黄腐酸对咸水灌溉下番茄产量和品质的调控研究

陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇

陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇. 黄腐酸对咸水灌溉下番茄产量和品质的调控研究[J]. 中国生态农业学报 (中英文), 2023, 31(3): 452−462. DOI: 10.12357/cjea.20220178
引用本文: 陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇. 黄腐酸对咸水灌溉下番茄产量和品质的调控研究[J]. 中国生态农业学报 (中英文), 2023, 31(3): 452−462. DOI: 10.12357/cjea.20220178
CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 452−462. DOI: 10.12357/cjea.20220178
Citation: CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 452−462. DOI: 10.12357/cjea.20220178
陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇. 黄腐酸对咸水灌溉下番茄产量和品质的调控研究[J]. 中国生态农业学报 (中英文), 2023, 31(3): 452−462. CSTR: 32371.14.cjea.20220178
引用本文: 陈佩, 王金涛, 董心亮, 田柳, 张雪佳, 刘小京, 孙宏勇. 黄腐酸对咸水灌溉下番茄产量和品质的调控研究[J]. 中国生态农业学报 (中英文), 2023, 31(3): 452−462. CSTR: 32371.14.cjea.20220178
CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 452−462. CSTR: 32371.14.cjea.20220178
Citation: CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 452−462. CSTR: 32371.14.cjea.20220178

黄腐酸对咸水灌溉下番茄产量和品质的调控研究

基金项目: 国家重点研发计划课题(2021YFD1900904)和中国科学院盐碱地资源高效利用工程实验室(KFJ-PTXM-017)资助
详细信息
    作者简介:

    陈佩, 主要研究方向为农田水盐运移过程及调控。E-mail: chenpei19@mails.ucas.ac.cn

    通讯作者:

    孙宏勇, 主要研究方向为农田水盐运移过程机理与调控。E-mail: hysun@sjziam.ac.cn

  • 中图分类号: S641.2

Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation

Funds: This study was supported by the National Key Research and Development Project of China (2021YFD1900904) and the CAS Engineering Laboratory for Efficient Utilization of Saline Resources (KFJ-PTXM-017).
More Information
  • 摘要: 针对环渤海盐碱区淡水资源匮乏制约作物生长的问题, 依据区域咸水资源禀赋, 研究黄腐酸对咸水灌溉下番茄产量和品质的调控效应。采用基质栽培水肥一体化试验方法, 设置3个黄腐酸浓度水平: 0 mg·L−1、450 mg·L−1和900 mg·L−1; 5个咸水浓度水平: 1 g·L−1、3 g·L−1、5 g·L−1、7 g·L−1、9 g·L−1, 共15个处理。结果表明, 与不添加黄腐酸相比, 添加黄腐酸对不同浓度咸水灌溉下的番茄均有显著的增产效果(P<0.05), 添加450 mg·L−1和900 mg·L−1黄腐酸分别增产6.14%~21.08%和12.83%~34.63%。随着灌溉咸水浓度的增加, 番茄单果重、单株果实数目、耗水量、产量水分利用效率、果实维生素C和番茄红素含量显著下降, 果实还原性糖含量呈先增加后下降的趋势; 施用450 mg·L−1和900 mg·L−1的黄腐酸均能提高咸水灌溉下番茄单果重、单株果实数、耗水量、产量水分利用效率、果实维生素C含量、番茄红素含量、还原性糖含量。随着黄腐酸浓度的增加, 番茄叶片脯氨酸含量和K+/Na+显著增加, 丙二醛含量和Na+含量显著降低。单株产量和耗水量均与K+/Na+呈极显著正相关, 与脯氨酸含量、丙二醛含量、Na+含量呈极显著负相关; 番茄果实维生素C含量和番茄红素含量均与K+/Na+呈显著正相关, 与丙二醛含量、Na+含量呈极显著负相关; 还原性糖含量与丙二醛含量、Na+含量呈显著负相关。上述结果表明, 黄腐酸主要通过促进有机渗透调节物质脯氨酸积累、提高K+/Na+以及降低膜脂过氧化产物丙二醛的产生缓解咸水灌溉对番茄产量的抑制, 同时还能提高产量水分利用效率、果实维生素C、番茄红素和还原性糖含量, 改善番茄品质。
    Abstract: In view of the problem that lack of freshwater resources restricts crop growth in saline-alkali areas around Bohai Sea, the regulation effect of fulvic acid on the yield and quality of tomato under saline water irrigation was studied based on regional salt water resource endowment. In this study, the integrated water and fertilizer test method for substrate cultivation was adopted, and three fulvic acid concentrations: 0 mg·L−1, 450 mg·L−1, and 900 mg·L−1; and five salt water concentrations: 1 g·L−1, 3 g·L−1, 5 g·L−1,7 g·L−1, and 9 g·L−1, making a total of 15 treatments, were used for the experiment. The results showed that compared with no fulvic acid addition, fulvic acid addition had significant yield-increasing effects on tomatoes under different saline water concentrations. The yields of tomatoes under 450 and 900 mg·L−1 fulvic acid increased by 6.14%−21.08% and 12.83%−34.63%, respectively. With the increase in salt water concentration, tomato fruit weight, fruits number per plant, water consumption, yield, water use efficiency, vitamin C content, and lycopene content decreased significantly and fruit reducing sugar content increased first and then decreased. Under saline water irrigation, the applications of 450 and 900 mg·L−1 fulvic acid increased tomato single fruit weight, fruits number per plant, water consumption, yield, water use efficiency, vitamin C content, lycopene content, reducing sugar content. With the increase in fulvic acid concentration, proline content and K+/Na+ in tomato leaves increased significantly, whereas malondialdehyde and Na+ contents decreased significantly. The yield and water consumption per plant positively correlated with K+/Na+ and negatively correlated with contents of proline, malondialdehyde, and Na+; vitamin C and lycopene contents in tomato fruit significantly positively correlated with K+/Na+ and negatively correlated with malondialdehyde and Na+ contents. A significant negative correlation was observed between reducing sugar content and malondialdehyde and Na+ contents. The above results showed that fulvic acid could alleviate the inhibition effect of salt water irrigation on tomato yield and also promote the yield, water use efficiency, and vitamin C, lycopene, and reducing sugar contents. Fulvic acid alleviated salt stress mainly by promoting the accumulation of organic osmotic adjustment substance proline, increasing K+/Na+, and reducing the production of the membrane lipid peroxidation product — malondialdehyde.
  • 淡水资源短缺是限制环渤海地区农业生产的主要障碍因子。环渤海地区的农业用水占总用水量的70%左右, 20世纪70年代以来为追求粮食高产利用深层地下水进行灌溉, 连年的超采导致深层地下水急剧下降, 形成了深层水地下漏斗区, 引发了一系列的生态环境问题[1]。因此, 我国从2014年开始在该试点实施开展了地下水压采政策[2], 该政策的实施使该区可用灌溉水量进一步减少。同时, 环渤海区域拥有较丰富的咸水资源, 总储量达2500亿 m3, 其中小于5 g·L−1的咸水年可开采资源量占全国的一半[3]。因此, 研究咸水资源在农业灌溉中的应用对保障区域粮食安全和水安全具有非常重要的作用。

