Effects of earthworm mucus and straw charcoal on heavy metals during domestic sludge co-composting
-
摘要: 生活污泥中富含的重金属限制其资源化利用, 为钝化重金属活性, 降低污泥毒害效果和提高其利用价值, 以40 mL蚯蚓粘液和2%、4%、6%、8%秸秆炭为添加剂对2 kg污泥进行堆肥, 研究粘液、粘液协同秸秆炭添加对污泥堆肥后重金属变化的影响。结果显示, 与对照组污泥堆肥相比, 粘液堆肥污泥后pH升高1.42%, 总氮、总磷含量降低7.87%、14.18% (P<0.05); 而粘液协同秸秆炭堆肥污泥后, 污泥逐渐呈碱性, 电导率提升5.71%~9.58% (P<0.05), 有机质含量升高7.71%~24.60% (P<0.05), 丰富了堆体中可溶性离子和有机物含量, 但总氮、总钾含量分别降低19.10%~30.95%、7.87%~14.31%。在添加粘液对污泥堆肥后, 重金属总量均表现出下降趋势, Ni、Zn、Pb的较活泼形态向难以降解的残渣态转化, 使残渣态所占比例较CK处理分别升高61.81%、120.19%、72.51%; 当添加粘液和秸秆炭对污泥堆肥后, 重金属总量继续表现出下降趋势, 碳酸盐结合态Ni和Pb、铁锰结合态Pb、可交换态Zn逐步向稳定的残渣态转化, 而有机结合态Cu却向可交换态和残渣态转化, 钝化了堆肥污泥中Ni、Zn、Pb, 活化了Cu。最后根据分析得出结论, 粘液协同秸秆炭改变污泥中pH来影响重金属Ni、Zn、Pb、Cu有效态, 粘液+8%秸秆炭处理对污泥重金属的影响较为理想。Abstract: Heavy metals restrict the reuse of municipal sludge. To passivate the activity of heavy metals, reduce sludge toxicity, and create new value, 2 kg of sludge was composted with 40 mL earthworm mucus and 2%, 4%, 6%, and 8% straw charcoal, to investigate changes in the heavy metal mobility in sewage sludge. The results showed that, compared with the control sludge compost (CK), the pH increased by 1.42% (P<0.05) and the total nitrogen and total phosphorus decreased by 7.87% and 14.18%, respectively (P<0.05), after the addition of the mucus to the sludge. After adding both the mucus and straw charcoal to the sludge compost, the sludge gradually became alkaline; furthermore, its electrical conductivity value increased by 5.71%−9.58% (P<0.05), and organic matter content increased by 7.71%−24.60% (P<0.05). Although this enriched the content of soluble ions and available organic matter in the compost, the total nitrogen and potassium contents decreased by 19.10%–30.95% and 7.87%–14.31%, respectively, resulting in the loss of plant nutrients. By adding mucus to the sludge compost, different total heavy metal contents showed different declining trends; these included Cd, Cu, Ni, Zn, and Pb, which decreased by 3.59%, 7.03%, 10.93%, 8.39%, and 5.11% (P<0.05, except Ni), compared to the CK treatment group. The more active forms of Ni, Zn, and Pb were transformed into an unavailable residue form that was difficult to degrade; therefore, the proportion of residual forms increased by 61.81%, 120.19%, and 72.51%, respectively, compared with the CK treatment. When the mucus and different proportions of straw charcoal were added to the sludge, the total heavy metal contents decreased further. The total amount of Cd, Pb, Cu, Ni, and Zn decreased by 37.18%, 67.36%, 6.07%, 59.59%, and 31.82%, respectively, in the mucus plus 8% straw charcoal treatment group (P<0.05). The Ni and Pb associated with the carbonate, Pb associated with iron-manganese, and exchangeable Zn were gradually shifted to the residue form, so that the available contents of Ni, Pb, and Zn were significantly decreased by 28.08%, 42.00%, and 28.31%, respectively, in the mucus plus 8% straw charcoal treatment group, which passivated Ni, Zn, and Pb in the composted sludge. In contrast, organic form of Cu was converted into exchangeable and residual forms. Its available content was increased by 89.82 % (P<0.05) in the mucus plus 8% straw charcoal treatment group, and Cu was activated in the sludge during composting. In the analysis of the effect of mucus and different ratios of straw charcoal on the availability of heavy metals after composting, it was found that the correlation coefficients of straw charcoal addition with the available forms of heavy metals Cu, Zn, Pb, and Ni reached significant levels of 0.906, −0.909, −0.847, and −0.639 (P<0.05), respectively, while the correlation coefficients with Cd were lower. Finally, based on the principal component analysis and stepwise regression equations, mucus in combination with straw charcoal influenced the pH of the sludge compost, affecting the mobility of Ni, Zn, Pb, and Cu. Therefore, mucus plus 8% straw charcoal is an effective approach for treating the heavy metals in the sludge.
