAC的因素主要是无机磷组分。而无机磷组分中, 以Resin-Pi、NaOH-Pi和Conc HCl-Pi为主要因子。
图 5 大豆间作的红壤玉米土壤磷组分对磷活化系数(PAC)的影响**和*分别表示剔除横坐标对应因子预测对象均方差增加量在P<0.01和P<0.05水平显著。Resin-Pi、 NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、NaOH-Po、 Dil.HCl-Pi、Conc.HCl-Pi、Conc.HCl-Po和Residual-P说明见图4的图注。** and * in the figure indicate that the increase in the mean square error of the predicted object after excluding the corresponding factor on the abscissa (IncMSE) is significant at the level of P<0.01 and P<0.05, respectively. Description of Resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, NaOH-Po, Dil.HCl-Pi, Conc.HCl-Pi, Conc.HCl-Po, Residual-P are shown in the note of Figure 4.Figure 5. Effect of soil P components on P activation coefficient (PAC) in rhizosphere soil of maize intercropped with soybean in red soil3. 讨论
3.1 红壤磷组分对磷活化系数的影响
本研究结果表明, 土壤无机磷库(Resin-Pi、NaOH-Pi及Conc HCl-Pi)对土壤磷转化系数的贡献最大, 这些组分是亚热带土壤中的主要磷来源[26]。用NaOH提取的磷被认为是土壤中长期的生物有效磷[26], 而施肥通常会导致土壤中用NaOH提取的磷素的累积, 该部分提取的磷主要是土壤中与Fe、Al结合的磷。并且, 氧化物结合态磷可能是亚热带土壤中重要的磷组分, 它可能有助于磷释放到土壤溶液中[5]。已有许多研究通过各形态的磷与有效磷的相关性来评价其有效性: 杨芳等[27]对旱地红壤的研究结果表明, 对有效磷贡献最大的磷素形态是NaHCO3-Pi、NaOH-Pi和存在于土壤团聚体内表面的Pi; 颜晓军等[28]对赤砂土的研究结果表明, Resin-Pi、NaHCO3-Pi和NaHCO3-Po的生物有效性最高。土壤各磷素形态对磷活化贡献的大小和方式受土壤性质、酸碱度、母质、湿度、微生物活性及铁铝氧化物含量等一系列生物和非生物因素影响, 不同研究结果中存在较多矛盾。我们的试验结果表明, 无机磷含量高且对磷活化贡献率高(图5), 有机磷库利用率低可能是提供给植物的无机磷含量足以保证作物的正常生长。
3.2 玉米大豆间作对红壤磷组分的影响
本研究结果表明, 间作显著提高了土壤活性磷库中的Resin-Pi和NaHCO3-Po组分。活性磷库(Resin-Pi、NaHCO3-Pi和NaHCO3-Po)是植物吸收的最有效的部分[28]。土壤磷组分的变化也取决于物种特性, Liao等[29]通过石灰性土壤中玉米||蚕豆(Vicia faba L.)间作试验表明, 蚕豆主要消耗土壤活性和中活性磷组分, 因为它能够释放根系分泌物以提高土壤中磷的利用率, 而玉米相反, 玉米改良根际的能力相对较弱, 有报道称其无法利用酸溶性Pi库[30-31]。本研究结果表明, 在不同施磷水平下, 与单作玉米相比, 玉米大豆间作显著提高了红壤活性磷库、中稳性磷库的比例, 降低了稳定性磷库的比例, 显著促进了红壤磷的活化和向活性磷库的转化。与前人研究结果一致。
Liao等[29]研究结果表明, Dil. HCl-Pi是土壤中占比最大的磷组分, 我们的结果与之不同, 其原因可能是该试验在石灰性土壤(pH=7.6)进行。用HCl-P浸提出来的磷(Dil.HCl-Pi、Conc.HCl-Pi和Conc.HCl-Po的总和)是石灰性土壤中的主要磷组分[32]。本研究结果表明, 在酸性土壤下, 中稳性及稳定性磷(NaOH-Pi、NaOH-Po、Conc. HCl-Pi、Residual-P之和)是主要的磷组分, 占本研究总磷的90%。本研究在pH=4.8的条件下进行, 由于酸性土壤中铁铝氧化物含量高, NaOH-P是吸附于铁铝氧化物表面的磷素, 经过磷酸酶的作用可作为活性磷库的补充磷源[33], 所以本研究用NaOH浸提出来的磷含量高, 这与前人[28]在红壤上的研究结果一致。在不施磷处理中, NaOH-P占全磷的30%, 而在施磷处理中, NaOH-P能占全磷的50%以上。