    随着生活水平的不断提高, 人们对食物结构的需求从“温饱型”向“健康型”转变[4]。蔬菜是膳食结构的重要组成部分, 其对膳食平衡和身体健康有着非常重要的作用[5]。番茄(Lycopersicon esculentum)是一种世界性的重要蔬菜作物, 全球年产量接近1.78×108 t, 我国番茄种植面积和产量均居世界首位[6]。番茄虽然是中度耐盐作物[7-8], 但高浓度盐分胁迫仍抑制番茄根系生长[9], 降低植株叶水势、蒸腾速率和气孔导度[10]以及叶片光合速率, 抑制茎秆和叶片生长[11-12], 进而导致番茄产量降低[13], 植株耗水减少但水分利用效率变化不显著[14]。但是, 盐分胁迫可以增加果实色度、果形指数、可溶性固形物、可溶性糖的含量, 从而改善果实品质[15-18]。设施番茄的环境因子和基因型较为稳定, 因此深入研究管理措施下番茄产量和品质的协同提升对促进人民生活水平提升具有非常重要的作用。

    近年来, 国内外学者对调控物质如何影响咸水灌溉下番茄生长进行了大量的研究, 发现调控物质如改良剂(石膏[19]、沸石[20]、生物炭[21]等)可以混施入栽培介质中, 起到改良介质结构或者吸附钠离子释放矿质养分的作用; 再如可以被植物根系或叶面吸收的水溶性物质(NO[22]、H2S[23]、CO[24]、水杨酸[25]、油菜素内酯[26]、脱落酸[27]、腐胺[28]、谷胱甘肽[29]、纳米硅[30]等), 在植物中具有调节基础代谢、影响生长发育、控制形态建成、调节细胞氧化还原状态, 减轻盐胁迫诱导的氧化损伤, 解除盐胁迫对植物光合作用和生长的抑制, 或者降低根系Na+和Cl含量, 提高K+/Na+和K+/Cl比值, 从而维持植物细胞的离子稳态等。黄腐酸是一种重要的天然植物生长调节剂, 表现出多种活性, 如离子交换、络合反应和氧化还原反应等, 能调节土壤酸碱度, 改良土壤结构, 增加土壤保肥保水性, 促进根系对氮磷钾的吸收利用, 提高肥料利用率, 对作物具有增产、提质、增强抗逆性的作用[31]。以往研究中黄腐酸多作为叶面肥使用, 作为水溶肥在水肥一体化技术中的应用还较少, 特别是对咸水灌溉下番茄的调控效应尚不明确。因此, 本研究旨在探索黄腐酸对咸水灌溉下番茄产量和品质调控效应, 为建立咸水资源高效利用优质稳产的模式提供技术参数和理论依据。

    试验于2020年3—7月在中国科学院南皮生态农业试验站日光温室中进行。该试验站位于河北省沧州市南皮县(38°00′N, 116°40′E, 海拔11 m), 属于典型暖温带半湿润季风气候区。该区年平均气温为13.04 ℃, 年日照时间为2938.6 h, 年平均降水量为520.5 mm。

    供试番茄品种为‘莱顿三号’。采用盆测基质栽培法, 测盆为长方形, 盆长52 cm, 宽36 cm, 高度22 cm, 每盆装基质13.5 kg, 定植2株番茄。栽培介质为复合基质(草炭∶椰糠∶发酵料∶珍珠岩=3∶2∶2∶3)。所用基质有机质含量为23.2 g·kg−1、硝态氮220 mg·kg−1、铵态氮7.28 mg·kg−1、速效磷6.13 mg·kg−1、速效钾120 mg·kg−1、pH为7.70, 田间持水量为34.9% (v/v)。水肥一体化营养液配方采用1/2-Hoagland番茄配方, 番茄定植时灌淡水(黄河水)至田间持水量的90%, 缓苗后, 每隔2~5 d, 用TDR探头测定基质的含水量, 计算出灌溉至田间持水量80%需要的水量, 将灌溉水(黄河水)按各处理所设的盐浓度和黄腐酸浓度加入盐和黄腐酸溶解后灌溉。为了使咸水的盐分离子含量与地方咸水离子含量相近, 调配咸水的盐取自沧州市海兴县临海的盐场。

    采用二因素随机设计, 设置3个黄腐酸浓度: 0 mg·L−1 (F0)、450 mg·L−1 (F450)和900 mg·L−1 (F900), 黄腐酸为85%的生化黄腐酸; 5个咸水浓度: 1 g·L−1 (S1)、3 g·L−1 (S3)、5 g·L−1 (S5)、7 g·L−1 (S7)和9 g·L−1 (S9), 电导率分别为2.4 dS·m−1、6.8 dS·m−1、9.1 dS·m−1、12.4 dS·m−1和15.4 dS·m−1, 水质如表1所示; 共计15个处理, 每个处理8个重复。试验进行了128 d, 表2为番茄拉秧时不同处理的总灌溉量和灌水带入盆中的盐量和黄腐酸量。

    表  1  不同浓度咸水的盐离子含量
    Table  1.  Saline ions concentrations in irrigation water with different salinities used for the experiment
    g·L−1 
    咸水浓度
    Salinity of salt water (g·L−1)
    HCO3ClSO42−Ca2+Mg2+K++Na+
    10.120.700.120.040.030.44
    30.121.910.120.040.031.20
    50.123.300.150.040.032.11
    70.124.250.150.040.032.71
    90.125.180.210.040.033.40
    下载: 导出CSV 
    | 显示表格
    表  2  不同处理的总灌溉量和灌水带入的盐和黄腐酸量
    Table  2.  Total irrigation amount and the equivalent solid salt amount and fulvic acid (FA) added with irrigation to each pot
    黄腐酸浓度
    FA concentration (mg∙L−1)
    咸水浓度
    Salinity of salt water (g∙L−1)
    总灌溉量
    Total irrigation amount (mm)
    灌水带入盐量
    Salt amount added to each pot (g)
    灌水带入黄腐酸量
    FA added to each pot (g)
    01(CK)406.6745.140.00
    3413.33106.020.00
    5378.33162.020.00
    7346.67189.280.00
    9256.67172.870.00
    4501413.3345.8813.95
    3410.00105.1713.84
    5350.00149.8911.81
    7335.00182.9111.31
    9270.00181.859.11
    9001413.3345.8827.90
    3410.00105.1727.68
    5326.67139.9022.05
    7290.00158.3419.58
    9273.33184.0918.45
    下载: 导出CSV 
    | 显示表格

    在番茄开花期进行生化指标的测定, 从每个处理中随机选择3个植物样本测定植株顶部向下的第4片功能叶片, 采用茚三酮显色法测定脯氨酸含量, 硫代巴比妥酸比色法测定丙二醛含量[32], Na+和K+含量用原子吸收光谱仪(WYX-420C, JASCO Corporation, Japan)测定[33]。在番茄果实成熟期记录采收果数和单果重, 并计算单株产量(Y)和单株果数, 烘干后测定含水率; 每个处理各摘取3个大小均匀且无斑的果实进行番茄果实品质的测定, 采用3,5-二硝基水杨酸法测定还原性糖含量, 二甲苯萃取比色法测定维生素C含量[32], 甲醇-甲苯提取比色法测定番茄红素含量[34], 统一换算为单位果实干物质量含量。