-
近些年, 随着更多污水处理厂的投入运用, 污泥产生量也快速提高, 根据我国住房和城乡建设部公布的《2020年城乡建设统计年鉴》[1], 截至2020年年底干污泥产量已达1333万t, 较高的产量会使污泥大量暴露于露天环境中, 产生较多挥发性有机化合物、温室气体、具有异味的气体(H2S、NH3)和渗滤液等危害环境的有毒有害污染物[2]。而生活污泥中存在重金属的现象较为普遍, 如若无法妥善解决, 也会破坏环境并酿成二次污染[3]。目前污泥的常规处置仍是以填埋和焚烧为主, 但前者会占用大量土地资源, 后者不仅成本高, 还会排放大量尾气, 在未来很可能会被堆肥及土地利用等具有良好发展的资源化技术所代替[4]。污泥堆肥对降低污泥中重金属含量和削弱重金属毒性有重要作用。研究发现, 在污泥中添加不同改良剂, 可使重金属有效态和形态发生不同变化。如: 堆肥中添加木屑和蘑菇渣能改变重金属浓度和存在形态, 增强重金属稳定性[5]; 添加蒙脱石可显著降低重金属Pb、Cu、Zn活性, 钝化重金属有效性[6], 磷矿粉能钝化堆肥中Cu的活性[7]。而生物炭因其比表面积大, 富含多种能与离子进行配位反应和交换反应的官能团, 可降低重金属移动性[8], 如Liu等[9]发现生物炭对污泥堆肥时, 能滞留养分和钝化重金属Cu、Zn、Pb、Ni和Cr; Malinowski等[10]采用木炭对污泥堆肥时发现重金属毒性显著降低, 显著加快堆肥化进程。因此, 生物炭常用作添加剂改良污泥中重金属, 效果甚佳。
蚯蚓粘液是蚯蚓从体表排出的一种组分较为复杂的淡黄色粘状液体, 主要由电解质、糖类化合物、脂质、氨基酸、微量营养素、有益微生物等混合物组成, 在蚯蚓的生命活动中具有重要作用[11-13]。研究发现, 蚯蚓粘液具有启动和促进植物残体矿化、腐殖化的作用, 是堆肥微生物生长发育的重要营养源[14], 能改变重金属在污染土壤中的存在状态[15], 也可提高番茄(Solanum lycopersicum)幼苗中叶绿素含量, 促进其对微量金属元素的吸收[16]。Sizmur等[15]还发现蚯蚓粘液中富含溶解性碳、溶解性氮和能产生两性离子的氨基酸, 可以与重金属等污染物发生络合反应, 从而改变重金属As的存在形态和降低其流动性。因此, 粘液对重金属在环境中的行为变化起着重要作用。
生物炭和粘液均具有调控环境中重金属活性的作用[9,15-16], 前者广泛作为堆肥和污染土壤的改良剂, 后者在土壤中有一定研究, 而在堆肥中研究较为鲜见, 对堆肥中重金属影响更为鲜见。鉴于此, 本试验研究蚯蚓粘液及其与生物炭协同作用, 并通过设置粘液协同不同比例秸秆炭对污泥堆肥, 探究粘液单独作用及两者共同作用后能否调节污泥中重金属活性, 从而对重金属形态和有效态产生怎样影响, 以为更好地处理污泥中重金属活性提出新方案。
1. 材料和方法
1.1 试验材料
选取安徽省淮南市某生活污水处理厂新鲜污泥, 该污泥通过污泥浓缩池和板框深浓度脱水工艺获得。秸秆炭选取在实验室切成段状后自然风干的玉米(Zea mays)秸秆, 将其置于升温速度为20 ℃∙min−1的马弗炉中500 ℃热解2 h, 于干燥器中冷却后研磨, 过100目筛, 获得材料比表面积45.05 m2∙g−1, 平均孔径5~5.5 nm。蚯蚓为江苏省某蚯蚓养殖基地的赤子爱胜蚓(Eisenia fetida), 蚯蚓粘液采用不损伤蚯蚓的低电压电流(5 V、10 mA, 电击后蚯蚓可正常存活)刺激法获取[17]: 将蚯蚓于实验室驯化5~10 d, 筛选活性强、个体大且含有环带的蚯蚓600 g (约1200条), 用蒸馏水冲洗后放入排粪盒中排粪24 h, 取出后用超纯水冲洗蚯蚓2~3次, 放置在粘液提取装置中[14], 通电3次, 每次持续1 min, 电击间隙1 min, 共获取50 mL粘液, 将其稀释10倍[18], 贮存于−20 ℃冰箱中。污泥、粘液和秸秆炭的理化性质如表1所示。
表 1 供试材料的基本理化性质Table 1. Basic physiochemical properties of the testes raw materials性质 Property 污泥 Sludge 蚯蚓粘液 Earthworm mucus 秸秆炭 Straw charcoal 电导率 Electrical conductivity (ms∙cm−1) 1.11±0.03 0.05±0.00 0.86±0.05 pH 6.70±0.02 6.89±0.20 8.87±0.09 含水率 Moisture content (%) 76.67±0.05 — 8.42±0.02 有机质 Organic matter (%) 16.65±0.89 0.37±0.03 17.61±0.63 总氮 Total nitrogen (g∙kg−1) 27.82±0.82 0.15±0.01 0.63±0.05 总磷 Total phosphorus (g∙kg−1) 8.88±0.32 0.007±0.00 2.82±0.10 总钾 Total potassium (g∙kg−1) 13.24±1.55 0.023±0.00 15.90±0.70 总锌 Total Zn (mg∙kg−1) 737.00±44.55 — 79.50±2.12 总铅 Total Pb (mg∙kg−1) 14.73±2.09 — — 总铜 Total Cu (mg∙kg−1) 60.43±5.27 72.90±1.78 19.37±0.66 总镍 Total Ni (mg∙kg−1) 32.40±5.06 — 2.45±0.07 总镉 Total Cd (mg∙kg−1) 1.62±0.11 — 0.05±0.00 “—”为未检出。“—” means not detected. 1.2 试验方法
为研究粘液、粘液+秸秆炭对污泥堆肥后重金属含量的影响, 设置污泥堆肥(CK)对照组, 试验组5个: 污泥+粘液堆肥(S0), 污泥+粘液+2%、4%、6%和8%秸秆炭堆肥(S1、S2、S3和S4, 污泥干重比); 所有堆肥组均取2 kg新鲜污泥, 采用Huang等[14]试验方案添加40 mL粘液, 每组分别设置3个平行样品, 控制堆体周边环境温度在25 ℃左右, 含水率保持在60%~70%, 堆肥时间选择能让粘液充分利用并稳定堆体的35 d[14,19]。堆肥试验结束后, 将堆肥后的污泥自然风干后进行研磨过100目筛, 制得分析样品。
1.3 分析方法
取适量过筛污泥于纯水中磁力搅拌1 h后离心, 通过电位法测定pH和电导率(EC)[19]; 总氮(TN)、总磷(TP)在灭菌锅中处理30 min后采用碱性过硫酸钾法测定[20]; 有机质(OM)通过重铬酸钾于150 ℃恒温箱氧化消解30 min后冷却测定[21]; 重金属总量通过氢氟酸、硝酸和高氯酸联合消解法, 有效态通过DTPA-2Na溶液浸提法, 形态通过Tessier五步连续提取法, 并将获取的重金属溶液使用AAS进行测定[20]。试验均加入国家标准物质进行质量控制, 回收率和相对标准偏差符合要求。
1.4 数据处理与分析
使用Excel 2021对数据进行整理和计算, 用SPSS 26对数据进行单因素方差分析(ANOVA)、多重比较(LSD)、相关性和逐步回归方程分析(P为0.05或0.01), 用ORIGIN 2022对数据进行主成分分析(PCA)和作图。
2. 结果与分析
2.1 堆肥后污泥理化性质