3.3 玉米大豆间作对红壤磷有效性的影响
土壤有效磷是指土壤中可被植物直接吸收利用的磷的总称, Resin-Pi是用阴离子交换树脂膜置换出来的磷, 是与土壤溶液磷处于平衡状态时的土壤固相中的无机磷, 是土壤活性磷库中的一部分, 在土壤溶液磷被吸收之后可迅速进行补充[5]。在本试验中, 在不同施磷水平下, 与玉米单作相比, 玉米大豆间作在从土壤累积的磷素中获取磷具有更大的优势, 玉米大豆间作能活化土壤中难溶性无机磷, 转化为有效磷。Ndayisaba等[34]在玉米与金钱草[Desmodium styracifolium (Osbeck) Merr.]间作系统中发现, 与单作玉米相比, 间作后金钱草植物的根通过分泌质子、羧酸、有机酸或磷酸酶, 从而促进磷从其他无法释放的形式中释放出来, 提高了土壤中有效磷的含量。间作也能提高土壤大团聚体, 耕层土壤有效磷与各粒径土壤团聚体有效磷呈显著正相关关系[35]。因此, 间作具有提高土壤有效磷的潜力。
本研究表明, 间作显著提高了土壤磷活化系数。土壤磷活化系数常用来表征土壤磷素有效化程度。长期不施磷肥处理(P0)中, 玉米大豆间作对磷素的活化作用显著高于其他施磷水平, 表明间作效应在低磷条件下更显著。可能是由于在缺磷条件中, 间作种间竞争诱导根构型(根长、根表面积等)发生了改变[36], 促进磷素解吸供植物吸收利用[37]; 或玉米根系与丛枝菌根真菌共生, 形成菌根, 促进了有效磷含量的增加[38]。而玉米大豆间作, 玉米根系菌根侵染率、侵染密度和丛枝丰度均显著高于单作[39]。菌根定植诱导的磷酸盐转运蛋白基因即ZmPHT1: 6在玉米中的表达受到土壤植物有效磷增加的强烈抑制, 在高磷条件中, 土壤有效磷含量已经相对充足, 此时玉米不再需要豆科植物的例如分泌有机酸等一系列活化机制来活化土壤有效磷。而在此条件下, 间作能降低磷素解吸, 有效缓解磷素损失[37], 这也可能是导致在高磷条件下土壤有效磷含量降低的原因。所以在有效磷含量较低的情况下, 玉米大豆间作效应较高磷情况更显著。本试验结果表明, 在土壤缺磷条件下, 玉米与大豆间作有明显的种间促进作用, 显著增加红壤有效磷和土壤Resin-Pi, 能够改善土壤中磷肥的固定, 活化土壤中的磷, 这与前人研究结果相符。而高磷水平, 间作活化土壤磷作用不显著。
4. 结论
研究结果表明, 玉米大豆间作增加了土壤磷有效性, 促进了土壤磷活化。相对于单作玉米, 玉米大豆间作提高37.3%的土壤有效磷含量及41.7%土壤磷活化系数。
玉米大豆间作提高了红壤活性磷库、中稳性磷库的比例, 降低了稳定性磷库的比例。但间作对土壤磷库的活化在中低施磷水平下作用最显著, 在高施磷水平土壤本身磷含量充足, 活化不显著。土壤无机磷组分对土壤磷活化系数影响较大, 主要以Resin-Pi和NaOH-Pi为主。
所以, 在生产实践中, 耕地土壤有效磷含量低时, 可采用间作模式增加土壤有效磷含量, 提高磷素利用率; 而在高磷土壤中, 可采取单作模式提高种植效率。但是, 本试验在西南旱地红壤研究玉米大豆间作对磷活化的影响仍具有一定的片面性, 在其他类型土壤是否具有一样的结论还需进一步深入研究。
-
图 1 不同施磷水平下玉米大豆间作对红壤玉米根际土壤有效磷(A)和Resin-P (B)含量的影响
MM和MI分别为玉米单作和玉米大豆间作; 图中不同小写字母表示单作模式或间作模式下不同施磷水平间差异显著(P<0.05); 字母后的*和**分别表示同一施磷水平下单作和间作间差异显著(P<0.05). MM and MI are maize monoculture and maize/soybean intercropping. Different lowercase letters indicate significant differences among different P application levels for the monoculture or intercropping mode (P<0.05). * and ** after letters indicate significant differences between monoculture and intercropping under the same P application level at P<0.05.