    番茄的耗水量利用水量平衡方程计算[35], 计算公式如下:

    $$ \mathrm{E}\mathrm{T}=\mathrm{S}\mathrm{W}\mathrm{D}+P+I-D-{W}_{\mathrm{g}}-R $$ (1)

    式中: ET为耗水量(mm); SWD为盆内基质水分变化(mm); P为降水量(mm); I为灌溉量(mm); D为渗漏量(mm); Wg为通过毛细管从土壤深层吸收的水分(mm); R为地表径流(mm)。番茄移栽前与拉秧后盆栽中基质水分变化采用称重法测定, 且盆栽底部不打孔, 盆栽试验中PDWgR忽略不计。

    产量水分利用效率(WUEY)计算公式为:

    $$ {\mathrm{W}\mathrm{U}\mathrm{E}}_{Y}=\frac{Y}{\mathrm{E}\mathrm{T}} $$ (2)

    采用Excel 2019和SPSS 21软件对数据进行统计分析。采用双因素方差分析和邓肯法(Duncan’s test)进行方差分析和多重比较, P<0.05为差异显著, P<0.01为差异极显著, 用Pearson相关性检验对产量、耗水、品质参数与生化指标的关系进行相关分析。利用Origin 2021b作图。

    产量是反映植株生产能力和经济价值的重要指标。不同浓度咸水灌溉下不同黄腐酸水平对番茄单果重、单株果实个数和单株产量的影响如表3所示。双因素方差分析结果表明, 在本试验条件下不同浓度咸水灌溉对番茄单果重、单株果实个数和单株产量均有极显著的影响(P<0.01); 不同浓度黄腐酸对番茄单株产量有极显著的影响(P<0.01), 对单株果实个数有显著影响(P<0.05); 黄腐酸对不同浓度咸水灌溉下番茄单果重、单株果实个数和单株产量影响不显著。

    表  3  黄腐酸对不同浓度咸水灌溉下番茄单果重、单株果实个数和单株产量的影响
    Table  3.  Effects of fulvic acid on single fruit weight, fruits number per plant and yield per plant of tomato under different concentrations of saline water for irrigation
    黄腐酸浓度
    Fulvic acid concentration (mg∙L−1)
    咸水浓度
    Salinity of salt water (g∙L−1)
    单果重
    Single fruit weight (g)
    单株果实个数
    Number of fruits per plant
    单株产量
    Yield per plant (g)
    0 1(CK) 57.87±6.80Aa 7.25±0.96Aa 414.84±17.59Ab
    3 44.82±4.28Ba 8.00±0.82Aa 355.93±2.72Bb
    5 36.78±2.42Ca 7.75±1.26Aa 284.39±46.44Ca
    7 31.65±2.14Ca 7.33±0.47Aa 232.00±20.32Ca
    9 23.23±5.16Da 5.50±1.29Bb 129.00±51.50Da
    450 1 60.76±10.10Aa 7.50±1.00Aa 453.29±86.33Aab
    3 48.03±4.04Ba 8.33±0.47Aa 399.77±34.29Aab
    5 37.88±3.38Ca 8.00±0.82Aa 301.86±27.47Ba
    7 33.86±3.24Ca 7.67±0.47Aa 259.11±23.44Ba
    9 25.70±3.36Da 6.00±0.82Bab 156.19±41.43Ca
    900 1 61.21±2.93Aa 7.75±1.50ABa 476.49±108.34Aa
    3 51.62±7.94Ba 8.50±0.58Aa 439.18±78.68Aa
    5 38.58±7.67Ca 8.25±0.50Aa 320.87±83.76Ba
    7 35.57±1.85Ca 7.67±0.47ABa 272.11±3.57Ba
    9 26.18±1.23Da 6.67±0.94Ba 173.67±15.95Ca
    显著性 Significance
    咸水 Salt water (S) ** ** **
    黄腐酸 Fulvic acid (F) NS * **
    S×F NS NS NS
      表中数据为平均值±标准误差, 同列不同大、小写字母分别表示相同黄腐酸浓度不同咸水浓度间、相同咸水浓度不同黄腐酸浓度间在P<0.05水平差异显著; *和**分别表示在P<0.05和P<0.01水平差异显著; NS表示无显著性差异。The data in the table is mean ± standard error. The capital and lowercase letters in the same column indicate significant differences among different salt water concentrations with the same fulvic acid concentration and different fulvic acid concentrations with the same salt water concentration, respectively, at P<0.05 level. * and ** represent significant differences at P<0.05 and P<0.01 levels, respectively. NS indicates no significant difference.
    下载: 导出CSV 
    | 显示表格

    表3可以看出, 单果重随着黄腐酸浓度的升高而升高, 随着咸水浓度的升高而显著降低。在不添加黄腐酸条件下, F0S3、F0S5、F0S7和F0S9的番茄单果重分别比F0S1显著降低22.55%、36.44%、45.31%和59.88%。在不同浓度咸水灌溉下, F450和F900的番茄单果重分别比F0增加2.99%~10.63%和4.75%~14.16%, 说明咸水灌溉对番茄单果重有显著的负效应, 在咸水灌溉下黄腐酸的添加能够提高番茄的单果重。

    单株果实数随着黄腐酸浓度的升高而升高, 而随着咸水浓度的升高呈先增加后降低的趋势。F0S3、F0S5、F0S7和F0S9的番茄单株果实数分别比F0S1增加10.34%、6.90%、1.10%和−24.14%, 说明3~7 g∙L−1的咸水灌溉能提高番茄的单株果实数。不同浓度咸水灌溉条件下, 单株果实数均是随着黄腐酸浓度的增加而增加, 表明咸水灌溉下施加黄腐酸对番茄单株果实数有促进作用。

    番茄单株产量随着添加黄腐酸浓度的升高而升高, 随着咸水浓度的升高而降低。不添加黄腐酸条件下, 低浓度咸水灌溉(F0S3)使番茄单株产量显著降低(P<0.05), 相较于对照(F0S1)降低14.20%。而在添加450 mg·L−1和900 mg·L−1黄腐酸处理下, 均在5 g·L−1咸水灌溉时使番茄单株产量显著降低(P<0.05), 较相应1 g·L−1咸水灌溉分别降低33.41%和32.66%。表明咸水灌溉对番茄单株产量有显著的负效应, 而添加黄腐酸后能有效正调控对番茄单株产量的影响, 900 mg·L−1的黄腐酸增产效果优于450 mg·L−1

    双因素方差分析结果表明(图1), 在本试验条件下, 不同浓度咸水灌溉对番茄的耗水量、产量水分利用效率有极显著影响(P<0.01), 不同浓度黄腐酸对番茄耗水量有极显著影响(P<0.01), 对产量水分利用效率无显著影响; 黄腐酸对不同浓度咸水灌溉下番茄耗水量的影响极显著(P<0.01), 对产量水分利用效率影响不显著。

    图  1  黄腐酸对不同浓度咸水灌溉下番茄耗水量和产量水分利用效率的影响
    F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同大、小写字母分别表示相同黄腐酸处理不同咸水浓度处理间、相同咸水浓度处理下不同黄腐酸处理间在P<0.05水平差异显著。
    Figure  1.  Effects of fulvic acid on water consumption (ET) and water use efficiency of tomato yield (WURY) under different concentrations of saline water for irrigation
    F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7, 9 g·L−1, respectively. The capital and lowercase letters indicate significant differences among different salt water concentration treatments with the same fulvic acid concentration and different fulvic acid treatments with the same salt water concentration, respectively, at P<0.05 level.