蚯蚓粘液-秸秆炭共同作用对污泥堆肥后, 在不同试验组间的理化性质和营养物质含量间表现出不同差异(表2)。与污泥堆肥对照组(CK)相比, 单独添加粘液对污泥堆肥后(S0)的pH、EC均升高, OM、TN、和TP均降低, 其中pH升高显著(P<0.05), TN、TP降低显著(P<0.05)。当粘液-秸秆炭共同作用对污泥堆肥后(S1-S4), 与CK相比, pH、EC和OM在粘液+8%秸秆炭(S4)时分别升高9.97%、19.40%和24.60% (P<0.05), TN和TP分别降低30.95%和19.84% (P<0.05); 粘液+4%秸秆炭(S2)时, pH、EC和OM分别升高5.55%、12.68%和12.01% (P<0.05), 而TK和TP与对照无显著差异。这表明添加粘液和秸秆炭, 能促进有机质的矿化、腐质化和脱氨基作用, 释放碱性物质, 使污泥呈弱碱性; 而生物炭残留较多的难降解碳, 也会提升OM含量; 堆体中氨气的释放和磷、钾的滤出, 促使污泥中营养物质逐渐产生损失[9,14,22-23]。由此, 所有试验组中粘液联合4%秸秆炭(S2)处理的污泥效果较好, 堆体呈弱碱性, OM含量较丰富, 养分损失少。
表 2 蚯蚓粘液-秸秆炭共同作用对污泥堆肥理化性质和营养物质的影响Table 2. Effects of applying earthworm mucus and straw charcoal on the selected physical and chemical properties and nutrients of sludge compost处理
TreatmentpH 电导率
Electrical conductivity
(mS∙cm−1)有机质
Organic matter
(%)总氮
Total nitrogen总磷
Total phosphorus总钾
Total potassium(g∙kg−1) CK 6.92±0.04e 1.34±0.01d 15.65±0.50d 32.31±0.31a 21.37±0.31a 15.14±0.16a S0 7.02±0.06d 1.38±0.03d 15.45±0.15d 29.77±0.70b 18.34±0.12b 15.31±0.32a S1 7.25±0.02c 1.46±0.02c 16.85±0.30c 25.56±0.32c 23.05±1.80a 13.95±0.96a S2 7.30±0.04c 1.51±0.02bc 17.53±0.28b 26.14±0.26c 22.81±0.50a 12.98±2.53a S3 7.47±0.08b 1.54±0.08ab 17.22±0.27bc 21.64±0.65d 17.57±1.90b 13.66±1.40a S4 7.61±0.05a 1.60±0.01a 19.50±0.26a 22.31±0.60d 17.13±1.15b 13.32±1.65a CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 2.2 堆肥后污泥中重金属含量变化
由表3可知, 采用粘液-秸秆炭共同作用对污泥堆肥后, 重金属总量均表现出降低趋势。与CK相比, 仅添加粘液的试验组(S0)中重金属Cd、Pd、Cu、Zn有降低趋势, 但差异不显著, 而Ni含量显著降低10.93% (P<0.05); 当粘液-秸秆炭共同作用对污泥堆肥后, 重金属总量的降低幅度随秸秆炭含量加大而增加, 在粘液+8%秸秆炭试验组(S4)重金属总量降低幅度达最大, Cd、Pb、Cu、Ni和Zn含量分别降低36.92%、67.33%、6.07%、59.59%和31.82% (P< 0.05)。综上所述, 粘液协同秸秆炭堆肥后对降低污泥中多数重金属效果较好, 而对Cu效果一般, 堆肥后重金属总量低于《农用污泥污染物控制标准》(GB 4284—2018) A级标准, 更远低于欧盟污泥农用标准[24], 此后可斟酌用作园林公路绿化、草坪基质及农用。
表 3 蚯蚓粘液-秸秆炭共同作用的污泥堆肥后重金属含量Table 3. Effect of applying earthworm mucus and straw charcoal on heavy metal contents of sludge compost处理 Treatment 镉 Cd 铅 Pb 铜 Cu 镍 Ni 锌 Zn mg∙kg−1 CK 1.95±0.02a 18.00±0.05a 65.85±3.90a 82.78±4.15a 858.00±39.09a S0 1.88±0.08a 17.08±4.25a 61.22±4.79ab 73.73±6.38b 786.00±0.30a S1 1.65±0.05b 11.78±1.48b 59.67±0.98ab 44.40±1.98c 783.00±7.50a S2 1.53±0.08b 8.83±1.45bc 61.68±1.78ab 41.91±0.44cd 676.50±18.00b S3 1.15±0.15c 6.37±1.70c 61.75±0.43ab 35.05±1.33de 645.00±7.50bc S4 1.23±0.23c 5.88±1.48c 61.85±1.95ab 33.45±5.96e 585.00±29.25c GB 4284—2018 (A) <3 <300 <500 <100 <1200 欧盟 European Union 20~40 750~1200 1000~1750 300~400 2500~4000 CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 2.3 堆肥后对污泥中重金属有效态的影响
堆肥体系中有效态重金属是指能被植物体直接汲取、富集的重金属, 包含水溶态、酸溶态、螯合态和吸附态等多种形态, 具有较强毒害作用, 而本试验中有效态包含可交换态和碳酸盐结合态[25]。如表4所示, 单独添加粘液污泥堆肥(S0)后, 重金属有效态均有降低趋势, 其中有效态镉含量显著降低(P<0.05), 可能粘液中富含的氨基酸和蛋白质提供与重金属络合的有机官能团, 降低其有效性。当粘液-秸秆炭共同作用对污泥堆肥后, Cu有效态含量逐步上升, Ni、Pb、Zn有效态含量表现为下降趋势。与CK相比, 粘液+8%秸秆炭处理(S4)变化幅度最大, 有效态铜含量升高89.68%, 有效态镍、铅、锌含量分别下降28.05%、41.99%、28.30% (P<0.05); 而有效态镉含量在粘液+2%秸秆炭处理组(S1)较CK降幅最大, 为38.46% (P<0.05), 随后开始升高, 但始终低于CK。这是粘液和秸秆炭的共同作用, 产生能固化重金属的负电荷基团, 降低多数重金属有效性, 而腐殖质中溶解性有机碳活化了Cu, 提升了其有效性[26-27]。此外, 利用相关性分析粘液+不同比例秸秆炭对堆肥后(S0-S4)重金属有效态的影响发现, 秸秆炭添加量与重金属Cu、Zn、Pb、Ni有效态的相关系数分别为0.906、−0.909、−0.847、−0.639, 均达显著水平(P<0.05), 而与有效态镉含量相关系数较低, 为0.392。
表 4 蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态含量的影响Table 4. Effects of applying earthworm mucus and straw charcoal on contents of available heavy metals of sludge compostmg∙kg−1 处理
Treatment有效态镉
Available Cd有效态铅
Available Pb有效态铜
Available Cu有效态镍
Available Ni有效态锌