Figure 1. Effects of maize and soybean intercropping under different P application levels on the contents of available P (A) and Resin-P (B) in maize rhizosphere soil of red soil
图 2 不同施磷水平下玉米大豆间作对红壤玉米根际土壤磷活化系数的影响
MM和MI分别为玉米单作和玉米大豆间作; 图中不同小写字母表示单作模式或间作模式下不同施磷水平间差异显著性(P<0.05); 字母后的*和**分别表示同一施磷水平下单作和间作间差异显著(P<0.05). MM and MI are maize monoculture and maize/soybean intercropping. Different lowercase letters indicate significant differences among different P application levels for the monoculture or intercropping mode (P<0.05). * and ** after letters indicate significant differences between monoculture and intercropping under the same P application level at P<0.05.
Figure 2. Effects of maize and soybean intercropping under different P application levels on P activation coefficient of maize rhizosphere soil in red soil
图 3 不同施磷水平下玉米大豆间作对红壤玉米根际土壤不同活性磷库的影响
M和I分别为玉米单作和玉米大豆间作; P0、P60、P90和P120分别表示施P2O5 0 kg∙hm−2、60 kg∙hm−2、90 kg∙hm−2和120 kg∙hm−2。图中刻度线的值表示磷库的含量值, 单位为mg∙kg−1。M and I are maize monoculture and maize/soybean intercropping; P0, P60, P90 and P120 are P application levels of 0 kg(P2O5)∙hm−2, 60 kg(P2O5)∙hm−2, 90 kg(P2O5)∙hm−2 and 120 kg(P2O5)∙hm−2. The value of the scale line represents the P pool content in mg∙kg−1.
Figure 3. Effects of maize and soybean intercropping under different P application levels on different active P pools in maize rhizosphere soil of red soil
图 4 不同施磷水平下与大豆间作的红壤玉米根际土壤各磷组分占总磷百分比
MM和MI分别为玉米单作和玉米大豆间作。Resin-Pi为交换性树脂浸提的树脂磷, NaHCO3-Pi为碳酸氢钠浸提的无机磷, NaHCO3-Po为碳酸氢钠浸提的有机磷, NaOH-Pi为氢氧化钠浸提的无机磷, NaOH-Po为氢氧化钠浸提的有机磷, Dil.HCl-Pi为稀盐酸浸提的无机磷, Conc.HCl-Pi为浓盐酸浸提的无机磷, Conc.HCl-Po为浓盐酸浸提的有机磷, Residual-P为残余态磷。MM and MI are maize monoculture and maize/soybean intercropping. Resin-Pi is Resin P extracted by exchange Resin, NaHCO3-Pi is inorganic P extracted by sodium bicarbonate, NaHCO3-Po is organic P extracted by sodium bicarbonate, NaOH-Pi is inorganic P extracted by sodium hydroxide, NaOH-Po is organic P extracted by sodium hydroxide, Dil.HCl-Pi is inorganic P extracted from dilute hydrochloric acid, Conc.HCl-Pi is inorganic P extracted from concentrated hydrochloric acid, Conc.HCl-Po is organic P extracted from concentrated hydrochloric acid, and Residue-P is Residual P.
Figure 4. Percentages of P components in total P in rhizosphere soil of maize intercropped with soybean in red soil
图 5 大豆间作的红壤玉米土壤磷组分对磷活化系数(PAC)的影响
**和*分别表示剔除横坐标对应因子预测对象均方差增加量在P<0.01和P<0.05水平显著。Resin-Pi、 NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、NaOH-Po、 Dil.HCl-Pi、Conc.HCl-Pi、Conc.HCl-Po和Residual-P说明见图4的图注。** and * in the figure indicate that the increase in the mean square error of the predicted object after excluding the corresponding factor on the abscissa (IncMSE) is significant at the level of P<0.01 and P<0.05, respectively. Description of Resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, NaOH-Po, Dil.HCl-Pi, Conc.HCl-Pi, Conc.HCl-Po, Residual-P are shown in the note of Figure 4.