    图1可以看出, 番茄耗水量随着黄腐酸浓度的升高而升高, 随着咸水浓度的升高而降低。在不添加黄腐酸条件下, F0S3、F0S5、F0S7和F0S9处理的番茄耗水量, 与F0S1处理相比显著降低3.75%、16.71%、29.62%和42.22%。而在添加450 mg·L−1和900 mg·L−1黄腐酸处理下, 相较于不添加黄腐酸, 咸水灌溉处理下的耗水量分别增加2.81%~11.54%和5.3%~15.48%。

    产量水分利用效率随着黄腐酸浓度的升高而升高, 随着咸水灌溉矿化度的升高而降低。在不添加黄腐酸条件下, F0S3、F0S5、F0S7和F0S9处理的产量水分利用效率与F0S1处理相比分别降低10.82%、17.65%、20.57%和46.2%。而在添加450 mg·L−1和900 mg·L−1黄腐酸处理下, 相较于不添加黄腐酸, 使咸水灌溉处理下的产量水分利用效率分别增加0.19%~11.41%和2.22%~16.69%。

    双因素方差分析结果表明(图2), 在本试验条件下, 不同浓度黄腐酸和咸水灌溉均对番茄果实维生素C、还原性糖、番茄红素均有极显著影响(P<0.01); 黄腐酸对不同浓度咸水灌溉下番茄红素含量影响极显著(P<0.01), 说明黄腐酸和咸水灌溉均能显著影响番茄的品质。

    图  2  黄腐酸对不同浓度咸水灌溉下番茄果实还原性糖、维生素C、番茄红素含量的影响
    F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同大、小写字母分别表示相同黄腐酸处理不同咸水浓度处理间、相同咸水浓度不同黄腐酸处理在P<0.05水平差异显著。
    Figure  2.  Effect of fulvic acid on quality indexes of tomato under different concentrations of saline water for irrigation
    F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7, 9 g·L−1, respectively. The capital and lowercase letters indicate significant differences among different salt water concentration treatments with the same fulvic acid concentration and different fulvic acid treatments with the same salt water concentration, respectively, at P<0.05 level.

    图2可知, 番茄果实还原性糖、维生素C、番茄红素含量随黄腐酸浓度的升高而升高, 番茄果实维生素C和番茄红素含量随咸水浓度的增加而降低, 还原糖含量随咸水浓度的增加而呈先增加后降低的趋势, 说明咸水灌溉抑制了番茄果实内维生素C和番茄红素的积累, 3~7 g·L−1咸水灌溉促进了还原性糖产生。不同浓度咸水灌溉条件下, 番茄果实维生素C、还原性糖、番茄红素含量均随黄腐酸浓度的增加而增加, 且在1 g·L−1、3 g·L−1、5 g·L−1咸水灌溉下添加450 mg·L−1或900 mg·L−1黄腐酸处理的番茄果实维生素C、还原性糖、番茄红素含量均高于F0S1 (对照)处理。当咸水浓度为3 g·L−1或5 g·L−1, 黄腐酸浓度为900 mg·L−1时, 番茄果实维生素C、还原性糖、番茄红素含量均处于较大值。

    双因素方差分析结果表明(表4), 在本试验条件下, 不同浓度黄腐酸和咸水灌溉均对番茄叶片脯氨酸、丙二醛、Na+含量和K+/Na+有极显著影响(P<0.01); 黄腐酸对不同浓度咸水灌溉下番茄植株叶片脯氨酸、丙二醛、Na+含量和K+/Na+影响极显著(P<0.01), 说明黄腐酸和咸水灌溉均能显著影响番茄的脯氨酸、丙二醛、Na+含量和K+/Na+

    表  4  黄腐酸对不同浓度咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量、K+/Na+的双因素方差分析
    Table  4.  Two factor analysis of variance of fulvic acid on proline, malondialdehyde, Na+ contents and K+/Na+ of tomato leaves under different concentrations of salt water for irrigation
    脯氨酸 Proline丙二醛 MalondialdehydeNa+K+/Na+
    咸水 Salt water (S)8745.63**5681.91**20 796.02**2533.45**
    黄腐酸 Fulvic acid (F)3688.22**8546.86**1159.20**296.84**
    S×F106.84**1257.70**163.99**87.64**
    下载: 导出CSV 
    | 显示表格

    图3显示了不同黄腐酸浓度和咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量和K+/Na+。相较于不添加黄腐酸, 随着添加黄腐酸浓度的增加, 番茄叶片脯氨酸含量和K+/Na+均显著增加, 丙二醛和Na+含量显著降低。与1 g·L−1咸水灌溉相比, 随着灌溉咸水浓度的增加, 番茄叶片脯氨酸、丙二醛和Na+含量均显著增加, K+/Na+显著降低。

    图  3  黄腐酸对不同浓度咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量、K+/Na+的影响
    F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同小写字母表示不同处理间在P<0.05水平差异显著。
    Figure  3.  Effects of fulvic acid application on proline, malondialdehyde (MDA), Na+ contents and K+/Na+ of tomato leaves under different concentrations of saline water for irrigation
    F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7 and 9 g·L−1, respectively. Different lowercase letters in the figure indicate significant differences among different treatments at P<0.05 level.

    黄腐酸对不同浓度咸水灌溉下番茄产量、耗水、品质与生化指标的相关分析结果如表5所示。单株产量与K+/Na+呈极显著正相关, 与脯氨酸含量、丙二醛含量、Na+含量呈极显著负相关。耗水量与K+/Na+呈极显著正相关, 与脯氨酸含量、丙二醛含量、Na+含量呈极显著负相关。番茄果实还原性糖含量与丙二醛含量、Na+含量呈显著负相关, 与脯氨酸含量、K+/Na+无显著相关关系。

    表  5  番茄产量、耗水、品质与生化指标的相关分析
    Table  5.  Correlation analysis of tomato yield, water consumption, quality and biochemical indexes
    指标 IndexYETWUEYRSVCLyProMDANa+K+/Na+
    Y 1.000
    ET0.993**1.000
    WUEY 0.982**0.967**1.000
    RS 0.632*0.641**0.706**1.000
    VC0.850**0.859**0.851**0.818**1.000
    Ly0.658**0.658**0.660**0.765**0.905**1.000
    Pro−0.770**−0.773**−0.723**−0.136−0.408−0.0911.000
    MDA−0.747**−0.780**−0.707**−0.615*−0.860**−0.828**0.3541.000
    Na+−0.958**−0.962**−0.916**−0.522*−0.793**−0.563*0.834**0.695**1.000
    K+/Na+0.896**0.897**0.814**0.3830.698**0.567*−0.739**−0.647**−0.896**1.000
      表中指标分别为番茄单株产量(Y)、耗水量(ET)、产量水分利用效率(WUEY)、还原性糖(RS)、维生素C (VC)、番茄红素(Ly)、脯氨酸(Pro)、丙二醛(MDA)、Na+、K+/Na+; *和**分别表示相关性达P<0.05和P<0.01显著水平。The indexes in the table were tomato yield per plant (Y), water consumption (ET), yield water use efficiency (WUEY), reducing sugar (RS), vitamin C (VC), lycopene (Ly), proline (Pro), malondialdehyde (MDA ), Na+, K+/Na+. * and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively.
    下载: 导出CSV 
    | 显示表格