Available ZnCK 0.39±0.05a 7.43±0.00a 3.10±0.24d 5.17±0.10a 8.41±0.10a S0 0.28±0.01d 6.60±0.29a 3.05±0.47d 4.58±0.09ab 8.29±0.14a S1 0.24±0.04d 5.56±0.82b 4.70±0.10c 4.63±0.68ab 7.67±0.45b S2 0.34±0.03bc 5.21±0.31bc 5.19±0.30bc 4.17±0.37bc 6.74±0.31c S3 0.36±0.01ab 4.85±0.54bc 5.69±0.29ab 4.14±0.18bc 5.79±0.31d S4 0.29±0.02cd 4.31±0.54c 5.88±0.10a 3.72±0.59c 6.03±0.46d CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 为了深入解析不同处理组与堆肥后重金属有效态关系, 利用主成分分析法(PCA)得到如下结果: 两种主成分(PC1=76.2%, PC2=20.8%)的累积方差贡献率达97.0%, 符合要求(图1), 表示不同处理组对重金属有效态影响, 污泥堆肥对照组(CK)和粘液+8%秸秆炭堆肥处理组(S4)在PC1方向上分别表现出明显正和负效应, 粘液+2%秸秆炭堆肥处理组(S1)在PC2方向上表现出明显负效应。由此可知, CK对降低污泥中重金属有效态含量效果较差, 而S4和S1效果较好。此外, 通过重金属有效态的因子加载发现, Zn、Pb、Ni和Cd分别在PC1和PC2正方向上作用强, 而Cu在PC1负方向上作用强。结果表明, 粘液+2%秸秆炭(S1)对钝化污泥中重金属Cd效果较好, 而粘液+8%秸秆炭(S4)能更好地钝化污泥中重金属Ni、Pb、Zn活性, 却活化了重金属Cu, 这与图2所示结果一致。
图 1 粘液和秸秆炭添加与污泥堆肥重金属含量的关系CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting.Figure 1. Relationship between applying earthworm mucus and straw charcoal and heavy metal contents of sludge compost图 2 蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态分布的影响CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2% 秸秆炭堆肥; S2: 污泥+粘液+4% 秸秆炭堆肥; S3: 污泥+粘液+6% 秸秆炭堆肥; S4: 污泥+粘液+8% 秸秆炭堆肥。F1: 可交换态; F2: 碳酸盐结合态; F3: 铁锰结合态; F4: 有机结合态; F5: 残渣态。Figure 2. Effects of applying earthworm mucus and straw charcoal on distribution of available forms of heavy metals during sludge compostingCK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. F1: exchange form; F2: carbonate bound form; F3: iron-manganese bound form; F4: organic form; F5: residual.2.4 堆肥后污泥中重金属形态变化
重金属在污泥中以可交换态、碳酸盐结合态、铁锰结合态、有机结合态和残渣态5种形态存在, 而堆肥能改变重金属在污泥中的化学形态分布, 从而钝化污泥中重金属的生物活性。其中可交换态和碳酸盐结合态在5种形态中活性较强, 易于被植物体所富集, 是影响污泥中重金属有效性的最主要形态, 铁锰结合态较为稳定, 易受酸碱度所影响, 有机结合态与残渣态化学性质最为稳定, 较难被植物吸收富集。
如图2所示, 各处理组堆肥后重金属Cu以有机结合态为主, Zn以铁锰结合态为主, Ni和Pb以残渣态为主, 而Cd以可交换态为主。单独添加粘液对污泥堆肥后, 重金属均由较为活泼形态朝着残渣态转化, 较CK的残渣态所占比例提升了33.19%~120.19%。当粘液-秸秆炭共同作用对污泥堆肥后, Ni和Pb的碳酸盐结合态、Pb的铁锰结合态、Zn的可交换态逐步向稳定难降解的残渣态转化, 在添加8%秸秆炭时, 重金属Ni、Pb、Zn的残渣态所占比例较CK分别提高40.26%、102.74%和208.01%; 而Cu的有机结合态却同时向可交换态和残渣态这两种活性相异的形态转化, 加入8%秸秆炭时可交换态和残渣态所占比例较CK试验组分别升高65.20%和50.82%; 残渣态Cd也向可交换态和碳酸盐结合态两种活性较强形态转化, 但这两种形态比例均未超过CK。这表明粘液协同秸秆炭堆肥后, 有机质的加速矿化和腐质化, 使产生的多种活性基团络合重金属, 降低其迁移和转化能力, 从而钝化部分重金属活性, 使其形态变的更为稳定; 而Cu在矿化和腐质化下发生游离, 与溶解性有机碳等物质结合, 降低了其固化效果, 从而朝着相反形态变化[28-30]。
3. 讨论
当粘液-秸秆炭共同作用对污泥堆肥后, pH显著升高, 一方面原因是粘液和秸秆炭增加了堆肥中微生物丰度, 促进了氨基酸脱氨基作用, 大量氨气释放到堆肥中, 使pH逐渐升高; 另一方面原因是秸秆炭释放自身的弱碱性物质, 也可提升堆肥体系中酸碱度[9,31-32]。EC与污泥中可溶性矿物盐浓度密切相关。Pan等[12]发现蚯蚓粘液可作为诱导有机质矿化的启动因子, 提高矿化速率; 此外, Huang等[14]还发现添加剂能提高堆肥体系中微生物活性, 提升有机质分解速率, 产生大量HCO3−、NH4+和其他无机盐等, 使EC值逐渐提升, 这也与本研究结果相类似。粘液协同秸秆炭堆肥污泥后还能促进污泥中有机质分解成矿物盐, 使有机质含量在单一粘液堆肥的处理组下降, 不断添加秸秆炭后, 残留较多结构稳定的难溶性有机碳, 使堆肥体系中有机质含量增加[33]。
Guo等[33]研究发现, 生物炭能促进堆肥体系中氨气的释放, 而其较高的比表面积和多孔结构对NH3和NH4+的吸附作用, 又会减小氮损失; 生物炭也能提高堆肥中氧气含量, 减少N2O和CH4排放, 进一步降低氮损失[34]。本研究结果则不同, 单独添加粘液对污泥堆肥后, 因粘液能刺激堆肥体系中微生物活性和提高细菌丰度, 可将大量氮元素通过氨化、反硝化作用以NH3、N2、N2O形式损失[22]; 当粘液与不同比例秸秆炭共同作用对污泥堆肥后, 粘液协同秸秆炭为参与氮反应的微生物提供更加有利的生存环境, 使氨挥发能力远超过生物炭的吸附能力[35], 伴随着秸秆炭产生的稀释作用, 造成总氮含量降低; Wei等[23]发现, 磷元素常以固态或液态存在于堆体中, 当有机物快速降解产生的有机酸会溶解部分难溶性磷到滤液中, 导致磷流失, 这也可能与生物炭稀释作用和阳离子交换量有关, 污泥中产生的有机酸也是K溶解的主要机制, 从而部分溶解性钾随滤液溶出, 再加上生物炭的稀释作用, 造成K含量略降低[36]。
Duan等[32]观察到, 有机废物中添加生物炭能促进堆肥基质快速降解, 使活性有机物向稳定的腐殖质转化并络合重金属, 提高重金属在堆肥中的水溶性, 导致重金属总量因滤出而损失。这与本研究结果相类似, 在本试验中添加粘液能提高堆肥污泥中有机质矿化和腐殖化速率, 使腐殖质中富里酸吸附重金属成为结合体随滤液浸出, 造成重金属总量降低[14]; 当粘液与不同比例秸秆炭共同作用对污泥堆肥后, 又对堆肥产生了较强的稀释效果, 进一步降低重金属总量并减少重金属对堆肥的毒害作用, 提高堆肥质量[10,37-38]。
