中国食物系统温室气体排放与吸收研究进展

金欣鹏, 柏兆海, 马林

金欣鹏, 柏兆海, 马林. 中国食物系统温室气体排放与吸收研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(2): 177−193. DOI: 10.12357/cjea.20220025
引用本文: 金欣鹏, 柏兆海, 马林. 中国食物系统温室气体排放与吸收研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(2): 177−193. DOI: 10.12357/cjea.20220025
JIN X P, BAI Z H, MA L. Research progress of greenhouse gas emissions and sequestration of the Chinese food system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 177−193. DOI: 10.12357/cjea.20220025
Citation: JIN X P, BAI Z H, MA L. Research progress of greenhouse gas emissions and sequestration of the Chinese food system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 177−193. DOI: 10.12357/cjea.20220025
金欣鹏, 柏兆海, 马林. 中国食物系统温室气体排放与吸收研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(2): 177−193. CSTR: 32371.14.cjea.20220025
引用本文: 金欣鹏, 柏兆海, 马林. 中国食物系统温室气体排放与吸收研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(2): 177−193. CSTR: 32371.14.cjea.20220025
JIN X P, BAI Z H, MA L. Research progress of greenhouse gas emissions and sequestration of the Chinese food system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 177−193. CSTR: 32371.14.cjea.20220025
Citation: JIN X P, BAI Z H, MA L. Research progress of greenhouse gas emissions and sequestration of the Chinese food system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 177−193. CSTR: 32371.14.cjea.20220025

中国食物系统温室气体排放与吸收研究进展

基金项目: 国家自然科学基金项目(31872403, 42001254)、国家重点研发计划-政府间国际科技创新合作项目(2021YFE0101900)、中国科学院青年创新促进会项目(2019101)、联合国可持续发展解决方案网络项目(中国可持续农产品和林产品贸易预测)、河北省重点研发专项项目(20327305D)、河北省自然科学基金优秀青年科学基金项目(D2021503015)、河北省‘三三三人才工程’项目(A202110001)、河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)、国际食物和土地利用联盟项目(FOLU)和挪威国际气候和森林倡议项目资助
详细信息
    作者简介:

    金欣鹏, 研究方向为农业生态学。E-mail: jinxinpeng19@mails.ucas.ac.cn

    通讯作者:

    马林, 研究方向为农业生态学。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: X22

Research progress of greenhouse gas emissions and sequestration of the Chinese food system

Funds: This study was supported by the National Natural Science Foundation of China (31872403, 42001254), the National Key Research and Development Project of China (2021YFE0101900), the Foundation for Youth Innovation Promotion Association of Chinese Academy of Sciences (2019101), the Project of Sustainable Development Solutions Network of the United Nations (Sustainability of China’s Projected Trade in Agricultural and Forestry Products), the Key R&D Program of Hebei (20327305D), the Natural Science Foundation of Hebei Province (D2021503015), Hebei “Three-Three-Three Talents Project” Funded Project (A202110001), Hebei Dairy Cattle Innovation Team of Modern Agro-industry Technology Research System (HBCT2018120206), the Food and Land Use Coalition Project (FOLU), and the Norway International Climate and Forest Initiative Project.
More Information
  • 摘要: 我国食物系统温室气体核算研究相对缺乏, 相关研究多散见于农业和畜牧业部门, 难以满足碳达峰、碳中和背景下减排和固碳的需求。本文提出了一个涵盖土地利用、土地利用变化和林业(LULUCF)、农业生产、产后食物供应部门的食物系统温室气体排放与吸收的核算框架; 通过文献综述、温室气体排放量收集和排放参数推算, 剖析了各环节排放核算方法的差异和排放参数的不确定性。结果表明, 粪尿和秸秆还田、农药和农膜生产、食物加工、批发和零售以及草地的碳排放(或吸收)参数的变异系数(CVs)在35%以上。未来食物系统温室气体核算研究需: 1)在农业生产部门, 细化农业活动排放参数, 整合基于终端能源消费和农业生产过程的温室气体核算方法, 并加强农业投入品能耗研究; 2)在LULUCF部门, 建立适用于全球变化研究的土地利用分类体系, 识别食物系统相关的土地利用过程, 将实地调查核算法和基于过程模型的核算方法相互校验; 3)在产后食物供应部门, 明确各环节排放的核算范围, 有针对性地选择投入产出-生命周期评价法(EIO-LCA)、基于过程的生命周期评价法(PLCA)与终端能源消费核算法等。本文可进一步为食物系统温室气体减排提供科学依据。
    Abstract: Studies on the country’s food system and greenhouse gas (GHG) accounting are still lacking in China. Most of previous studies have focused on crop and livestock production, which are hard to meet the demands of both GHG reduction and sequestration, against the backdrop of the “carbon peak and neutrality” policy. In this study, we proposed a food system GHG accounting framework that covers land use, land use change, and forests (LULUCF); agricultural production; and post-production food supply sectors. Through literatures review, collecting emission data, and reverse-calculating emission factors, we analyzed the differences in accounting methods and the uncertainties of emission parameters for various GHG emission (or sequestration) segments in the Chinese food system. Results showed that the coefficients of variables (CVs) of the emission or storage parameters of manure and crop straw application, pesticides and film production, food processing, food retail and wholesale, and grassland sinks were above 35%. Our suggestions for future studies are as follows: 1) in the agricultural production sector: refine emission factors of agricultural activities, harmonize different energy use accounting methods (e.g., final energy consumption accounting and process-based accounting methods), and reinforce research on energy consumption of agricultural input manufacturing enterprises; 2) in the LULUCF sector: establish the land use classification dedicated to global change research, identify the land use processes associated with the food system, and cross-check the field measure-based accounting method and the process-based accounting method; 3) in the post-production food supply sector: clarify the accounting scopes of each stage and select the environmental input-output life cycle assessment method, the process-based life cycle assessment method, or the final energy consumption accounting method. This study could further provide scientific basis for GHG reduction in food systems.
  • 当前, 全球温室气体(GHG)减排仍低于预期, 远不足以将全球平均温升控制在1.5~2 ℃内(较工业革命前)[1-2]。许多国家和地区已经意识到碳达峰、碳中和是实现1.5~2 ℃温升目标的必要条件, 因此陆续作出了相应的减排承诺[3]。截至目前, 这些国家和地区的数量已经超过130个, 其GHG排放量占全球的比例超过70%[4]。中国也宣布了颇具雄心的减排目标: 力争在2030年前使CO2达到峰值, 努力争取2060年前实现碳中和(下文简称“双碳目标”)[5]。在第26届联合国气候变化大会上(COP26), 中国进一步做出了制定甲烷行动计划的承诺, 这意味着我国要较发达国家大大缩短GHG排放的高位平台期, 需要包括食物系统在内的各部门做出迅速而根本的低碳转型[6]

    食物系统是包括农业生产、食物加工、运输、销售和消费全过程的人类活动和生产关系的总和[7], 既是重要的GHG排放源, 也具有碳汇的功能。2015年, 食物系统排放了全球1/3的GHG [108亿~191亿t二氧化碳当量(CO2eq)], 其中, 二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)排放量分别占全球人为源CO2、CH4和N2O排放的26%、63%和59%[8-9]。这表明食物系统减排已迫在眉睫, 其不仅是CH4和N2O主要的排放源, 与之相关的CO2排放也不容忽视。已有研究表明, 如果不对食物系统进行综合管理, 仅该系统的GHG排放就会突破巴黎协定的1.5 ℃温升目标, 并威胁到2 ℃目标[10]。与此同时, 在固碳方面, Roe等[11]的研究表明, 加强食物系统相关的土地利用管理, 诸如造林、农林结合和农田固碳等措施, 能够贡献106亿t CO2eq的减排潜力。因此, 在非CO2-GHG减排重要性愈发凸显的背景下, 食物系统减排和固碳对气候目标的实现具有重要意义。