    番茄果实维生素C含量与K+/Na+呈极显著正相关, 与丙二醛含量、Na+含量呈极显著负相关, 与脯氨酸含量无显著相关关系。番茄红素含量与K+/Na+呈显著正相关, 与丙二醛含量、Na+含量呈极显著负相关, 与脯氨酸含量无显著相关关系。

    植物短时间暴露在高盐浓度下时, 由于渗透胁迫根系很难从土壤中吸收水分, 当盐离子浓度在植株体内经过一段时间的累积并达到有毒程度时植株叶片开始凋零并且产量降低[36], 而黄腐酸对于作物有较强的刺激作用, 同时促进作物吸收较多的水分和养料, 提高作物产量[37]。本试验中, 较1 g·L−1咸水灌溉, 不添加黄腐酸时, 番茄单株产量在3 g·L−1咸水灌溉下显著降低, 而在添加450 mg·L−1、900 mg·L−1黄腐酸处理下, 均在5 g·L−1咸水灌溉时使番茄单株产量显著降低, 添加黄腐酸之后能有效正调控对番茄单株产量的影响, 并且900 mg·L−1的黄腐酸增产效果优于450 mg·L−1, 这与前人的研究一致。单果重和单株果实数决定番茄的单株产量, 其中单果重对黄腐酸不敏感, 单株果实数对黄腐酸十分敏感。在本试验中添加黄腐酸均能提高番茄的单株果实数和单株产量, 这可能是由于黄腐酸含有许多活性基团, 可以刺激组织细胞的分裂和增长[38-39], 使植株淀粉、糖类物质、蛋白质等物质合成增多, 而且转移酶活性提高, 从而促进了代谢产物加速向果实的运输[40]。卢林纲[41]研究指出, 黄腐酸对作物具有稳定的增产提质作用, 在正常气候和干旱、病害等逆境条件下黄腐酸均可提高农作物产量, 这与本试验结果也是一致的。

    Reina-Sánchez等[42]研究发现与无盐胁迫条件相比, 75 mmol·L−1 NaCl溶液灌溉下的番茄植株耗水量减少 40%, 引起番茄耗水量减少的原因主要是咸水灌溉条件下由于土壤渗透势低(高渗透压)而对植物生长产生不利影响, 导致叶片和根系水势降低, 相对含水量减少以及植株脱水现象[7]。盐分诱发的离子毒害, 大量和微量营养元素的亏缺如氮、钙、钾、磷、铁和锌以及植株的氧化胁迫均限制了植株对土壤水的吸收利用[43]。而本试验条件下黄腐酸的加入提高了番茄整个生育期的耗水量和产量水分利用效率, 产生这种现象的原因可能是黄腐酸可以增加植物对光能的吸收转化利用率、促进叶绿素的形成, 且降低叶片的蒸腾速率, 从而提高水分利用效率[44]

    本试验结果表明, 单位果实干物质量的维生素C和番茄红素含量随咸水浓度的增加而降低, 还原性糖含量呈先增加后降低的趋势。但有研究表明番茄果实的可溶性固形物和干物质含量随盐分胁迫程度的增加而增加, 而果实含水率是显著降低的, 这主要是由于较高的渗透压减少了果实的水分吸收和稀释作用的结果, 而不是增加了果实中诸如维生素C、番茄红素等的累积量[18]。而咸水灌溉下黄腐酸的添加均使番茄果实的维生素C、还原性糖、番茄红素的含量显著提高, 这可能是因为黄腐酸可以提高细胞膜透性, 促进营养吸收, 可促进糖转化酶、淀粉磷酸化酶及一些与蛋白质、脂肪合成有关的酶的活性, 使糖分、淀粉、蛋白质、脂肪、核酸、维生素等物质的合成、累积增加, 并促进转移酶的活性, 加速各种代谢产物从茎叶或根部向果实和籽粒运转, 对提高并改善番茄品质有直接影响[37,40,45-46]

    脯氨酸是一种分子透性大、极易溶于水的重要渗透调节剂和抗氧化剂, 能稳定细胞的渗透势和细胞中生物活性大分子的构象, 防止酶失活变性, 保持细胞氮素水平, 调节胞质pH值和防止细胞质酸化等, 在缓解植物逆境胁迫中起重要作用[47]。本研究中咸水灌溉下添加黄腐酸使番茄叶片脯氨酸含量显著提高, 这与刘晓涵[48]研究发现黄腐酸钾处理可以有效提高脯氨酸含量, 通过增强渗透调节系统减缓烟叶含水量及水势的下降, 增强烟草(Nicotiana tabacum )抗盐性的研究结果一致。Dinler等[49]研究发现黄腐酸预处理大豆(Glycine max)增加了相对含水量、抗氧化酶、同工酶活性, 并通过降低过氧化氢和丙二醛的水平来减轻应激诱导的氧化损伤。张小冰等[50]采用腐植酸钾浸种玉米(Zea mays), 降低了玉米幼苗在NaCl胁迫下的丙二醛含量, 提高了玉米的耐盐性, 这与本研究发现在咸水灌溉下黄腐酸使丙二醛含量显著降低结果一致, 是因为黄腐酸的添加显著增强超氧化歧化酶(SOD)和过氧化物酶(POD)的活性, 使得植物体内过氧化氢和超氧阴离子减少, 从而使氧化产物丙二醛的产生减少。高的K+/Na+是植物包括酶活性调节、渗透调节和蛋白质合成等许多生理过程的前提, 本研究发现黄腐酸能显著降低叶片中Na+量, 并且提高K+/Na+

    单株产量与K+/Na+呈极显著正相关, 与脯氨酸、丙二醛和Na+含量呈极显著负相关, 表明黄腐酸通过促进根系对营养离子的吸收, 增加叶肉细胞的K+/Na+, 降低丙二醛和Na+含量, 一定程度上缓解了渗透胁迫、氧化胁迫、离子胁迫。番茄果实维生素C和番茄红素含量均与K+/Na+呈显著正相关, 与丙二醛和Na+含量呈极显著负相关, 黄腐酸通过提高番茄K+/Na+来促进番茄果实维生素C和番茄红素的积累, 番茄果实还原性糖含量与丙二醛和Na+含量呈显著负相关, 黄腐酸通过降低膜脂过氧化产物丙二醛的产生来减缓氧化胁迫从而促进果实还原性糖和番茄红素含量的增加。

    黄腐酸对咸水灌溉下番茄有显著的增产效果, 并且900 mg·L−1的黄腐酸增产效果优于450 mg·L−1, 450 mg·L−1和900 mg·L−1黄腐酸分别增产6.14%~21.08%和12.83%~34.63%。黄腐酸能够显著提高咸水灌溉下番茄果实的维生素C、番茄红素和还原性糖含量, 当咸水浓度为3 g·L−1或5 g·L−1, 黄腐酸浓度为900 mg·L−1时, 番茄果实维生素C、还原糖、番茄红素含量均处于较大值。K+/Na+、丙二醛含量、Na+含量均是影响产量和品质的主要因素。黄腐酸能够显著提高番茄叶片脯氨酸含量和K+/Na+, 降低丙二醛含量和Na+含量。黄腐酸通过促进根系对营养离子的吸收, 增加叶肉细胞的K+/Na+, 降低了脯氨酸和Na+含量, 降低膜脂过氧化产物丙二醛的产生, 一定程度上缓解了渗透胁迫、离子胁迫和氧化胁迫, 从而促进了番茄果实维生素C、还原性糖和番茄红素的积累, 提高了产量以及水分利用效率。