堆肥过程中生物炭通过物理吸附、氧化还原反应、沉淀络合、静电作用和离子交换反应等机制固定重金属, 钝化堆肥中重金属活性[26]。在本试验中,粘液-秸秆炭共同作用对污泥堆肥后降低了重金属Cd、Ni、Pb、Zn有效态含量, 却提高了Cu有效态含量, 由此对各处理组堆肥后的重金属有效态和理化性质进行相关性分析得出(表5), 重金属Ni、Pb、Zn有效态含量与pH表现为负相关(P<0.01)。随着秸秆炭添加比例提高, pH也呈上升趋势并促使重金属Ni、Pb、Zn有效态含量逐渐降低。这是因为粘液中富含游离氨基酸和蛋白质[16], 为堆体提供较多氨基、羧基、羟基等官能团, 伴随着污泥中秸秆炭的添加, 秸秆炭自身碱性及其易降解物质(乙酸、丁酸等)分解, 碱度也逐渐提高, 促进了官能团脱质子化反应, 产生较多带负电荷的基团于堆体中并与重金属发生络合反应, 钝化重金属Ni、Pb和Zn[26,39-40]。本试验结果与Li等[26]证明的堆肥体系pH维持在5.5~12.5范围内, Pb主要以Pb(OH)2形式存在类似; 也与Liu等[9]发现的添加生物炭到污泥中进行好氧堆肥后, 堆体pH升高, 对污泥中Ni有效性产生钝化效果相一致。重金属Ni、Pb、Zn含量与有机质含量和EC也表现出负相关(P<0.01), 可能生物炭对微生物的存活环境具有调节作用, 粘液也可提升污泥中细菌丰度, 进而促进粘液秸秆炭堆肥体系中OM分解成腐殖质, 使重金属被堆肥过程中形成的能够吸附和固定重金属离子的胡敏酸所络合, 钝化重金属活性[33,41]。Cu有效态与pH、EC和OM表现出显著正相关(P<0.01), 因为粘液-秸秆炭共同作用污泥, 能使堆体腐殖化产生较多溶解性有机碳(包括富里酸和类黄腐殖酸等), 促进溶解性有机碳对Cu的结合, 提高了Cu在污泥堆肥中的可移动性, 进而提高Cu有效态含量[28-29,32,42], 这也与Zhao等[27]发现Cu易与有机质中溶解性有机碳结合, 提高Cu的迁移率相一致。Cd有效态含量受堆体理化性质影响较小, 可能生物炭表面的阳离子交换对Cd具有吸收作用, 从而降低了Cd活性[26,33]。为了深入了解污泥中理化性质对重金属有效性的直接影响, 对其进行回归方程分析发现(表6), pH是影响堆肥污泥中重金属Ni、Pb、Zn、Cu有效态的最关键因素。
表 5 污泥堆肥中重金属有效态含量与理化性质的相关关系Table 5. Correlationships between contents of available forms of heavy metals with physical and chemical properties of sludge compost重金属
Heavy metal理化性质 Physicochemical property pH 电导率
Electrical conductivity有机质
Organic matter总氮
Total nitrogen总磷
Total phosporus总钾
Total potassium镍 Ni −0.776** −0.734** −0.666** 0.727** 0.551* 0.238 铅 Pb −0.906** −0.872** −0.820** 0.903** 0.337 0.465 锌 Zn −0.906** −0.854** −0.796** 0.905** 0.431 0.388 镉 Cd −0.229 −0.202 −0.194 0.271 0.049 −0.044 铜 Cu 0.944** 0.932** 0.866** −0.937** −0.239 −0.565* **和*分别表示在 P<0.01和P<0.05水平显著相关。** and * indicate significant correlation at P<0.01 and P<0.05 levels, respectively. 表 6 污泥堆肥中重金属有效态含量与理化性质的回归方程Table 6. Regression equations between contents of available forms of heavy metals with physical and chemical properties of sludge compost重金属 Heavy metal 逐步回归方程 Stepwise regression analysis 拟合指数 R2 显著性 P 锌 Zn y=35.939−3.965xpH 0.81 <0.01 镍 Ni y=17.474−1.801xpH 0.58 <0.01 铜 Cu y=−32.766+4.901xpH+0.089xTP 0.92 <0.01 铅 Pb y=36.106−4.194xpH 0.81 <0.01 镉 Cd — — — xpH为污泥堆肥的pH, xTP为污泥堆肥的总磷含量。“—”为未检出。xpH is the pH of the sludge compost, xTP is the total phosphorus content of the sludge compost. “—” means not detected. 单独粘液添加到污泥中堆肥后降低了重金属不稳定性, 这可能是粘液中含有的电解质和较多糖蛋白、粘多糖、凝集素、血蓝蛋白等大分子混合物[12], 为微生物代谢创造适宜微环境, 改变堆肥中微生物分布, 促进堆肥基质的矿化和腐殖化, 使矿化后的有机质及粘液中原本富含的多种活性基团与重金属形成络合物, 钝化污泥中重金属活性[14,30]。当粘液-秸秆炭共同作用对污泥堆肥后, 重金属Pb、Ni和Zn的有效态所占比例降低, 可能是粘液和秸秆炭协同作用提升了堆肥pH, 增强堆体中腐殖质官能团(羧基等)脱质子化, 产生较多能与重金属有效络合的负电荷, 并形成表面沉淀物, 固定重金属[43-44], Zheng等[45]也发现重金属Ni的前3种形态与pH呈负相关, 这也与Liu等[9]研究发现生物炭对污泥堆肥降低了重金属Pb、Zn和Ni的生物可利用度相一致; 污泥中残渣态所占比例随生物炭比例增加也逐渐提升, 这时堆体基质的矿化能力增强, 促进了有效硅产生, 产生较多可与重金属络合成极难溶沉淀的硅酸根, 从而提升残渣态所占比例[46]。随着粘液和秸秆炭的添加, 有机结合态Cu向可交换态和残渣态转化, Cd的交换态所占比例也逐渐提高, 这时有机结合态Cu在污泥中含量丰富, 在粘液和秸秆炭的作用下促进有机质矿化和腐殖化, 使更多有机Cu游离, 并与溶解性有机碳等物质结合, 降低了Cu的固化效果[27-29,42], 而试验中Cd的变化与Liang等[37]试验结果相类似。
4. 结论
1)粘液-秸秆炭共同作用对污泥堆肥后能提高污泥碱度和有机质, 却导致养分损失; 当粘液+4%秸秆炭时, 堆肥后污泥呈碱性, 有机质含量丰富, 养分损失少。
2)粘液-秸秆炭共同作用对污泥堆肥后能降低污泥中重金属总量, 钝化了Ni、Pb、Zn, 而活化Cu; 进一步对污泥中重金属有效态分析得出, pH是影响重金属有效态的最关键因素, 而粘液+8%秸秆炭钝化重金属Ni、Zn、Pb效果甚佳, 对重金属Cu具有活化效果。
3)单独添加粘液对污泥堆肥后的重金属活性降低, 残渣态所占比例提高; 而粘液-秸秆炭共同作用对污泥堆肥后, 碳酸盐结合态Ni和Pb、铁锰结合态Pb、可交换态Zn逐步朝着稳定的残渣态转化, 而Cd和Cu变化相异, 前者朝着可交换态转化, 后者朝着可交换态和残渣态转化。
-
图 1 粘液和秸秆炭添加与污泥堆肥重金属含量的关系
CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting.