    过去30年, 中国食物系统发生了巨大变化。生产端的化肥、农药、农膜和农用柴油用量增长了0.8~3.0倍, 主要农作物和畜禽产量分别增长了1.3倍和4.0倍[12]; 在消费端, 随着经济发展和城市化推进, 我国居民人均食物能量摄入从2515 kcal∙d−1增长至3108 kcal∙d−1, 动物性食物蛋白质供给比例从12.4%提高至31.4%[13-14]。国内外食物贸易和居民外出就餐频率的增加, 也导致了运输、烹饪等活动耗能的增加[15-16]。研究显示, 2010年中国食物系统GHG排放高达16亿 t(CO2eq)∙a−1, 其中农业活动、农业能源和产后食物供应部门排放之比为5∶3∶2, CO2、CH4和N2O排放占比为44%、25%和31% (以CO2eq计)[17]。中国食物系统正处于绿色低碳转型的关键时期, 而明确食物系统各环节、各类型的GHG排放是协同实现食物系统GHG减排、食物安全和生态环境保护的重要科学基础[18]

    然而, 目前的研究仍缺乏对食物系统整体及其各环节GHG排放的分析, 相关数据仅见于农业(包括种植业和畜牧业)生产排放、生态系统碳汇和消费端食物能源核算等研究中[19]。其中, Zhou等[20]和Wang等[21]分别建立了高分辨率土壤N2O和稻田CH4排放清单, 但在产后食物供应部门排放核算研究中, 仍存在核算项目和研究边界不清等问题。基于此, 本文通过文献数据收集, 综述了中国食物系统及其各环节的GHG排放情况, 重点分析了各环节GHG核算方法及排放系数的差异, 从而为制定环节明晰、多目标协同的食物系统GHG减排政策提供科学依据, 为“双碳目标”路线制定提供支撑。

    本文将食物系统GHG核算边界分为农业生产、土地利用变化和林业(LULUCF)和产后食物供应3部分(图1)。农业生产部门, 我们不仅分析了农业活动造成的非CO2-GHG排放, 还考虑了农业能源和农用物资生产所造成的直接和间接的CO2排放。其中, 农业活动的非CO2-GHG排放包括: 水稻种植的CH4排放, 化肥、秸秆和有机肥施用导致的N2O排放, 秸秆燃烧的CH4和N2O排放, 动物肠胃发酵的CH4排放以及粪尿管理的CH4和N2O排放; 农业直接能源利用排放主要包括: 农用柴油、电力和煤使用所造成的CO2排放; 农业间接能源排放主要有: 化肥、农药和农膜等生产过程中所造成的CO2排放。LULUCF部门中, 重点关注与农业活动相关的耕地、草地和林地利用的CO2排放和吸收过程。产后食物供应部门排放包括食物加工、包装、运输、销售和消费过程产生的CO2排放。由于数据缺乏, 废弃物处理过程排放的GHG暂未纳入核算范围。

    图  1  食物系统温室气体核算边界
    Figure  1.  Accounting framework of food system greenhouse gas (GHG) emission

    本文数据主要来源于各大权威GHG排放数据库和文献数据。GHG排放数据库包括Food and Agricultural Organization Statistical Databases (FAOSTAT)[22]、United Nations Framework Convention on Climate Change Greenhouse Gas Inventory Data (UNFCCC-GHG Inventory)[23]、The Emission Database for Global Atmospheric Research (EDGAR)[24]和Carbon Emission Account and Datasets (CEADs)[25]数据库。其中FAOSTAT主要核算了农业活动和农业能源直接利用的GHG排放; UNFCCC-GHG Inventory和EDGAR数据库涵盖了所有行业部门的GHG排放, 但食物系统相关的排放分类较粗; CEADs则专注于所有行业部门能源利用的CO2排放。

    文献数据主要从Web of Science、Google Scholar和中国知网数据库检索、收集(图2)。检索关键词按照“核算范围×温室气体类型”进行排列组合, 核算范围包括“土地” “农业” “作物” “畜禽”和“食物”等中英文关键词及其近义词; 温室气体类型包括“温室气体”“二氧化碳”“甲烷”和“氧化亚氮”等中英文关键词及其近义词。研究区域为中国, 文献发表时间限定在2010—2021年, 但由于部分土地利用碳排放/清除研究基于生态调查, 时间跨度较长, 将相关文献的发表年限放宽至2005—2021年, 因此收集到的GHG排放数据主要是2005—2015年间的核算值, 部分LULUCF部门排放/清除的核算值对应于过去30~40年。

    图  2  文献数据收集流程
    LULUCF: 土地利用、土地利用变化和林业。LULUCF: land use, land use change and forests.
    Figure  2.  Process of literature data collection

    最初文献获取量为1707篇(去重后), 通过分析文献标题后去除了1633篇文献, 去除原则为: 1)与主题不符, 2)空间范围不是中国(其他国家或国内某一地区均去除), 3)未完全包括3大作物(水稻、小麦和玉米)或4类主要畜禽(猪、牛、羊和鸡)。进一步浏览文献内容, 去除掉无法获取数据、不包含分环节(过程)数据以及同一作者或课题组类似数据的文献, 最终收集了有效文章67篇。收集的数据来自文献图表或文字描述, 部分图表数据需利用GetData软件提取。GHG均以CO2eq计, 全球增温潜势(GWP)均以IPCC Fifth Assessment Report (IPCC AR5)[26]提供的数值为准, 即CO2=1, CH4=28, N2O=265。由此, 建立了一个包含文献来源、作者、发表年份、研究年份和各环节排放数值的食物系统GHG排放数据库。

    食物系统各环节GHG排放参数及其不确定性的估算思路如公式(1)-(5)所示, 即: 先汇总文献中某环节的排放参数, 文献中给出了参数数值时直接收集, 未明确给出时则通过排放量和活动数据反推; 若活动数据也未明确给出, 则根据表1的缺省数据来源收集相应活动数据并反推; 最后将各环节排放参数求平均值, 并计算标准差和变异系数。值得注意的是, 由于产后食物供应部门排放研究较少且核算范围各不相同, 很难确定其计算的活动数据和排放参数, 因此按Crippa等[9]的年际变化将各文献、各环节的排放量校准到2015年, 然后假设各文献中活动数据一致, 因此其排放参数的变异系数与排放量的变异系数一致。