  • 图  1   黄腐酸对不同浓度咸水灌溉下番茄耗水量和产量水分利用效率的影响

    F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同大、小写字母分别表示相同黄腐酸处理不同咸水浓度处理间、相同咸水浓度处理下不同黄腐酸处理间在P<0.05水平差异显著。

    Figure  1.   Effects of fulvic acid on water consumption (ET) and water use efficiency of tomato yield (WURY) under different concentrations of saline water for irrigation

    F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7, 9 g·L−1, respectively. The capital and lowercase letters indicate significant differences among different salt water concentration treatments with the same fulvic acid concentration and different fulvic acid treatments with the same salt water concentration, respectively, at P<0.05 level.

    图  2   黄腐酸对不同浓度咸水灌溉下番茄果实还原性糖、维生素C、番茄红素含量的影响

    F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同大、小写字母分别表示相同黄腐酸处理不同咸水浓度处理间、相同咸水浓度不同黄腐酸处理在P<0.05水平差异显著。

    Figure  2.   Effect of fulvic acid on quality indexes of tomato under different concentrations of saline water for irrigation

    F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7, 9 g·L−1, respectively. The capital and lowercase letters indicate significant differences among different salt water concentration treatments with the same fulvic acid concentration and different fulvic acid treatments with the same salt water concentration, respectively, at P<0.05 level.

    图  3   黄腐酸对不同浓度咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量、K+/Na+的影响

    F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同小写字母表示不同处理间在P<0.05水平差异显著。

    Figure  3.   Effects of fulvic acid application on proline, malondialdehyde (MDA), Na+ contents and K+/Na+ of tomato leaves under different concentrations of saline water for irrigation

    F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7 and 9 g·L−1, respectively. Different lowercase letters in the figure indicate significant differences among different treatments at P<0.05 level.

    表  1   不同浓度咸水的盐离子含量

    Table  1   Saline ions concentrations in irrigation water with different salinities used for the experiment

    g·L−1 
    咸水浓度
    Salinity of salt water (g·L−1)
    HCO3ClSO42−Ca2+Mg2+K++Na+
    10.120.700.120.040.030.44
    30.121.910.120.040.031.20
    50.123.300.150.040.032.11
    70.124.250.150.040.032.71
    90.125.180.210.040.033.40
    下载: 导出CSV

    表  2   不同处理的总灌溉量和灌水带入的盐和黄腐酸量

    Table  2   Total irrigation amount and the equivalent solid salt amount and fulvic acid (FA) added with irrigation to each pot

    黄腐酸浓度
    FA concentration (mg∙L−1)
    咸水浓度
    Salinity of salt water (g∙L−1)
    总灌溉量
    Total irrigation amount (mm)
    灌水带入盐量
    Salt amount added to each pot (g)
    灌水带入黄腐酸量
    FA added to each pot (g)
    01(CK)406.6745.140.00
    3413.33106.020.00
    5378.33162.020.00
    7346.67189.280.00
    9256.67172.870.00
    4501413.3345.8813.95
    3410.00105.1713.84
    5350.00149.8911.81
    7335.00182.9111.31
    9270.00181.859.11
    9001413.3345.8827.90
    3410.00105.1727.68
    5326.67139.9022.05
    7290.00158.3419.58
    9273.33184.0918.45
    下载: 导出CSV

    表  3   黄腐酸对不同浓度咸水灌溉下番茄单果重、单株果实个数和单株产量的影响

    Table  3   Effects of fulvic acid on single fruit weight, fruits number per plant and yield per plant of tomato under different concentrations of saline water for irrigation

    黄腐酸浓度
    Fulvic acid concentration (mg∙L−1)
    咸水浓度
    Salinity of salt water (g∙L−1)
    单果重
    Single fruit weight (g)
    单株果实个数
    Number of fruits per plant
    单株产量
    Yield per plant (g)
    0 1(CK) 57.87±6.80Aa 7.25±0.96Aa 414.84±17.59Ab
    3 44.82±4.28Ba 8.00±0.82Aa 355.93±2.72Bb
    5 36.78±2.42Ca 7.75±1.26Aa 284.39±46.44Ca
    7 31.65±2.14Ca 7.33±0.47Aa 232.00±20.32Ca
    9 23.23±5.16Da 5.50±1.29Bb 129.00±51.50Da
    450 1 60.76±10.10Aa 7.50±1.00Aa 453.29±86.33Aab
    3 48.03±4.04Ba 8.33±0.47Aa 399.77±34.29Aab
    5 37.88±3.38Ca 8.00±0.82Aa 301.86±27.47Ba
    7 33.86±3.24Ca 7.67±0.47Aa 259.11±23.44Ba
    9 25.70±3.36Da 6.00±0.82Bab 156.19±41.43Ca
    900 1 61.21±2.93Aa 7.75±1.50ABa 476.49±108.34Aa
    3 51.62±7.94Ba 8.50±0.58Aa 439.18±78.68Aa
    5 38.58±7.67Ca 8.25±0.50Aa 320.87±83.76Ba
    7 35.57±1.85Ca 7.67±0.47ABa 272.11±3.57Ba
    9 26.18±1.23Da 6.67±0.94Ba 173.67±15.95Ca
    显著性 Significance
    咸水 Salt water (S) ** ** **
    黄腐酸 Fulvic acid (F) NS * **
    S×F NS NS NS
      表中数据为平均值±标准误差, 同列不同大、小写字母分别表示相同黄腐酸浓度不同咸水浓度间、相同咸水浓度不同黄腐酸浓度间在P<0.05水平差异显著; *和**分别表示在P<0.05和P<0.01水平差异显著; NS表示无显著性差异。The data in the table is mean ± standard error. The capital and lowercase letters in the same column indicate significant differences among different salt water concentrations with the same fulvic acid concentration and different fulvic acid concentrations with the same salt water concentration, respectively, at P<0.05 level. * and ** represent significant differences at P<0.05 and P<0.01 levels, respectively. NS indicates no significant difference.
    下载: 导出CSV

    表  4   黄腐酸对不同浓度咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量、K+/Na+的双因素方差分析

    Table  4   Two factor analysis of variance of fulvic acid on proline, malondialdehyde, Na+ contents and K+/Na+ of tomato leaves under different concentrations of salt water for irrigation

    脯氨酸 Proline丙二醛 MalondialdehydeNa+K+/Na+
    咸水 Salt water (S)8745.63**5681.91**20 796.02**2533.45**
    黄腐酸 Fulvic acid (F)3688.22**8546.86**1159.20**296.84**
    S×F106.84**1257.70**163.99**87.64**
    下载: 导出CSV

    表  5   番茄产量、耗水、品质与生化指标的相关分析

    Table  5   Correlation analysis of tomato yield, water consumption, quality and biochemical indexes