Figure 1. Relationship between applying earthworm mucus and straw charcoal and heavy metal contents of sludge compost
图 2 蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态分布的影响
CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2% 秸秆炭堆肥; S2: 污泥+粘液+4% 秸秆炭堆肥; S3: 污泥+粘液+6% 秸秆炭堆肥; S4: 污泥+粘液+8% 秸秆炭堆肥。F1: 可交换态; F2: 碳酸盐结合态; F3: 铁锰结合态; F4: 有机结合态; F5: 残渣态。
Figure 2. Effects of applying earthworm mucus and straw charcoal on distribution of available forms of heavy metals during sludge composting
CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. F1: exchange form; F2: carbonate bound form; F3: iron-manganese bound form; F4: organic form; F5: residual.
表 1 供试材料的基本理化性质
Table 1 Basic physiochemical properties of the testes raw materials
性质 Property 污泥 Sludge 蚯蚓粘液 Earthworm mucus 秸秆炭 Straw charcoal 电导率 Electrical conductivity (ms∙cm−1) 1.11±0.03 0.05±0.00 0.86±0.05 pH 6.70±0.02 6.89±0.20 8.87±0.09 含水率 Moisture content (%) 76.67±0.05 — 8.42±0.02 有机质 Organic matter (%) 16.65±0.89 0.37±0.03 17.61±0.63 总氮 Total nitrogen (g∙kg−1) 27.82±0.82 0.15±0.01 0.63±0.05 总磷 Total phosphorus (g∙kg−1) 8.88±0.32 0.007±0.00 2.82±0.10 总钾 Total potassium (g∙kg−1) 13.24±1.55 0.023±0.00 15.90±0.70 总锌 Total Zn (mg∙kg−1) 737.00±44.55 — 79.50±2.12 总铅 Total Pb (mg∙kg−1) 14.73±2.09 — — 总铜 Total Cu (mg∙kg−1) 60.43±5.27 72.90±1.78 19.37±0.66 总镍 Total Ni (mg∙kg−1) 32.40±5.06 — 2.45±0.07 总镉 Total Cd (mg∙kg−1) 1.62±0.11 — 0.05±0.00 “—”为未检出。“—” means not detected. 表 2 蚯蚓粘液-秸秆炭共同作用对污泥堆肥理化性质和营养物质的影响
Table 2 Effects of applying earthworm mucus and straw charcoal on the selected physical and chemical properties and nutrients of sludge compost
处理
TreatmentpH 电导率
Electrical conductivity
(mS∙cm−1)有机质
Organic matter
(%)总氮
Total nitrogen总磷
Total phosphorus总钾
Total potassium(g∙kg−1) CK 6.92±0.04e 1.34±0.01d 15.65±0.50d 32.31±0.31a 21.37±0.31a 15.14±0.16a S0 7.02±0.06d 1.38±0.03d 15.45±0.15d 29.77±0.70b 18.34±0.12b 15.31±0.32a S1 7.25±0.02c 1.46±0.02c 16.85±0.30c 25.56±0.32c 23.05±1.80a 13.95±0.96a S2 7.30±0.04c 1.51±0.02bc 17.53±0.28b 26.14±0.26c 22.81±0.50a 12.98±2.53a S3 7.47±0.08b 1.54±0.08ab 17.22±0.27bc 21.64±0.65d 17.57±1.90b 13.66±1.40a S4 7.61±0.05a 1.60±0.01a 19.50±0.26a 22.31±0.60d 17.13±1.15b 13.32±1.65a CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 表 3 蚯蚓粘液-秸秆炭共同作用的污泥堆肥后重金属含量
Table 3 Effect of applying earthworm mucus and straw charcoal on heavy metal contents of sludge compost
处理 Treatment 镉 Cd 铅 Pb 铜 Cu 镍 Ni 锌 Zn mg∙kg−1 CK 1.95±0.02a 18.00±0.05a 65.85±3.90a 82.78±4.15a 858.00±39.09a S0 1.88±0.08a 17.08±4.25a 61.22±4.79ab 73.73±6.38b 786.00±0.30a S1 1.65±0.05b 11.78±1.48b 59.67±0.98ab 44.40±1.98c 783.00±7.50a S2 1.53±0.08b 8.83±1.45bc 61.68±1.78ab 41.91±0.44cd 676.50±18.00b S3 1.15±0.15c 6.37±1.70c 61.75±0.43ab 35.05±1.33de 645.00±7.50bc S4 1.23±0.23c 5.88±1.48c 61.85±1.95ab 33.45±5.96e 585.00±29.25c GB 4284—2018 (A) <3 <300 <500 <100 <1200 欧盟 European Union 20~40 750~1200 1000~1750 300~400 2500~4000 CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 表 4 蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态含量的影响
Table 4 Effects of applying earthworm mucus and straw charcoal on contents of available heavy metals of sludge compost
mg∙kg−1 处理
Treatment有效态镉
Available Cd有效态铅
Available Pb有效态铜
Available Cu有效态镍
Available Ni有效态锌
Available ZnCK 0.39±0.05a 7.43±0.00a 3.10±0.24d 5.17±0.10a 8.41±0.10a S0 0.28±0.01d 6.60±0.29a 3.05±0.47d 4.58±0.09ab 8.29±0.14a S1 0.24±0.04d 5.56±0.82b 4.70±0.10c 4.63±0.68ab 7.67±0.45b S2 0.34±0.03bc 5.21±0.31bc 5.19±0.30bc 4.17±0.37bc 6.74±0.31c S3 0.36±0.01ab 4.85±0.54bc 5.69±0.29ab 4.14±0.18bc 5.79±0.31d S4 0.29±0.02cd 4.31±0.54c 5.88±0.10a 3.72±0.59c 6.03±0.46d CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 表 5 污泥堆肥中重金属有效态含量与理化性质的相关关系
Table 5 Correlationships between contents of available forms of heavy metals with physical and chemical properties of sludge compost
重金属
Heavy metal理化性质 Physicochemical property pH 电导率
Electrical conductivity有机质
Organic matter总氮
Total nitrogen总磷
Total phosporus总钾
Total potassium镍 Ni −0.776** −0.734** −0.666** 0.727** 0.551* 0.238 铅 Pb −0.906** −0.872** −0.820** 0.903** 0.337 0.465 锌 Zn −0.906** −0.854** −0.796** 0.905** 0.431 0.388 镉 Cd −0.229 −0.202 −0.194 0.271 0.049 −0.044 铜 Cu 0.944** 0.932** 0.866** −0.937** −0.239 −0.565* **和*分别表示在 P<0.01和P<0.05水平显著相关。** and * indicate significant correlation at P<0.01 and P<0.05 levels, respectively. 表 6 污泥堆肥中重金属有效态含量与理化性质的回归方程
Table 6 Regression equations between contents of available forms of heavy metals with physical and chemical properties of sludge compost
重金属 Heavy metal 逐步回归方程 Stepwise regression analysis 拟合指数 R2 显著性 P 锌 Zn y=35.939−3.965xpH 0.81 <0.01 镍 Ni y=17.474−1.801xpH 0.58 <0.01 铜 Cu y=−32.766+4.901xpH+0.089xTP 0.92 <0.01 铅 Pb y=36.106−4.194xpH 0.81 <0.01 镉 Cd — — — xpH为污泥堆肥的pH, xTP为污泥堆肥的总磷含量。“—”为未检出。xpH is the pH of the sludge compost, xTP is the total phosphorus content of the sludge compost. “—” means not detected. -