    表  1  中国食物系统各环节排放核算的活动数据缺省值
    Table  1.  Default activity data for different emission segments in the food system in China
    环节
    Emission source or sink
    活动数据
    Activity data in 2015
    单位
    Unit
    缺省活动数据来源及说明
    Default data source and remarks
    水稻种植
    Rice cultivation
    水田面积
    Rice paddy area
    Mhm2 FAOSTAT[22]
    化肥施用
    Synthetic fertilizer application
    氮肥和复合肥的氮量
    N in straight and compound fertilizer
    Mt N FAOSTAT[22]
    有机肥施用
    Organic fertilizer application
    畜禽粪尿和饼肥的还田氮量
    N in applied livestock manure and cake fertilizer
    Mt N 有机肥资源量为牛新胜等[27]、Zhou等[20]估算的2005—2010年各类有机肥资源量的平均值, 还田比例为Zhou等[20]和Ma等[28]报告的平均值
    The amount of organic fertilizer resource originates from Niu et al.[27] and Zhou et al.[20], whose study period is between 2005 and 2010 (in average). And the rate of organic fertilizer returning originates from Zhou et al.[20] and Ma et al.[28] (in average).
    粪尿管理
    Manure management
    畜禽存栏量, 转换为标准动物单位(LU), 转换方法见Eurostat[29]
    Stock number of livestock, measured in standard livestock unit (LU). The method of unit conversion is available in Eurostat[29].
    MLU FAOSTAT[22]
    肠道排放
    Enteric fermentation
    牲畜存栏量(不包括家禽数量), 转换为标准动物头数(LU)
    Stock number of large livestock (excluding poultries), measured in LU.
    MLU FAOSTAT[22]
    秸秆燃烧
    Burning crop residue
    用于燃烧的秸秆生物量(DM, 干重)
    Amount of burned crop residue, measured in dry matter (DM)
    Mt DM 秸秆资源量参考牛新胜等[27]估算的2005—2010年秸秆资源平均值, 干重比参考省级温室气体清单编制指南[30], 秸秆燃烧比例为Zhou等[20]、刘晓永[31]和Ma等[28]报告的燃烧比例平均值
    The amount of crop residue resource originates from Niu et al.[27], whose study period is 2005−2010. The ratio of dry weight to fresh weight originates from Guideline for Provincial Greenhouse Gas Emission Inventories[30]. And the crop residue burning ratio originates from Zhou et al.[20], Liu[31] and Ma et al.[28] (in average).
    秸秆还田
    Crop residue application
    秸秆还田氮量
    N in applied crop residue
    Mt N 秸秆资源量参考牛新胜等[27]估算的2005—2010年秸秆资源平均值, 秸秆还田比例为Zhou 等[20]、刘晓永[31]和Ma等[28]报告的还田比例平均值
    The amount of crop residue resource originates from Niu et al.[27], whose reported time was 2005−2010. And the rate of crop residue returning originates from Zhou et al.[20], Liu[31] and Ma et al.[28] (in average).
    农业化石能源消耗
    Agricultural fossil fuel consumption
    农林牧渔业化石能源终端消费量, 以标准煤当量计(ce)
    Fossil fuel consumed by farming, forestry, animal husbandry and fishery (FFAF), measured in standard coal equivalent (ce)
    Mt ce 中国能源年鉴[32]
    China Energy Statistic Yearbook [32]
    农业电力消耗
    Agricultural electricity consumption
    农林牧渔业电力终端消费量, 以标准煤计(ce)
    Electricity consumed by FFAF, measured in standard coal equivalent (ce)
    Mt ce 中国能源年鉴[32]
    China Energy Statistic Yearbook [32]
    化肥生产
    Synthetic fertilizer production
    化肥施用量(折纯), 包括氮、磷、钾肥和复合肥
    Amount of synthetic fertilizer, including straight N, P, K fertilizer and compound fertilizer
    Mt 国家统计局[33]
    National Bureau of Statistics of China[33]
    农药生产
    Pesticide production
    农药用量
    Amount of pesticide
    Mt 国家统计局[33]
    National Bureau of Statistics of China[33]
    农膜生产
    Film production
    农膜用量
    Amount of film
    Mt 国家统计局[33]
    National Bureau of Statistics of China[33]
    食物加工
    Food processing
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food processing, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    食物包装
    Food packaging
    活动数据不确定, 直接采用Crippa等[9]包含包装间接碳排放的结果, 排放年为2015年
    No specific activity data. Use the value in 2015 reported by Crippa et al.[9] (including the indirect packaging emission)
    / Crippa等[9]
    Refer to Crippa et al.[9]
    运输和仓储
    Food transport and storage
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food consumption, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    批发和零售
    Food wholesale and retail
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food wholesale and retail, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    食物消费
    Food consumption
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food transport and storage, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    森林
    Forest
    森林面积
    Forest area
    Mhm2 国家统计局[33]
    National Bureau of Statistics of China[33]
    耕地
    Cropland
    耕地面积
    Cropland area
    Mhm2 中国统计年鉴[34]
    China Statistic Yearbook[34]
    草地
    Grassland
    草地面积
    Grassland area
    Mhm2 国家统计局[33]
    National Bureau of Statistics of China[33]
    下载: 导出CSV 
    | 显示表格
    $$ {{\text{EF}}_{i,j}} = \left\{ {\begin{array}{*{20}{c}} {{{\rm{EF}}_{i,j}}({\text{original)}} \times \varepsilon }& {{{\rm{EF}}_{i,j}}({\text{original) is available}}} \\ {\dfrac{{{{{E}}_{i,j}}}}{{{A_{i,j}}}} \times \varepsilon }& {{{\rm{EF}}_{i,j}}({\text{original) is not available}}} \end{array}} \right. $$ (1)

    式中: 下标i为食物系统第i个GHG排放环节, j为含第i个GHG排放环节的第j篇文献; EFi,j是收集、整理后的第j篇文章中第i个环节GHG排放系数; EFi,j(original)是原文献中直接获取的EFi,j值; Ei,j是第j篇文献中第i个GHG排放环节的排放量; Ai,j是整理后的第j篇文章第i个环节GHG核算所用的活动数据; ε是GWP转换系数, 用于将不同文献中的GWP统一转换为IPCC AR5所用的GWP值(未考虑气候反馈效应)。

    $$ {A_{i,j}} = \left\{ {\begin{array}{*{20}{c}} {{A_{i,j}}({\text{original)}}}&{{A_{i,j}}({\text{original) is available}}} \\ {{A_{i,j}}({\text{default)}}}&{{A_{i,j}}({\text{original) is not available}}} \end{array}} \right. $$ (2)

    式中: Ai,j(original)是从第j篇文献中直接获取的第i个GHG排放环节的活动数据, Ai,j(default)是当原文献中不能确切获知Ai,j值时采用的缺省活动数据, 具体来源参考表1

    $$ {\overline {{\rm{EF}}} _i} = \frac{{\displaystyle\sum\nolimits_{j = 1}^m {{{\rm{EF}}_{i,j}}} }}{m} $$ (3)

    式中: ${\overline {{\rm{EF}}} _i}$是食物系统第i个环节排放参数的平均值, m是包含食物系统i环节排放的文献总量。

    $$ {\text{S}}{{\text{D}}_i} = \sqrt {\frac{{\displaystyle\sum\nolimits_{j = 1}^m {\left( {{{\rm{EF}}_{i,j}} - {{\overline {{\rm{EF}}} }_i}} \right)} }}{m}} $$ (4)

    式中: SDi是食物系统第i个环节GHG排放参数的标准差。

    $$ {{\rm{CV}}_i} = \frac{{{{\rm{SD}}_i}}}{{{{\overline {{\rm{EF}}} }_i}}} $$ (5)

    式中: CVi是食物系统第i个环节GHG排放参数的变异系数。

    2005—2015年, 农业活动GHG排放量为821 Mt(CO2eq)∙a−1, 其中动物肠胃发酵、水稻种植、畜禽粪尿管理和化肥施用等是GHG排放的主要环节, 占农业活动GHG排放的90%以上(图3)。化肥施用的N2O排放研究较多, 排放量变异范围较小, 排放参数为4.3~5.5 t(CO2eq)∙t−1(N) (表2)。采用区分作物种类和背景/施肥排放核算方法[35](方法2c)的研究居多, 排放参数为4.6~4.8 t(CO2eq)∙t−1, 该数值接近北京大学构建的高分辨率排放清单(PKU-N2O)的排放参数[20](方法2d), 而低于FAO-IPCC TIER1[22] (方法2a)和UNFCCC-省级清单编制指南[30]的排放参数(方法2b), 这可能与排放参数是否源于本地测定数据有关(方法2c和2d采用, 而2a和2b未采用)。