Figure 5. Effect of soil P components on P activation coefficient (PAC) in rhizosphere soil of maize intercropped with soybean in red soil
表 1 种植模式和施磷水平对玉米根际土壤有效磷含量、Resin-P含量和磷活化系数的影响
Table 1 Effects of planting pattern and P application level on available P content, Resin-P content and P activation coefficient in maize rhizosphere soil
因子 Factor 有效磷 Available P 树脂磷 Resin-P 磷活化系数 P activation coefficient 种植模式 Planting pattern (Pp) * ** ** 磷水平 P application level (P) ** ** ** Pp×P ns * ** *: P<0.05; **: P<0.01; ns: P>0.05. -
[1] XU R B, LI T, SHEN M, et al. Evidence for a dark septate endophyte (Exophiala pisciphila, H93) enhancing phosphorus absorption by maize seedlings[J]. Plant and Soil, 2020, 452(1/2): 249−266
[2] 覃潇敏, 农玉琴, 骆妍妃, 等. 施磷量对玉米-大豆间作根际红壤无机磷形态及磷吸收的影响[J]. 中国土壤与肥料, 2022(4): 9−16 QIN X M, NONG Y Q, LUO Y F, et al. Effects of different phosphorus rates on inorganic phosphorus forms in rhizosphere red soil and phosphorus uptake in maize and soybean intercropping[J]. Soil and Fertilizer Sciences in China, 2022(4): 9−16
[3] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95−123 doi: 10.1146/annurev-arplant-050213-035949
[4] 吴璐璐, 柳小琪, 张泽兴, 等. 吉林省典型土壤磷素形态及有效性[J]. 西北农业学报, 2021, 30(5): 737−745 doi: 10.7606/j.issn.1004-1389.2021.05.013 WU L L, LIU X Q, ZHANG Z X, et al. Forms and availability of phosphorus in typical soil of Jilin Province[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(5): 737−745 doi: 10.7606/j.issn.1004-1389.2021.05.013
[5] HEDLEY M J, STEWART J W B. Method to measure microbial phosphate in soils[J]. Soil Biology and Biochemistry, 1982, 14(4): 377−385 doi: 10.1016/0038-0717(82)90009-8
[6] 樊彦波, 李晓秀, 龚艳伟. 不同复垦模式下改进后的Hedley磷分级的研究[J]. 首都师范大学学报(自然科学版), 2014, 35(3): 50−56 doi: 10.19789/j.1004-9398.2014.03.011 FAN Y B, LI X X, GONG Y W. A research of improved hedley phosphate fractionation in different reclamation mode[J]. Journal of Capital Normal University (Natural Science Edition), 2014, 35(3): 50−56 doi: 10.19789/j.1004-9398.2014.03.011
[7] 徐晓峰, 米倩, 刘迪, 等. 磷肥施用量对石灰性土壤磷组分和作物磷积累量的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1857−1866 XU X F, MI Q, LIU D, et al. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857−1866
[8] NAKAYAMA Y, WADE J, MARGENOT A J. Does soil phosphomonoesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation?[J]. Geoderma, 2021, 401: 115279 doi: 10.1016/j.geoderma.2021.115279
[9] WANG J P, WU Y H, ZHOU J, et al. Air-drying changes the distribution of Hedley phosphorus pools in forest soils[J]. Pedosphere, 2020, 30(2): 272−284 doi: 10.1016/S1002-0160(17)60456-9
[10] LI X F, WANG C B, ZHANG W P, et al. The role of complementarity and selection effects in P acquisition of intercropping systems[J]. Plant and Soil, 2018, 422(1/2): 479−493
[11] SAHARAN K, SCHÜTZ L, KAHMEN A, et al. Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria[J]. Frontiers in Environmental Science, 2018, 6: 46 doi: 10.3389/fenvs.2018.00046
[12] ZHANG Y K, CHEN F J, LI L, et al. The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems[J]. Science China (Life Sciences), 2012, 55(11): 993−1001 doi: 10.1007/s11427-012-4396-6
[13] TANG X Y, ZHANG C C, YU Y, et al. Intercropping legumes and cereals increases phosphorus use efficiency: a meta-analysis[J]. Plant and Soil, 2021, 460(1/2): 89−104
[14] ZHANG D S, ZHANG C C, TANG X Y, et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize[J]. New Phytologist, 2016, 209(2): 823−831 doi: 10.1111/nph.13613