[1] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴—2020[M]. 北京: 中国统计出版社, 2021 Ministry of Housing and Urban-Rural Development, P.R. China. China Urban-Rural Construction Statistical Yearbook−2020[M]. Beijing: China Statistics Press, 2021
[2] NGUYEN M K, LIN C, HOANG H G, et al. Evaluate the role of biochar during the organic waste composting process: a critical review[J]. Chemosphere, 2022, 299: 134488 doi: 10.1016/j.chemosphere.2022.134488
[3] LI Y S, SUN B, DENG T Y, et al. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112497 doi: 10.1016/j.ecoenv.2021.112497
[4] 李雪怡, 梁远, 方小锋, 等. 北京市污泥处理处置现状总结分析[J]. 中国给水排水, 2021, 37(22): 38−42 doi: 10.19853/j.zgjsps.1000-4602.2021.22.006 LI X Y, LIANG Y, FANG X F, et al. Summarization and analysis of sludge treatment and disposal in Beijing[J]. China Water & Wastewater, 2021, 37(22): 38−42 doi: 10.19853/j.zgjsps.1000-4602.2021.22.006
[5] 黄俊熙, 严兴, 雷芳, 等. 添加辅料对污泥堆肥产品的生物肥效的影响[J]. 环境工程, 2021, 39(3): 142−147 doi: 10.13205/j.hjgc.202103020 HUANG J X, YAN X, LEI F, et al. Improvement of biological fertilizer efficiency of sludge compost products by adding auxiliary materials[J]. Environmental Engineering, 2021, 39(3): 142−147 doi: 10.13205/j.hjgc.202103020
[6] 舒增年, 黄健. 蒙脱石对污泥好氧堆肥过程中重金属钝化效果[J]. 矿物学报, 2017, 37(S1): 53−60 SHU Z N, HUANG J. Passivating effect of montmorillonite on heavy metals during sewage sludge composting[J]. Acta Mineralogica Sinica, 2017, 37(S1): 53−60
[7] WANG L M, ZHANG Y M, LIAN J J, et al. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting[J]. Bioresource Technology, 2013, 136: 281−287 doi: 10.1016/j.biortech.2013.03.039
[8] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247−1253
[9] LIU L, YE Q Y, WU Q, et al. Effect of biochar addition on sludge aerobic composting and greenbelt utilization[J]. Environmental Technology & Innovation, 2021, 21: 101279
[10] MALINOWSKI M, WOLNY-KOŁADKA K, VAVERKOVÁ M D. Effect of biochar addition on the OFMSW composting process under real conditions[J]. Waste Management, 2019, 84: 364−372 doi: 10.1016/j.wasman.2018.12.011
[11] GUHRA T, STOLZE K, SCHWEIZER S, et al. Earthworm mucus contributes to the formation of organo-mineral associations in soil[J]. Soil Biology and Biochemistry, 2020, 145: 107785 doi: 10.1016/j.soilbio.2020.107785
[12] PAN X L, SONG W J, ZHANG D Y. Earthworms (Eiseniafoetida Savigny) mucus as complexing ligand for imidacloprid[J]. Biology and Fertility of Soils, 2010, 46(8): 845−850 doi: 10.1007/s00374-010-0494-4
[13] PLAVŠIN I, VELKI M, EČIMOVIĆ S, et al. Inhibitory effect of earthworm coelomic fluid on growth of the plant parasitic fungus Fusarium oxysporum[J]. European Journal of Soil Biology, 2017, 78: 1−6 doi: 10.1016/j.ejsobi.2016.11.004
[14] HUANG K, XIA H. Role of earthworms’ mucus in vermicomposting system: biodegradation tests based on humification and microbial activity[J]. Science of the Total Environment, 2018, 610/611: 703−708 doi: 10.1016/j.scitotenv.2017.08.104
[15] SIZMUR T, WATTS M J, BROWN G D, et al. Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil[J]. Journal of Hazardous Materials, 2011, 197: 169−175 doi: 10.1016/j.jhazmat.2011.09.071
[16] ZHANG S J, HU F, LI H X, et al. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation[J]. Environmental Pollution, 2009, 157(10): 2737−2742 doi: 10.1016/j.envpol.2009.04.027
[17] ALLEGRETTA I, PORFIDO C, PANZARINO O, et al. Determination of as concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 130: 21−25 doi: 10.1016/j.sab.2017.02.003
[18] 陈玉香, 赵婷婷, 姚月, 等. 蚯蚓黏液促进玉米秸秆分解及其机理分析[J]. 农业工程学报, 2019, 35(15): 234−240 doi: 10.11975/j.issn.1002-6819.2019.15.029 CHEN Y X, ZHAO T T, YAO Y, et al. Earthworm mucus improving decomposition of maize stover and its mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15): 234−240 doi: 10.11975/j.issn.1002-6819.2019.15.029
[19] 程焱, 余亚伟, 张成, 等. 污泥堆肥及其利用过程汞的变化特征[J]. 环境化学, 2021, 40(7): 2226−2233 doi: 10.7524/j.issn.0254-6108.2020031201 CHENG Y, YU Y W, ZHANG C, et al. Variation characteristics of mercury during municipal sludge composting and its land use[J]. Environmental Chemistry, 2021, 40(7): 2226−2233 doi: 10.7524/j.issn.0254-6108.2020031201
[20] 郇辉辉, 王兴明, 储昭霞, 等. 蚯蚓黏液联合竹炭堆肥对污泥中重金属的影响[J]. 农业环境科学学报, 2022, 41(5): 1077−1085 doi: 10.11654/jaes.2021-1378 HUAN H H, WANG X M, CHU Z X, et al. Effects of earthworm mucus combined with bamboo charcoal on heavy metals in sludge[J]. Journal of Agro-Environment Science, 2022, 41(5): 1077−1085 doi: 10.11654/jaes.2021-1378
[21] 周鑫, 王兴明, 储昭霞, 等. 蚯蚓-稻壳炭联合堆肥对工业污泥中重金属的影响研究[J]. 生态环境学报, 2020, 29(2): 378−387 ZHOU X, WANG X M, CHU Z X, et al. Effects of earthworm and rice husk charcoal composting on heavy metals in industrial sludge[J]. Ecology and Environmental Sciences, 2020, 29(2): 378−387