    图  3  2005—2015年农业活动导致的年均温室气体排放
    图3中的箭头单独指出了UNFCCC、EDGAR和FAO等权威数据库的温室气体核算值, 可相互进行比较或作为基准与其他核算结果比较; 图例中对不同核算方法进行了编号, 且该编号与表2中和文中的方法编号相对应, 便于比较和说明不同核算方法间的差异。Accounting values from authoritative database (including UNFCCC, EDGAR, FAO) are pointed out with arrows, which could compare with each other or with other accounting results as reference values. Different methods are coded in legends. And the codes are consistent with those in the table 2 and in text, which are used to compare and illustrate the differences between methods.
    Figure  3.  Annual greenhouse gas (GHG) emission induced by agricultural activities during 2005−2015
    表  2  农业活动温室气体核算方法及其参数变异范围
    Table  2.  Accounting methods for agricultural activities greenhouse gas emission and their re-calculated emission factors
    代码
    Code
    1水稻种植
    Rice cultivation
    2化肥施用
    2 Synthetic fertilizer application
    3有机肥施用
    3 Organic fertilizer application
    4秸秆还田
    4 Crop residue application
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(N)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(N)​​​​​​​]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(N)​​​​​​​]
    a FAO-IPCC TIER1[22] 4.8~6.4 FAO-IPCC TIER1[22] 4.3~5.5 FAO-IPCC TIER1[22] 5.9 FAO-IPCC TIER1[22] 8.0~15.6
    b UNFCCC-省级温室气体清单[30]
    UNFCCC- Guide for Provincial GHG Inventory (GPGI)[30]
    5.3~8.2 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    5.5 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    11.7 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    3.2~6.2
    c EDGAR-GAINS[24] 13.1 区分作物品种和背景/施氮排放[35]
    Based on the parameters by crops and by background emissions[35]
    4.6~4.8 PKU-N2O高分辨率排放清单[20]
    PKU-N2O high resolution inventory[20]
    3.1~4.3 PKU-N2O高分辨率排放清单[20]
    PKU-N2O high resolution inventory[20]
    1.8~4.7
    d 王明星等[37],
    分区排放参数
    Regional emission parameters from Wang et al.[37]
    8.0~11.9 PKU-N2O高分辨率排放清单[20]
    PKU-N2O high resolution inventory[20]
    4.5~4.6
    e 王效科等[38], DNDC模型模拟
    Wang et al.[38], based on DNDC model
    9.5~9.6
    f 其他方法
    Others
    5.5
    代码
    Code
    5秸秆燃烧
    5 Burning crop residue
    6粪尿管理
    6 Manure management
    7肠胃排放
    7 Enteric fermentation
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(DM)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙LU−1)
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙LU−1)
    a FAO-IPCC TIER1[22] 0.11 FAO-IPCC TIER1[22] 0.2~0.3 FAO-IPCC TIER1[22] 0.6~0.9
    b UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    0.05~0.09 EDGAR-CAPRI[24] 0.2 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    1.0~1.2
    c EDGAR[24] 0.06~0.09 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    0.5~0.7 胡向东等 [39], 简化的FAO-IPCC TIER1方法
    Hu et al.[39], simplified method based on FAO-IPCC TIER1
    0.9~1.1
    d 其他方法
    Others
    0.11~0.15 胡向东等[39], 简化的FAO-IPCC TIER1方法
    Hu et al.[39], simplified method based on FAO-IPCC TIER1
    0.6~0.7
      表2的编号与图3相对应, 以便进一步比较同一环节下不同核算方法的排放参数差异。The codes in the table 2 are consistent with those in the figure 3, which enable us to compare the differences of emission parameters in different methods.
    下载: 导出CSV 
    | 显示表格

    水稻生产CH4排放研究相对较多, 排放量变异系数为30% (表2)。其中, 运用较多的核算方法是UNFCCC-省级清单编制方法[30](方法1b), 排放参数在5.3~8.2 t(CO2eq)∙hm−2, 该方法基于过程模型CH4MOD建立[36], 相当于IPCC清单编制指南的TIER3方法。UNFCCC-省级GHG清单编制方法[30](方法1b)与早期王明星等[37]建立的分区排放参数法(方法1d)、王效科等[38]基于DNDC模型的测算方法(方法1e)相似(均基于实测数据或经实测数据验证的过程模型), 但是后两者排放参数较大, 这可能与测定方法、模型功能差异以及稻田管理方式改变有关。此外, EDGAR数据库[24]的排放参数明显高于其他研究, 需要进一步验证(方法1c)。

    牲畜肠胃发酵排放为247 Mt(CO2eq)∙a−1, 变异系数为16% (图3, 表2)。核算方法包括FAO-IPCC TIER1[22] (方法7a)、UNFCCC-省级清单编制方法[30](方法7b)和胡向东等[39]简化的IPCC方法(方法7c)。方法7b的排放量略高于方法7a和7c, 因为前者排放参数由国内不同养殖模式下的实测数据确定, 高于大洲尺度的平均排放参数。畜禽粪尿管理的核算方法与牲畜肠道排放类似, 算法也主要包括FAO-IPCC TIER1[22] (方法6a)、UNFCCC-省级清单编制方法[30](方法6c)和胡向东等简化的IPCC核算方法[39](方法6d)。但是畜禽粪尿管理不仅包括CH4, 还包括N2O排放, 而N2O排放参数在方法6a、6c和6d间也存在差异, 进一步增大了不同方法间排放量的差异。此外, EDGAR核算方法[24](方法6b)与FAO-IPCC TIER1方法[22](方法6a)类似, 此处不再单独讨论。

    有机肥和秸秆施用的排放分别为42 Mt(CO2eq)∙a−1和16Mt(CO2eq)∙a−1, 排放变异系数却分别达38%和74% (图3, 表2)。这可能与两类排放核算中“中间参数”较多有关。这些“中间参数”包括畜禽排泄率、畜禽粪尿还田率、作物谷草比、秸秆还田率等, 在不同文献间存在较大的变异。北京大学构建的PKU-N2O清单[20] (方法3c和4c)中有机肥和秸秆还田的排放系数均较小, 这可能是由于该方法用本地数据校正了间接N2O排放量, 新校正值较IPCC TIER1[22,40] (方法3a和4a)和省级GHG清单方法[30] (方法3b和4b)的排放参数小。另一个排放较少的环节是秸秆燃烧, 但不同研究间排放参数差异不大, 排放总量差异主要由活动数据造成。例如FAOSTAT[22]仅包括了3大作物和甘蔗秸秆的燃烧量, 而其他研究一般包括所有作物的秸秆燃烧量。

    总体而言, 农业活动GHG核算结果差异主要源于排放参数间的差异。其中, 水稻种植、牲畜肠胃排放、畜禽粪尿管理和化肥施用等环节的研究较多, 排放不确定性较小, 而有机肥施用、秸秆还田等环节排放差异还较大, 需要加强对还田比例等“中间参数”的研究。

    农业直接能源是指农业生产过程中利用的化石和电力等能源。如图4所示, 农业直接能源消耗的GHG排放有两种核算方式: 一是“自上而下”的核算方式, 即利用能源平衡表中的“农林牧渔业终端能源利用量”, 从整个部门的角度核算GHG排放量; 二是“自下而上”的核算方式, 即识别农业生产中主要能源消耗活动, 估算和累加各主要能源消耗活动造成的GHG排放。