    指标 IndexYETWUEYRSVCLyProMDANa+K+/Na+
    Y 1.000
    ET0.993**1.000
    WUEY 0.982**0.967**1.000
    RS 0.632*0.641**0.706**1.000
    VC0.850**0.859**0.851**0.818**1.000
    Ly0.658**0.658**0.660**0.765**0.905**1.000
    Pro−0.770**−0.773**−0.723**−0.136−0.408−0.0911.000
    MDA−0.747**−0.780**−0.707**−0.615*−0.860**−0.828**0.3541.000
    Na+−0.958**−0.962**−0.916**−0.522*−0.793**−0.563*0.834**0.695**1.000
    K+/Na+0.896**0.897**0.814**0.3830.698**0.567*−0.739**−0.647**−0.896**1.000
      表中指标分别为番茄单株产量(Y)、耗水量(ET)、产量水分利用效率(WUEY)、还原性糖(RS)、维生素C (VC)、番茄红素(Ly)、脯氨酸(Pro)、丙二醛(MDA)、Na+、K+/Na+; *和**分别表示相关性达P<0.05和P<0.01显著水平。The indexes in the table were tomato yield per plant (Y), water consumption (ET), yield water use efficiency (WUEY), reducing sugar (RS), vitamin C (VC), lycopene (Ly), proline (Pro), malondialdehyde (MDA ), Na+, K+/Na+. * and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively.
    下载: 导出CSV
  • [1] 王树强. 地下水资源可持续利用的制度架构−以华北平原为例[J]. 地下水, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t

    WANG S Q. Sustainable use of groundwater resources in the system frame — As an example of the North China Plain[J]. Ground Water, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t

    [2] 闫宗正, 房琴, 路杨, 等. 河北省地下水压采政策下水价机制调控冬小麦灌水量研究[J]. 灌溉排水学报, 2018, 37(8): 91−97, 128

    YAN Z Z, FANG Q, LU Y, et al. Changing water price to regulate groundwater extraction for irrigating winter wheat in North China Plain[J]. Journal of Irrigation and Drainage, 2018, 37(8): 91−97, 128

    [3] 张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162

    ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162

    [4] 李四强, 荷洁, 贺书宏. 营养与健康 宏兴隆发展战略之路[J]. 中国食品, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020

    LI S Q, HE J, HE S H. Nutrition and health Hongxinglong development strategy[J]. China Food, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020

    [5] 谢碧霞, 李安平. 膳食纤维[M]. 北京: 科学出版社, 2006

    XIE B X, LI A P. Dietary Fiber[M]. Beijing: Science Press, 2006

    [6] 祁春节. 中国园艺产业国际竞争力研究[M]. 北京: 中国农业出版社, 2006

    QI C J. A study on the international competitiveness of horticultural industry in China[M]. Beijing: China Agriculture Press, 2006

    [7]

    MAGGIO A, PASCALE S D, ANGELINO G, et al. Physiological response of tomato to saline irrigation in long-term salinized soils[J]. European Journal of Agronomy, 2004, 21(2): 149−159 doi: 10.1016/S1161-0301(03)00092-3

    [8]

    SHALHEVET J, YARON B. Effect of soil and water salinity on tomato growth[J]. Plant and Soil, 1973, 39(2): 285−292 doi: 10.1007/BF00014795

    [9]

    CUARTERO J, FERNÁNDEZ-MUÑOZ R. Tomato and salinity[J]. Scientia Horticulturae, 1998, 78(1/2/3/4): 83−125

    [10]

    MARSIC N K, VODNIK D, MIKULIC-PETKOVSEK M, et al. Photosynthetic traits of plants and the biochemical profile of tomato fruits are influenced by grafting, salinity stress, and growing season[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5439−5450 doi: 10.1021/acs.jafc.8b00169

    [11]

    NEBAUER S G, SÁNCHEZ M, MARTÍNEZ L, et al. Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts[J]. Plant Physiology and Biochemistry: PPB, 2013, 63: 61−69 doi: 10.1016/j.plaphy.2012.11.006

    [12]

    ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247−273 doi: 10.1146/annurev.arplant.53.091401.143329

    [13]

    MAGÁN J J, GALLARDO M, THOMPSON R B, et al. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions[J]. Agricultural Water Management, 2008, 95(9): 1041−1055 doi: 10.1016/j.agwat.2008.03.011

    [14]

    QARYOUTI M M, QAWASMI W, HAMDAN H, et al. Influence of nacl salinity stress on yield, plant water uptake and drainage water of tomato grown in soilless culture[J]. Acta Horticulturae, 2007(747): 539−545

    [15]

    BOARI F, CANTORE V, DI VENERE D, et al. Pyraclostrobin can mitigate salinity stress in tomato crop[J]. Agricultural Water Management, 2019, 222: 254−264 doi: 10.1016/j.agwat.2019.06.003

    [16]

    CANTORE V, PACE B, TODOROVIĆ M, et al. Influence of salinity and water regime on tomato for processing[J]. Italian Journal of Agronomy, 2012, 7(1): 10 doi: 10.4081/ija.2012.e10

    [17]

    EL-MOGY M M, GARCHERY C, STEVENS R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2018, 68(8): 727−737

    [18]

    MITCHELL J P, SHENNAN C, GRATTAN S R, et al. Tomato fruit yields and quality under water deficit and salinity[J]. Journal of the American Society for Horticultural Science, 1991, 116(2): 215−221 doi: 10.21273/JASHS.116.2.215

    [19] 王斌, 张强, 黄高鉴, 等. 水盐胁迫下脱硫石膏对苏打型碱化土理化性质及玉米产量的影响[J]. 安徽农业科学, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080

    WANG B, ZHANG Q, HUANG G J, et al. Effect of desulphurization gypsum on physical and chemical characteristics of soda-type of alkaline soil and maize yield under water-salt stress[J]. Journal of Anhui Agricultural Sciences, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080

    [20] 宓永宁, 左建. 沸石对盐碱地玉米增产效果的研究[J]. 盐碱地利用, 1995, 25(1): 26−28

    MI Y N, ZUO J. Effect of zeolite on increase production of maize in saline-alkali soil[J]. Utilization of Saline-Alkali Soil, 1995, 25(1): 26−28

    [21]

    SHE D L, SUN X Q, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743 doi: 10.1038/s41598-018-33040-7

    [22]

    DU S T, LIU Y, ZHANG P, et al. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.)[J]. Food Chemistry, 2015, 173: 905−911 doi: 10.1016/j.foodchem.2014.10.115

    [23] 何庆元, 向仕华, 吴萍, 等. 硫化氢对盐胁迫条件下大豆抗氧化酶活性的影响[J]. 大豆科学, 2015, 34(3): 427−431

    HE Q Y, XIANG S H, WU P, et al. Effects of hydrogen sulfide alleviates salt stress in soybean (Glycine max) antioxidative system[J]. Soybean Science, 2015, 34(3): 427−431

    [24] 张春平, 何平, 刘海英, 等. 外源CO供体高铁血红蛋白对盐胁迫下决明种子萌发及幼苗生理特性的影响[J]. 中国中药杂志, 2012, 37(2): 189−197

    ZHANG C P, HE P, LIU H Y, et al. Effect of exogenous carbon monoxide donor hematin on seed germination and physiological characteristics of Cassia obtusifolia seedlings under NaCl stress[J]. China Journal of Chinese Materia Medica, 2012, 37(2): 189−197