[22] ZAINUDIN M H, MUSTAPHA N A, MAEDA T, et al. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw[J]. Waste Management, 2020, 106: 240−249 doi: 10.1016/j.wasman.2020.03.029
[23] WEI Y Q, WANG J, CHANG R X, et al. Composting with biochar or woody peat addition reduces phosphorus bioavailability[J]. The Science of the Total Environment, 2021, 764: 142841 doi: 10.1016/j.scitotenv.2020.142841
[24] 张贺飞, 徐燕, 曾正中, 等. 国外城市污泥处理处置方式研究及对我国的启示[J]. 环境工程, 2010, 28(S1): 434−438 doi: 10.13205/j.hjgc.2010.s1.101 ZHANG H F, XU Y, ZENG Z Z, et al. Municipal sludge treatment way overseas and its enlightenment to China[J]. Environmental Engineering, 2010, 28(S1): 434−438 doi: 10.13205/j.hjgc.2010.s1.101
[25] 王兴明, 王运敏, 储昭霞, 等. 煤矸石对铜尾矿中重金属(Zn, Pb, Cd, Cr和Cu)形态及生物有效性的影响[J]. 煤炭学报, 2017, 42(10): 2688−2697 WANG X M, WANG Y M, CHU Z X, et al. Effects of coal gangue addition on the chemical fraction and bioavailability of heavy metals (Zn, Pb, Cd, Cr and Cu) in copper mine tailings[J]. Journal of China Coal Society, 2017, 42(10): 2688−2697
[26] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466−478
[27] ZHAO S, FENG C H, WANG D X, et al. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation[J]. Chemosphere, 2013, 91(7): 977−984 doi: 10.1016/j.chemosphere.2013.02.001
[28] ZHOU H B, MENG H B, ZHAO L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting[J]. Bioresource Technology, 2018, 258: 279−286 doi: 10.1016/j.biortech.2018.02.086
[29] KULIKOWSKA D. Kinetics of organic matter removal and humification progress during sewage sludge composting[J]. Waste Management, 2016, 49: 196−203 doi: 10.1016/j.wasman.2016.01.005
[30] 史志明, 马丽丽, 胡飞龙, 等. 蚯蚓黏液对黑麦草幼苗生长及其对菲吸收的影响[J]. 土壤, 2013, 45(6): 1091−1096 doi: 10.13758/j.cnki.tr.2013.06.020 SHI Z M, MA L L, HU F L, et al. Influence of earthworm mucus on ryegrass seedling growth and phenanthrene uptake[J]. Soils, 2013, 45(6): 1091−1096 doi: 10.13758/j.cnki.tr.2013.06.020
[31] AHMAD M, LEE S S, DOU X M, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118: 536−544 doi: 10.1016/j.biortech.2012.05.042
[32] DUAN Y M, YANG J F, GUO Y R, et al. Pollution control in biochar-driven clean composting: emphasize on heavy metal passivation and gaseous emissions mitigation[J]. Journal of Hazardous Materials, 2021, 420: 126635 doi: 10.1016/j.jhazmat.2021.126635
[33] GUO X X, LIU H T, ZHANG J. The role of biochar in organic waste composting and soil improvement: a review[J]. Waste Management, 2020, 102: 884−899 doi: 10.1016/j.wasman.2019.12.003
[34] HUA L, WU W X, LIU Y X, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment[J]. Environmental Science and Pollution Research, 2009, 16(1): 1−9 doi: 10.1007/s11356-008-0041-0
[35] ZHANG J N, LÜ F, SHAO L M, et al. The use of biochar-amended composting to improve the humification and degradation of sewage sludge[J]. Bioresource Technology, 2014, 168: 252−258 doi: 10.1016/j.biortech.2014.02.080
[36] GHORBANI M, AMIRAHMADI E. Effect of rice husk biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients[J]. Journal of Applied Sciences and Environmental Management, 2018, 22(3): 313
[37] LIANG J, YANG Z X, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 2017, 181: 281−288 doi: 10.1016/j.chemosphere.2017.04.081
[38] WANG Q, WANG Z, AWASTHI M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297−304 doi: 10.1016/j.biortech.2016.08.081
[39] GIGLIOTTI G, PROIETTI P, SAID-PULLICINO D, et al. Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality[J]. International Biodeterioration & Biodegradation, 2012, 67: 8−14
[40] DIAS B O, SILVA C A, HIGASHIKAWA F S, et al. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification[J]. Bioresource Technology, 2010, 101(4): 1239−1246
[41] HSU J H, LO S L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure[J]. Environmental Pollution, 1999, 104(2): 189−196 doi: 10.1016/S0269-7491(98)00193-6
[42] AMERY F, DEGRYSE F, DEGELING W, et al. The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures[J]. Environmental Science & Technology, 2007, 41(7): 2277−2281
[43] XUE Y W, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests[J]. Chemical Engineering Journal, 2012, 200/201/202: 673−680
[44] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488−3497 doi: 10.1016/j.biortech.2010.11.018
[45] ZHENG G D, GAO D, CHEN T B, et al. Stabilization of nickel and chromium in sewage sludge during aerobic composting[J]. Journal of Hazardous Materials, 2007, 142(1/2): 216−221
[46] MARTı́NEZ C E, MOTTO H L. Solubility of lead, zinc and copper added to mineral soils[J]. Environmental Pollution, 2000, 107(1): 153−158 doi: 10.1016/S0269-7491(99)00111-6
-
期刊类型引用(3)
1. 陈常理,马前,安霞,尉吉乾,应金耀,周华萍,李文略,骆霞红,柳婷婷,邹丽娜,朱关林. 红麻、厌氧混合菌群及红麻骨炭对土壤重金属镉的修复. 分子植物育种. 2024(15): 5098-5106 . 百度学术
2. 吴丽娟,连海,陈荣强,邱静芸,欧翔,黄志文,雷小文. 牛粪与草屑不同配比对蚯蚓生长、繁殖及蚓粪肥力的影响. 江西科学. 2024(04): 704-709+715 . 百度学术
3. 王兴明,徐岚,范廷玉,储昭霞,董众兵,董鹏,邓瑞来. 稻壳炭强化城市污泥蚯蚓堆肥过程中重金属变化特征. 农业环境科学学报. 2024(07): 1648-1656 . 百度学术
其他类型引用(6)