    图  4  2005—2015年农业生产中能源消耗造成的年均温室气体排放量
    图4中的箭头单独指出了UNFCCC、EDGAR和FAO等权威数据库的温室气体核算值, 可相互进行比较或作为基准与其他核算结果比较; 图例中对不同核算方法进行了编号, 且该编号与表3中和文中的方法编号相对应, 便于比较和说明不同核算方法间的差异。FFAF: farming, forestry, animal husbandy and fishery. Accounting values from authoritative database (including UNFCCC, EDGAR, FAO) are pointed out with arrows, which could compare with each other or with other accounting results as reference values. Different methods are coded in legends. And the codes are consistent with those in the table 3 and in text, which are used to compare and illustrate the differences between methods.
    Figure  4.  Annual greenhouse gas (GHG) emission induced by agricultural energy use during 2005−2015

    结果显示, 2005—2015年, 农林牧渔业化石能源和电力消耗造成的年均GHG排放量为109 Mt(CO2eq)∙a−1和85 Mt(CO2eq)∙a−1, 分别占该环节排放的56%和44% (图4)。“自下而上”方法识别的农用机械柴油燃烧造成的排放为41.2 Mt(CO2eq)∙a−1, 灌溉电力消耗导致的排放为38.5 Mt(CO2eq)∙a−1(图4)。对比“自上而下”和“自下而上”方法的核算值, 农用机械柴油燃烧导致的排放仅占整个农林牧渔业化石能源燃烧排放的38%, 农业灌溉电力消耗导致的排放仅占农林牧渔业电力消耗排放的45%。这表明农业部门中还有大量能源消费活动未被识别, “自下而上”和“自上而下”的核算方法还需进一步整合。

    “自上而下”方法核算的化石能源和电力消耗所排放的GHG不确定范围均较小, 变异系数在16%~24%。这可能由于“自下而上”方法是按能源类型核算的(表3, 方法8a, 8b), 而各类能源的物理、化学性质基本固定, 例如含碳量、氧化率等参数在不同文献中相差不大。值得注意的是, Wang等[41]采用经济投入产出-生命周期评价(EIO-LCA)法(表3, 方法8c)核算的农林牧渔业化石燃烧的排放值高达170 Mt(CO2eq)∙a−1。这一方面是由于其核算范围不仅包括农林牧渔业化石燃烧的排放, 也包括能源加工等过程造成的间接排放; 另一方面, 该研究的排放因子也偏大(表3)。

    表  3  农业生产中能源消耗的温室气体核算方法及其参数范围
    Table  3.  Accounting methods for agricultural energy use greehouse gas (GHG) emission and their re-calculated emission factors
    代码
    Code
    8农林牧渔业化石燃烧
    8 Fossil fuel combustion in FFAF
    9农林牧渔业电力消耗
    9 Electricity consumption in FFAF
    10农用机械柴油燃烧
    10 Agricultural machinery diesel oil combustion
    11灌溉电力消耗
    11 Irrigation electricity consumption
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    aFAO-IPCC TIER1[22]1.8~3.3FAO-IPCC TIER1[22]6.2~6.7IPCC TIER1[40]2.1~2.8Dubey等[43]提供参数
    Parameters provided by Dubey et al.[43]
    0.07~0.08
    bUNFCCC-省级温室气体清单[30]
    UNFCCC- Guide for Provincial GHG Inventory (GPGI)[30]
    2.2~3.1UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    7.8West et al.[42]提供参数
    Parameters provided by West et al.[42]
    0.5West et al.[42]提供参数
    Parameters provided by West et al.[42]
    1.0
    c环境投入-产出模型-生命周期法 Environment input-output model-life cycle approch (EIO-LCA)[41]4.5BP China提供参数[51]
    Parameters provided by BP China[51]
    2.4BP China提供参数[51]
    Parameters provided by BP China[51]
    1.7
    代码
    Code
    12化肥生产
    12 Synthetic fertilizer production
    13农药生产
    13 Pesticide production
    14农膜生产
    14 Film production
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1]
    aWest et al.[42]提供参数
    Parameters provided by West et al.[42]
    3.2~3.3 West et al.[42]提供参数
    Parameters provided by West et al.[42]
    13.8~18.3南京农业大学提供参数
    Parameters provided by Nanjing Agricultural University
    18.5~24.0
    bEIO-LCA[46]2.2EIO-LCA[46]24.7EIO-LCA[46]4.3
    cZhang等[52]和IFA提供参数[53]
    Parameters provided by Zhang et al.[52] and IFA[53]
    3.0国家发展和改革委员会提供参数[54]
    Parameters provided by the National Development and Reform Commission of China[54]
    22.8
    d齐晔[44]提供参数
    Parameters provided
    by Qi[44]
    5.2
    e逯非等[45]和Dubey et al.[43]提供参数
    Parameters provided by Lu et al.[45] and Dubey et al.[43]
    4.9
      表3的编号与图4相对应, 以便进一步比较同一环节下不同核算方法的排放参数差异。FFAF: farming, forestry, animal husbandy and fishery. The codes in the table 3 are consistent with those in the figure 4, which enables us to compare the differences of emission parameters in different methods.
    下载: 导出CSV 
    | 显示表格

    “自下而上”方法核算的农用柴油燃烧和灌溉电力消耗造成的GHG排放不确定范围较大, 变异系数在37%~100%。由于我国农业柴油用量和灌溉面积有确切记录, 且年际间变化不大, 故造成上述两类排放巨大不确定性的主因在于排放系数的差异。表3显示农业柴油燃烧排放中, West等[42]的排放参数(方法10b)仅为其他研究的1/4~1/5; 灌溉电力消耗的排放中, Dubey等[43]的排放参数甚至不足其他研究的1/10 (方法11a)。

    农业生产的间接能源主要指农业生产中投入的化肥、农药和农膜等农资产品生产所消耗的能源, 其在非农业生产部门被消耗并产生排放, 因而被表述为“间接”。

    2005—2015年, 化肥、农药和农膜等生产造成的年均GHG排放分别为195 Mt(CO2eq)∙a−1、39 Mt(CO2eq)∙a−1和41 Mt(CO2eq)∙a−1 (图4)。化肥生产排放的研究较多且核算方法多元, 排放量的变异系数维持在27%, 这说明该环节排放核算的不确定性较小。表3进一步揭示化肥生产排放不确定主要来源于排放参数的差异, 例如齐晔[44](方法12d)、逯非等[45]和Dubey等[43](方法12e)提供的排放系数均在5 t(CO2eq)∙t−1左右, 是EIO-LCA方法(方法12b)排放系数的2倍以上。

    农药和农膜生产的排放数量不确定性较大, 变异系数分别为37%和41% (表3)。两类排放的不确定性也主要归因于排放系数的差异。以农膜生产为例, EIO-LCA方法估算的排放值(方法14b)远低于基于生产过程核算的排放量(方法14a和14c), 这可能是由于EIO-LCA方法只能将农膜生产对应的工业部门的平均排放强度作为农膜生产排放强度, 而该平均排放强度可能远小于农膜生产的排放强度[46]。农药和农膜排放的核算方法亦过于单一, 例如农药生产排放多采用West等[42]的排放参数(方法13a), 农膜生产排放多采用南京农业大学农业资源与生态环境研究所提供的参数(方法14a)。