    [25]

    MIAO Y X, LUO X Y, GAO X X, et al. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings[J]. Scientia Horticulturae, 2020, 272: 109577 doi: 10.1016/j.scienta.2020.109577

    [26] 张林青. 盐胁迫下油菜素内酯对番茄产量和品质的影响[J]. 北方园艺, 2012(20): 23−25

    ZHANG L Q. Effect of brassinolide on yield and quality of tomato under salt stress[J]. Northern Horticulture, 2012(20): 23−25

    [27] 郭小俊, 谢成俊. 外源ABA对NaCl胁迫下黄瓜幼苗不同离子含量的影响[J]. 中国蔬菜, 2008(9): 27−30

    GUO X J, XIE C J. Effect of exogenous ABA on ionic contents of cucumber seedlings under NaCl stress[J]. China Vegetables, 2008(9): 27−30

    [28] 束胜, 孙锦, 郭世荣, 等. 外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响[J]. 园艺学报, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005

    SHU S, SUN J, GUO S R, et al. Effects of exogenous putrescine on PSⅡ photochemistry and ion distribution of cucumber seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005

    [29] 周艳, 刘慧英, 崔金霞, 等. 外源GSH对NaCl胁迫下番茄幼苗叶片及根系离子微域分布的影响[J]. 植物营养与肥料学报, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311

    ZHOU Y, LIU H Y, CUI J X, et al. Effects of exogenous glutathione on ions micro-distribution in leaf and root of tomato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311

    [30] 崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响[J]. 山西农业科学, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05

    CUI Y H, LIANG Y, WANG J E, et al. Effects of nano-silicon on seedling growth and antioxidant characteristics of sweet pepper under salt stress[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05

    [31] 于学健. 黄腐酸调控甜菊糖苷合成的机理及甜菊糖苷的酶法转化[D]. 北京: 中国农业大学, 2016

    YU X J. Mechanism of stevioside synthesis regulation by fulvic acid and its enzymatic modification[D]. Beijing: China Agricultural University, 2016

    [32] 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015

    WANG X K, HUANG J L. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2015

    [33] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000

    [34] 马芸, 姜瑞, 吴燕. 西瓜中番茄红素含量的测定方法评价[J]. 宁夏农林科技, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041

    MA Y, JIANG R, WU Y. Evaluation of determination method of lycopene content in watermelon[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041

    [35]

    ZHANG P F, DAI Y Y, MASATERU S, et al. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency[J]. Communications in Soil Science and Plant Analysis, 2017, 48(22): 2601−2611

    [36]

    MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911

    [37] 亓艳艳, 骆洪义, 公华锐, 等. 黄腐酸对基质栽培番茄生长、产量及品质的影响[J]. 山东农业科学, 2018, 50(5): 87−91

    QI Y Y, LUO H Y, GONG H R, et al. Effects of fulvic acid treatments on development, yield and quality of tomato in substrate culture[J]. Shandong Agricultural Sciences, 2018, 50(5): 87−91

    [38] 李静, 李世莹, 李青松. 黄腐酸用量对番茄产量及品质的影响[J]. 农学学报, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002

    LI J, LI S Y, LI Q S. Effects of different amounts of fulvic acid on tomato yield and quality[J]. Journal of Agriculture, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002

    [39] 孙倩. 提取腐殖酸及其对土壤环境和植物生长的影响[D]. 南京: 南京农业大学, 2016

    SUN Q. Derived humic acids and its effects on soil environment and growth of plants[D]. Nanjing: Nanjing Agricultural University, 2016

    [40] 朱会调, 高登涛, 白茹, 等. 黄腐酸对阳光玫瑰葡萄果实品质及产量的影响[J]. 石河子大学学报(自然科学版), 2021, 39(5): 590−596

    ZHU H T, GAO D T, BAI R, et al. Effects of fulvic acid on berry quality and yield of Shine Muscat grape[J]. Journal of Shihezi University (Natural Science), 2021, 39(5): 590−596

    [41] 卢林纲. 黄腐酸及其在农业上的应用[J]. 现代化农业, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030

    LU L G. Fulvic acid and its application in agriculture[J]. Modernizing Agriculture, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030

    [42]

    REINA-SÁNCHEZ A, ROMERO-ARANDA R, CUARTERO J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water[J]. Agricultural Water Management, 2005, 78(1/2): 54−66

    [43]

    SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences, 2015, 22(2): 123−131 doi: 10.1016/j.sjbs.2014.12.001

    [44] 高原, 郭晓青, 李福德, 等. 基施黄腐酸肥料情况下减施化肥提高设施辣椒产量和品质[J]. 植物营养与肥料学报, 2020, 26(3): 594−602

    GAO Y, GUO X Q, LI F D, et al. Improvement of yield and quality of greenhouse-grown pepper through basal application of fulvic acid fertilizer under chemical fertilizer reduction[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 594−602

    [45] 闫嘉欣, 常青, 杨治平, 等. 黄腐酸液体配方肥对大棚黄瓜产量及品质的影响[J]. 中国农学通报, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108

    YAN J X, CHANG Q, YANG Z P, et al. Fulvic acid formulated liquid fertilizer: effect on greenhouse cucumber yield and quality[J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108

    [46] 姚东伟. 黄腐酸对番茄生长、产量及光合特性的影响[D]. 太谷: 山西农业大学, 2003

    YAO D W. Effect of fulvic acid on growth, yield and photosynthetic characteristic of tomato[D]. Taigu: Shanxi Agricultural University, 2003

    [47] 海霞, 米俊珍, 赵宝平, 等. 外源亚精胺对盐胁迫下燕麦幼苗生长及生理特性的影响[J]. 西北植物学报, 2021, 41(6): 1003−1011

    HAI X, MI J Z, ZHAO B P, et al. Effects of exogenous spermidine on the growth and physiological characteristics in oat seedlings under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1003−1011

    [48] 刘晓涵. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究[D]. 郑州: 河南农业大学, 2020

    LIU X H. The study on relieving response mechanism of tobacco in salt stress by exogenous biochar and potassium fulvic acid[D]. Zhengzhou: Henan Agricultural University, 2020

    [49]

    DINLER B S, GUNDUZER E, TEKINAY T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress[J]. Acta Biologica Cracoviensia Series Botanica, 2016, 58(1): 29−41 doi: 10.1515/abcsb-2016-0002

    [50] 张小冰, 王晓丽. 腐植酸钾浸种对玉米幼苗保护酶及MDA的影响[J]. 运城学院学报, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012

    ZHANG X B, WANG X L. Effects of soaking seed with potassium humate on the activity of protective enzymes and the level of MDA in maize seedlings[J]. Journal of Yuncheng University, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012

  • 期刊类型引用(1)

    1. 耿川雄,马心灵,杨景华,武建林,周敏,陈安强,郭永杰,周金华,孔垂思,郑毅. 钙镁磷土壤调理剂配施生物菌剂对设施红壤酸化消减效果研究. 西南农业学报. 2024(05): 1056-1062 . 百度学术

    其他类型引用(9)

图(3)  /  表(5)
计量
  • 文章访问数:  2119
  • HTML全文浏览量:  241
  • PDF下载量:  103
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-03-09
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2023-03-09

目录

/

返回文章
返回