[15] 王宇蕴, 李兰, 郑毅, 等. 基于根系形态对磷吸收的贡献解析小麦||蚕豆间作促进磷吸收的作用[J]. 中国生态农业学报(中英文), 2020, 28(7): 954−959 WANG Y Y, LI L, ZHENG Y, et al. Contribution of root morphology to phosphorus absorption in wheat and faba bean intercropping system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 954−959
[16] 张德闪, 王宇蕴, 汤利, 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系[J]. 植物营养与肥料学报, 2013, 19(1): 127−133 ZHANG D S, WANG Y Y, TANG L, et al. Effects of wheat and fababean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 127−133
[17] ZHAN F D, QIN L, GUO X H, et al. Cadmium and lead accumulation and low-molecular-weight organic acids secreted by roots in an intercropping of a cadmium accumulator Sonchus asper L. with Vicia faba L.[J]. RSC Advances, 2016, 6(40): 33240−33248 doi: 10.1039/C5RA26601G
[18] 赵雅姣, 刘晓静, 吴勇, 等. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征[J]. 中国沙漠, 2020, 40(3): 219−228 ZHAO Y J, LIU X J, WU Y, et al. Rhizosphere soil nutrients, enzyme activities and microbial community characteristics in legume-cereal intercropping system in Northwest China[J]. Journal of Desert Research, 2020, 40(3): 219−228
[19] WANG G Z, BEI S K, LI J P, et al. Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping[J]. Journal of Applied Ecology, 2021, 58(3): 496−506 doi: 10.1111/1365-2664.13802
[20] 李海叶, 黄少欣, 朱东宇, 等. 云南中、低供磷能力土壤玉米最佳施磷量研究[J]. 植物营养与肥料学报, 2022, 28(6): 1039−1046 LI H Y, HUANG S X, ZHU D Y, et al. Optimizing phosphate fertilization in relation to phosphorus supply capacity of soils in Yunnan maize producing areas[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1039−1046
[21] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
[22] MOIR J, TIESSEN H. Characterization of available P by sequential extraction[M]. CARTER M R, GREGORICH E G. Soil Sampling and Methods of Analysis. Second Edition. Panama City: CRC Press, 1993
[23] NWOKE O C, VANLAUWE B, DIELS J, et al. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils[J]. Agriculture, Ecosystems & Environment, 2003, 100(2/3): 285−294
[24] 陈露, 王秀斌, 朱瑞利, 等. 长江中下游小麦产量、土壤酶活性及微生物群落结构对磷肥减施的响应[J]. 植物营养与肥料学报, 2021, 27(3): 392−402 doi: 10.11674/zwyf.20506 CHEN L, WANG X B, ZHU R L, et al. Response of wheat yield and soil microbial activity to phosphorus fertilizer reduction in the middle and lower reaches of the Yangtze River[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 392−402 doi: 10.11674/zwyf.20506
[25] 陈利军, 蒋瑀霁, 王浩田, 等. 长期施用有机物料对旱地红壤磷组分及磷素有效性的影响[J]. 土壤, 2020, 52(3): 451−457 doi: 10.13758/j.cnki.tr.2020.03.004 CHEN L J, JIANG Y J, WANG H T, et al. Effects of long-term application of organic materials on phosphorus fractions and availability in red soil[J]. Soils, 2020, 52(3): 451−457 doi: 10.13758/j.cnki.tr.2020.03.004
[26] RHEINHEIMER D S, ANGHINONI I, KAMINSKI J. Depleção do fósforo inorgânico de diferentes frações provocada pela extração sucessiva com resina em diferentes solos e manejos[J]. Revista Brasileira De Ciência Do Solo, 2000, 24(2): 345−354
[27] 杨芳, 何园球, 李成亮, 等. 不同施肥条件下红壤旱地磷素形态及有效性分析[J]. 土壤学报, 2006, 43(5): 793−799 doi: 10.3321/j.issn:0564-3929.2006.05.013 YANG F, HE Y Q, LI C L, et al. Effect of fertilization on phosphorus forms and its availability in upland red soil[J]. Acta Pedologica Sinica, 2006, 43(5): 793−799 doi: 10.3321/j.issn:0564-3929.2006.05.013
[28] 颜晓军, 叶德练, 郑朝元, 等. 磷肥投入对赤砂土磷形态累积及有效性的影响[J]. 南方农业学报, 2019, 50(9): 1945−1952 YAN X J, YE D L, ZHENG C Y, et al. Effects of phosphate fertilizer input on phosphorus forms accumulation and availability in red sandy soil[J]. Journal of Southern Agriculture, 2019, 50(9): 1945−1952