    各数据库均未对我国食物系统相关的LULUCF的GHG源、汇状况进行详细研究。例如FAOSTAT核算的耕地和草地GHG排放仅包含了耕地和草地中的有机质土排水并用于耕作时排放的温室气体, 而气候变化国家信息通报也未区分土地利用变化及各碳库的排放或吸收情况[22,47]。鉴于现阶段1)对于哪部分LULUCF与食物系统相关尚无定论, 2)缺乏除生物量和土壤碳库以外其他碳库(如枯落物和枯死木碳库)的数据, 本研究仅将LULUCF排放(或吸收)的空间范围定义为所有森林、耕地和草地, 碳库范围定义为森林生物量碳库、耕地土壤碳库以及草地生物量和土壤碳库。

    近20年来, 我国森林年均固碳量达520 Mt(CO2eq)∙a−1, 变异系数为25% (表4, 图5)。Fang等[48]建立的实测数据结合连续生物量换算因子的方法(表4, 方法15d)在森林生物量估算方面得到了广泛运用, 但该方法下不同文献报告的CO2吸收量有较大差异, 可能是由于前期研究中高估了森林植被的碳汇能力[49-50]。其他方法中, FAOSTAT (方法15a)估算的碳汇量[22]最大, 可能是因为其数据来源和估算的空间分辨率与其他研究不同, 并且其碳汇参数也大于其他研究(表4)。

    表  4  不同土地利用类型碳汇核算方法及其参数范围
    Table  4.  Accounting methods greenhouse gas (GHG) removal of land use, land use change and forests (LULUCF) and their re-calculated removal factors
    代码 Code15森林
    15 Forest
    16耕地
    16 Cropland
    17草地
    17 Grassland
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    aFAO-IPCC TIER3[22]−3.4 过程模型
    Process based model
    −0.5~−0.7UNFCCC-IPCC TIER2[40]−0.2
    bUNFCCC-IPCC TIER2[40]−2.1实测数据推算
    Estimation based on measured data
    −0.2~−0.3空间明晰的估算方法[55]
    Spatially explicit accounting method[55]
    −0.2
    c空间明晰的估算方法[55]
    Spatially explicit accounting method[55]
    −1.6文献数据推算
    Estimation based on literature data
    −0.5~−0.6过程模型估算
    Process based model
    −0.2~−0.3
    d实测数据推算
    Estimation based on measured data
    −1.7~−4.7空间明晰的估算方法[55]
    Spatially explicit accounting method[55]
    −0.3实测数据与遥感反演结合
    Measure-satellite combined method
    0.04~−0.14
    e实测数据与遥感反演结合
    Measure-satellite combined method
    −1.0
      表4的编号与图5相对应, 以便进一步比较同一环节下不同核算方法的排放参数差异。The codes in the table 4 are consistent with thoes in the figure 5, which enables us to compare the differences of emission parameters in different methods.
    下载: 导出CSV 
    | 显示表格

    1980—2010年, 耕地年均GHG固定量达67 Mt(CO2eq)∙a−1, 变异系数为28% (图5, 表4)。耕地碳汇的不确定性主要源于研究方法的差异。其中, 过程模型(表4, 方法16a)与文献数据推算(方法16c)的估计值相近[65~94 Mt(CO2eq)∙a−1], 但高于实地测量(方法16b)的推算结果[35~48 Mt(CO2eq)∙a−1]。这可能是由于: 1)过程模型的土壤有机碳库对管理措施和气候变化的响应更为敏感[56]; 2)实地调查、文献调研和模型校正试验的数据间存在代表性的差异, 其结果向全国外推时也存在差异。

    过去40年, 草地处于碳中性或弱碳汇状态, CO2固定量为50 Mt(CO2eq)∙a−1, 但其变异系数高达72%(图5, 表4)。与耕地类似, 草地碳汇估算的不确定性也源自于研究方法的差异, 也同样观察到过程模型估算结果(表4, 方法17c)高于实测数据和遥感反演结合的估算结果(方法17d)。这不仅是由于过程模型敏感性和数据代表性的问题, 也可能与草地面积(281~353 Mhm2)和土壤深度设置(过程模型研究在1.0~1.5 m, 实际测量研究在20~30 cm)有关。

    综上, 当前LULUCF部门的GHG排放(或吸收)核算仍面临巨大挑战性。因为其1)面临排放(或吸收)参数和土地利用面积不确定的问题; 2)作用过程复杂, 实地调查和模型估算的方法难以相互验证和统一。因为还不能确定是模型机理设计有缺陷, 还是测量方法存在不足, 抑或是存在未知碳库和过程。

    图  5  1980s—2010s年均土地利用、土地利用变化和林业的温室气体吸收量
    图5中的箭头单独指出了UNFCCC、EDGAR和FAO等权威数据库的温室气体核算值, 可相互进行比较或作为基准与其他核算结果比较; 图例中对不同核算方法进行了编号, 且该编号与表4中和文中的方法编号相对应, 便于比较和说明不同核算方法间的差异。Accounting values from authoritative database (including UNFCCC, EDGAR, FAO) are pointed out with arrows, which could compare with each other or with other accounting results as reference values. Different methods are coded in legends. And the codes are consistent with those in the table 4 and in text, which are used to compare and illustrate the differences between methods.
    Figure  5.  Annual greenhouse gas (GHG) removed by land use, land use change and forests (LULUCF) between 1980s and 2010s

    产后食物供应部门的GHG排放研究更为稀缺, 包含食物加工、包装、运输仓储、批发零售和食物消费全部5个环节的研究仅3篇[9,57-58], 其中1篇[58]还仅核算至各环节能源利用状况, 其GHG排放量由本文按油品碳排放因子推算得到。

    2007—2017年, 我国产后食物供应部门的GHG年平均排放量为708 Mt(CO2eq)∙a−1 (包装环节直接采用Crippa等的结果[9]) (表5)。食物加工和食物消费的排放量分别为113 Mt(CO2eq)∙a−1和79 Mt(CO2eq)∙a−1, 合计占产后食物供应GHG排放的27%。食物包装过程的化石燃烧排放仅为46 Mt CO2eq, 但若将包装材料的碳排放纳入核算, 该环节的碳排放将达440 Mt(CO2eq)∙a−1 [9]

    表  5  食物供应部门的年均温室气体排放
    Table  5.  Annual greenhouse gas (GHG) emission induced by postharvest food supply activities
    文献来源
    Referred literature
    排放环节
    Emission segment
    数值
    Value
    [Mt(CO2eq)∙a−1]
    说明
    Remark
    Crippa, et al[9]
    (2015)*
    加工
    Processing
    153EDGAR各部门排放×食物供应链各环节相关比例, 其中包装环节还包括包装物质生产排放
    EDGAR reported emission by sectors×the proportion of food related emission in each reported sectors. The packaging emission in this study includes the embodied emission of packaging material production.
    包装
    Packaging
    440
    运输和仓储
    Transport and storage
    78
    批发和零售
    Wholesale and retail
    49
    消费
    Consumption
    119
    CEADs database[25]
    (2016—2018)*
    加工
    Processing
    57仅包含食物加工的终端能源消费
    Only including the emission from energy consumption in food processing sector
    Li , et al[17]
    (2010)*
    加工
    Processing
    121加工按终端能源消费计算; 运输仓储按环境投入-产出模型-生命周期法(EIO-LCA)方法计算; 食物消费按建筑面积×单位建筑耗能计算
    The emission of food processing only included its energy consumption induced emission. The emission of food transport and storage was calculated by EIO-LCA method. And the emission of food consumption was calculated as the floor area × energy consumption per unit area.
    运输和仓储
    Transport and storage
    36
    消费
    Consumption
    78
    Vermeulen, et al[57]
    (2007)*
    加工
    Processing
    48加工、批发和零售环节按终端能源消费计算, 包装、运输和仓储、消费等按EIO-LCA方法计算(投入产出表包含26个部门)
    The emission of food processing, wholesale and retail were calculated based on their terminal energy consumption. The emission of food packaging, transport and storage and consumption were calculated by environment input-output model-life cycle approch (EIO-LCA) method (input-output table included 26 sectors).
    包装
    Packaging
    53
    运输和仓储
    Transport and storage
    46
    批发和零售
    Wholesale and retail
    18
    消费
    Consumption
    81
    Song, et al[58]**
    (2012)*
    加工
    Processing
    187投入-产出(IO)-生命周期(IO-LCA)方法, 包括各环节直接和间接能源利用(投入产出表含12个部门)
    Calculation was based on input-output model-life cycle approch (IO-LCA) method which included both direct and indirect energy consumption (input-output table included 12 sectors).
    包装
    Packaging
    39
    运输和仓储
    Transport and storage
    33
    批发和零售
    Wholesale and retail
    17
     消费
    Consumption
    39
      *括号中年份为各文献中温室气体排放的年份; **温室气体排放按能源用量×油品排放因子计算。* Values in brackets are the reported year of the emissions. ** The GHG emission in this literature was further estimated as energy consumption × emission factors (based on the average emission factor of oil products).
    下载: 导出CSV 
    | 显示表格

    产后食物供应链各环节排放的变异系数均在40%以上, 主要原因在于同一环节排放的核算范围不同(表5)。以食物加工为例, CEADs[25]、Vermeulen等[57]和Li等[17]仅核算了该环节终端排放的GHG, 但前两者不包含电力排放, 致使其排放明显低于后者。消费环节也存在类似的情况, Song等[58]仅包含餐饮业的GHG排放[39 Mt(CO2eq)∙a−1]; Li等[17]包括所有部门烹饪耗能排放[78 Mt(CO2eq)∙a−1]; 而Crippa等[9]不仅包括烹饪耗能, 还包括冷藏、微波等耗能产生的排放[119 Mt(CO2eq)∙a−1]。

    包装阶段和运输、储藏阶段的排放常用EIO-LCA方法估算, 但投入产出表(I-O表)不同的部门划分方式也可能对排放结果产生一定影响。Vermeulen等[57]基于26部门I-O表估算的运输仓储阶段和包装阶段排放分别为46Mt(CO2eq)∙a−1和53 Mt(CO2eq)∙a−1, 高于Song等[58]的33Mt(CO2eq)∙a−1和36 Mt(CO2eq)∙a−1。此外, Crippa等[9]估计的包装排放远高于其他研究的结果, 主要是因为该文采取了“自下而上”的方法, 将包装材料的隐藏碳排放也纳入了核算。

    表6展示了我国食物系统不同环节的排放(或吸收)参数均值及其变异系数, 二者可分别为未来食物系统减排方向和完善食物系统核算提供洞见。从几项可比的排放参数看(排放参数单位相同), 粪尿及秸秆施用的排放参数较化肥施用略高, 表明未来促进循环农业的同时需协同控制温室气体排放; 草地碳汇能力远低于耕地和林地, 修复退化草地的碳汇潜力较大; 此外, 稻田排放、动物肠胃排放、农药和农膜生产排放强度仍处于高位, 相关减排技术的研发和应用应进一步加强。从温室排放(或吸收)参数的变异系数看, 农业活动中的粪尿施用、秸秆还田, 农业能源利用中的农药、农膜生产, 食物供应部门中的食物加工、批发和零售, 土地利用中的草地利用等环节的参数变异系数均在35%以上, 一定程度上反映了这些环节排放研究的缺失。相反, 化肥施用、化肥生产和畜禽肠道排放等环节的排放参数变异系数较小, 分别为0.09、0.11和0.18, 表明相关研究已较为完善, 能够一致地反映所属环节的排放状况。

    表  6  中国食物系统各环节排放(或吸收)参数及其变异系数
    Table  6.  Emission (or sequestration) factors and their coefficients of variations of the Chinese food system
    排放或吸收环节
    Emission source or sink
    参数平均值
    Average value of parameter
    参数单位
    Unit of parameter
    参数变异系数
    Coefficient of variable of parameter
    水稻种植
    Rice cultivation
    7.27 t(CO2eq)∙hm−2 0.29
    化肥施用
    Synthetic fertilizer application
    4.79 t(CO2eq)∙t−1(N) 0.09
    粪尿施用
    Manure application
    6.24 t(CO2eq)∙t−1(N) 0.60
    粪尿管理
    Manure management
    0.49 t(CO2eq)∙LU−1 0.35
    动物肠道排放
    Enteric fermentation
    0.96 t(CO2eq)∙LU−1 0.18
    秸秆燃烧
    Burning crop residue
    0.09 t(CO2eq)∙t−1(DM) 0.30
    秸秆还田
    Crop residue application
    5.68 t(CO2eq)∙t−1(N) 0.73
    农业化石能源消耗
    Agricultural fossil fuel consumption
    2.60 t(CO2eq)∙t−1(ce) 0.29
    农业电力消耗
    Agricultural electricity consumption
    6.70 t(CO2eq)∙t−1(ce) 0.11
    化肥生产
    Synthetic fertilizer production
    3.53 t(CO2eq)∙t−1 0.28
    农药生产
    Pesticide production
    22.12 t(CO2eq)∙t−1 0.36
    农膜生产
    Film production
    17.95 t(CO2eq)∙t−1 0.39
    食物加工*
    Food processing
    0.44
    食物包装**
    Food packaging
    运输和仓储*
    Food transport and storage
    0.33
    批发和零售*
    Food wholesale and retail
    0.50
    食物消费*
    Food consumption
    0.36
    森林
    Forest
    −2.86 t(CO2eq)∙hm−2 0.41
    耕地
    Cropland
    −0.49 t(CO2eq)∙hm−2 0.32
    草地
    Grassland
    −0.16 t(CO2eq)∙hm−2 0.70
      *相关环节难以确定活动数据, 因此假设同一环节不同研究中的活动数据一致, 其参数变异系数等同于排放量变异系数; **基于Crippa et al. (2021)单篇文章的数据, 不能计算排放参数及其变异系数。* The activity data is unavailable in these emission segments, hence the coefficients of emission parameters are the same as that of total emission amount, under the assumption that the activity data is the same in different studies for the same emission segment. ** This value is based on a single study by Crippa et al. (2021), so the emission parameter and its coefficient of variable is not available.
    下载: 导出CSV 
    | 显示表格

    本文提出了一个涵盖LULUCF、农业生产和产后食物供应3大部门, 20个排放环节的食物系统GHG核算框架(图1), 收集和汇总了我国食物系统各环节GHG排放的定量研究结果, 分类探讨了核算方法和参数的差异性, 可为核算方法改进提供依据。

    我国食物系统各环节GHG核算的不确定性仍较大, 其中粪尿施用、秸秆还田、农药和农膜生产、食物加工、批发和零售以及草地碳汇的排放参数变异系数均在35%以上。未来, 需加强以下方面的研究: 1)农业生产部门中, 细化农业活动各环节排放参数, 加强有机肥、秸秆去向参数的调查; 整合农业直接能源排放核算“自上而下”的部门核算法和“自下而上”的过程核算法; 加强农业投入品生产企业能耗研究, 获取本地化的间接能源排放参数。2) LULUCF部门中, 加强土地利用调查, 制定统一的土地分类标准; 识别与食物系统相关的LULUCF过程, 实现真正的生命周期评价; 整合实地调查和机理模型研究,为排放核算提供更精确的参数。3)产后食物供应部门中, 进一步明确各环节排放的核算范围; 整合EIO-LCA、终端能源利用与基于过程的核算方法。

  • 图  1   食物系统温室气体核算边界

    Figure  1.   Accounting framework of food system greenhouse gas (GHG) emission

    图  2   文献数据收集流程

    LULUCF: 土地利用、土地利用变化和林业。LULUCF: land use, land use change and forests.