[29] LIAO D, ZHANG C C, LI H G, et al. Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil[J]. Plant and Soil, 2020, 448(1/2): 587−601
[30] LI G H, LI H G, LEFFELAAR P A, et al. Dynamics of phosphorus fractions in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils[J]. Crop and Pasture Science, 2015, 66(11): 1151 doi: 10.1071/CP14370
[31] CABEZA R A, MYINT K, STEINGROBE B, et al. Phosphorus fractions depletion in the rhizosphere of young and adult maize and oilseed rape plants[J]. Journal of Soil Science and Plant Nutrition, 2017, 17(3): 824−838 doi: 10.4067/S0718-95162017000300020
[32] GAO X, SHI D, LV A, et al. Increase phosphorus availability from the use of alfalfa (Medicago sativa L.) green manure in rice (Oryza sativa L.) agroecosystem[J]. Scientific Reports, 2016, 6: 36981 doi: 10.1038/srep36981
[33] 谢英荷, 洪坚平, 韩旭, 等. 不同磷水平石灰性土壤Hedley磷形态生物有效性的研究[J]. 水土保持学报, 2010, 24(6): 141−144 doi: 10.13870/j.cnki.stbcxb.2010.06.029 XIE Y H, HONG J P, HAN X, et al. Study on soil bioavailability of the hedley P forms in calcareous soil with different phosphorus level[J]. Journal of Soil and Water Conservation, 2010, 24(6): 141−144 doi: 10.13870/j.cnki.stbcxb.2010.06.029
[34] NDAYISABA P C, KUYAH S, MIDEGA C A O, et al. Intercropping desmodium and maize improves nitrogen and phosphorus availability and performance of maize in Kenya[J]. Field Crops Research, 2021, 263: 108067 doi: 10.1016/j.fcr.2021.108067
[35] 潘浩男, 覃潇敏, 肖靖秀, 等. 不同磷水平下间作对红壤团聚体及有效磷特征的影响[J]. 中国土壤与肥料, 2022(4): 1−8 doi: 10.11838/sfsc.1673-6257.20766 PAN H N, QIN X M, XIAO J X, et al. Effects of intercropping on soil aggregates and available phosphorus under different phosphorus levels[J]. Soil and Fertilizer Sciences in China, 2022(4): 1−8 doi: 10.11838/sfsc.1673-6257.20766
[36] 覃潇敏, 潘浩男, 肖靖秀, 等. 不同磷水平下玉米-大豆间作系统根系形态变化[J]. 应用生态学报, 2021, 32(9): 3223−3230 doi: 10.13287/j.1001-9332.202109.023 QIN X M, PAN H N, XIAO J X, et al. Root morphological changes in maize and soybean intercropping system under different phosphorus levels[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3223−3230 doi: 10.13287/j.1001-9332.202109.023
[37] 周龙, 苏丽珍, 王思睿, 等. 间作对红壤磷素吸附解吸平衡效应的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1867−1878 ZHOU L, SU L Z, WANG S R, et al. Effect of intercropping on balancing effect of absorption and desorption characteristics of phosphorus in red soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1867−1878
[38] DISSANAYAKA D M S B, WASAKI J. Complementarity of two distinct phosphorus acquisition strategies in maize-white lupine intercropping system under limited phosphorus availability[J]. Journal of Crop Improvement, 2021, 35(2): 234−249 doi: 10.1080/15427528.2020.1808868
[39] 赵德强, 元晋川, 侯玉婷, 等. 玉米||大豆间作对AMF时空变化的影响[J]. 中国生态农业学报(中英文), 2020, 28(5): 631−642 ZHAO D Q, YUAN J C, HOU Y T, et al. Tempo-spatial dynamics of AMF under maize soybean intercropping[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 631−642
-
期刊类型引用(5)
1. 徐金能. 大豆玉米带状复合种植中大豆适宜种植密度试验. 广东蚕业. 2024(02): 32-34 . 百度学术
2. 赵红敏,苏丽珍,陈源,侯贤锋,周龙,郑毅,汤利. 低磷红壤无机磷组分特征及间作调控作用. 中国土壤与肥料. 2024(02): 18-26 . 百度学术
3. 吴薪,毕嘉榆,戈应同,何仰发,王宇蕴. 间作促进磷吸收利用的研究进展. 河南农业科学. 2024(12): 1-9 . 百度学术
4. 巩怡斐,黎玉婷,付越,李思琪,宁观惠,皮康怡,范佳怡,孙婷婷. 甘蔗/花生间作对土壤无机磷组成及其活化机制的影响. 南方农业. 2024(23): 18-25 . 百度学术
5. 邢肖毅,尹丹红,张亚丽,卿如冰,倪绯. 生物质炭对土壤解磷菌分布及磷转化的影响研究进展. 江苏农业学报. 2023(08): 1784-1792 . 百度学术
其他类型引用(10)