    Figure  2.   Process of literature data collection

    图  3   2005—2015年农业活动导致的年均温室气体排放

    图3中的箭头单独指出了UNFCCC、EDGAR和FAO等权威数据库的温室气体核算值, 可相互进行比较或作为基准与其他核算结果比较; 图例中对不同核算方法进行了编号, 且该编号与表2中和文中的方法编号相对应, 便于比较和说明不同核算方法间的差异。Accounting values from authoritative database (including UNFCCC, EDGAR, FAO) are pointed out with arrows, which could compare with each other or with other accounting results as reference values. Different methods are coded in legends. And the codes are consistent with those in the table 2 and in text, which are used to compare and illustrate the differences between methods.

    Figure  3.   Annual greenhouse gas (GHG) emission induced by agricultural activities during 2005−2015

    图  4   2005—2015年农业生产中能源消耗造成的年均温室气体排放量

    图4中的箭头单独指出了UNFCCC、EDGAR和FAO等权威数据库的温室气体核算值, 可相互进行比较或作为基准与其他核算结果比较; 图例中对不同核算方法进行了编号, 且该编号与表3中和文中的方法编号相对应, 便于比较和说明不同核算方法间的差异。FFAF: farming, forestry, animal husbandy and fishery. Accounting values from authoritative database (including UNFCCC, EDGAR, FAO) are pointed out with arrows, which could compare with each other or with other accounting results as reference values. Different methods are coded in legends. And the codes are consistent with those in the table 3 and in text, which are used to compare and illustrate the differences between methods.

    Figure  4.   Annual greenhouse gas (GHG) emission induced by agricultural energy use during 2005−2015

    图  5   1980s—2010s年均土地利用、土地利用变化和林业的温室气体吸收量

    图5中的箭头单独指出了UNFCCC、EDGAR和FAO等权威数据库的温室气体核算值, 可相互进行比较或作为基准与其他核算结果比较; 图例中对不同核算方法进行了编号, 且该编号与表4中和文中的方法编号相对应, 便于比较和说明不同核算方法间的差异。Accounting values from authoritative database (including UNFCCC, EDGAR, FAO) are pointed out with arrows, which could compare with each other or with other accounting results as reference values. Different methods are coded in legends. And the codes are consistent with those in the table 4 and in text, which are used to compare and illustrate the differences between methods.

    Figure  5.   Annual greenhouse gas (GHG) removed by land use, land use change and forests (LULUCF) between 1980s and 2010s

    表  1   中国食物系统各环节排放核算的活动数据缺省值

    Table  1   Default activity data for different emission segments in the food system in China

    环节
    Emission source or sink
    活动数据
    Activity data in 2015
    单位
    Unit
    缺省活动数据来源及说明
    Default data source and remarks
    水稻种植
    Rice cultivation
    水田面积
    Rice paddy area
    Mhm2 FAOSTAT[22]
    化肥施用
    Synthetic fertilizer application
    氮肥和复合肥的氮量
    N in straight and compound fertilizer
    Mt N FAOSTAT[22]
    有机肥施用
    Organic fertilizer application
    畜禽粪尿和饼肥的还田氮量
    N in applied livestock manure and cake fertilizer
    Mt N 有机肥资源量为牛新胜等[27]、Zhou等[20]估算的2005—2010年各类有机肥资源量的平均值, 还田比例为Zhou等[20]和Ma等[28]报告的平均值
    The amount of organic fertilizer resource originates from Niu et al.[27] and Zhou et al.[20], whose study period is between 2005 and 2010 (in average). And the rate of organic fertilizer returning originates from Zhou et al.[20] and Ma et al.[28] (in average).
    粪尿管理
    Manure management
    畜禽存栏量, 转换为标准动物单位(LU), 转换方法见Eurostat[29]
    Stock number of livestock, measured in standard livestock unit (LU). The method of unit conversion is available in Eurostat[29].
    MLU FAOSTAT[22]
    肠道排放
    Enteric fermentation
    牲畜存栏量(不包括家禽数量), 转换为标准动物头数(LU)
    Stock number of large livestock (excluding poultries), measured in LU.
    MLU FAOSTAT[22]
    秸秆燃烧
    Burning crop residue
    用于燃烧的秸秆生物量(DM, 干重)
    Amount of burned crop residue, measured in dry matter (DM)
    Mt DM 秸秆资源量参考牛新胜等[27]估算的2005—2010年秸秆资源平均值, 干重比参考省级温室气体清单编制指南[30], 秸秆燃烧比例为Zhou等[20]、刘晓永[31]和Ma等[28]报告的燃烧比例平均值
    The amount of crop residue resource originates from Niu et al.[27], whose study period is 2005−2010. The ratio of dry weight to fresh weight originates from Guideline for Provincial Greenhouse Gas Emission Inventories[30]. And the crop residue burning ratio originates from Zhou et al.[20], Liu[31] and Ma et al.[28] (in average).
    秸秆还田
    Crop residue application
    秸秆还田氮量
    N in applied crop residue
    Mt N 秸秆资源量参考牛新胜等[27]估算的2005—2010年秸秆资源平均值, 秸秆还田比例为Zhou 等[20]、刘晓永[31]和Ma等[28]报告的还田比例平均值
    The amount of crop residue resource originates from Niu et al.[27], whose reported time was 2005−2010. And the rate of crop residue returning originates from Zhou et al.[20], Liu[31] and Ma et al.[28] (in average).
    农业化石能源消耗
    Agricultural fossil fuel consumption
    农林牧渔业化石能源终端消费量, 以标准煤当量计(ce)
    Fossil fuel consumed by farming, forestry, animal husbandry and fishery (FFAF), measured in standard coal equivalent (ce)
    Mt ce 中国能源年鉴[32]
    China Energy Statistic Yearbook [32]
    农业电力消耗
    Agricultural electricity consumption
    农林牧渔业电力终端消费量, 以标准煤计(ce)
    Electricity consumed by FFAF, measured in standard coal equivalent (ce)
    Mt ce 中国能源年鉴[32]
    China Energy Statistic Yearbook [32]
    化肥生产
    Synthetic fertilizer production
    化肥施用量(折纯), 包括氮、磷、钾肥和复合肥
    Amount of synthetic fertilizer, including straight N, P, K fertilizer and compound fertilizer
    Mt 国家统计局[33]
    National Bureau of Statistics of China[33]
    农药生产
    Pesticide production
    农药用量
    Amount of pesticide
    Mt 国家统计局[33]
    National Bureau of Statistics of China[33]
    农膜生产
    Film production
    农膜用量
    Amount of film
    Mt 国家统计局[33]
    National Bureau of Statistics of China[33]
    食物加工
    Food processing
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food processing, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    食物包装
    Food packaging
    活动数据不确定, 直接采用Crippa等[9]包含包装间接碳排放的结果, 排放年为2015年
    No specific activity data. Use the value in 2015 reported by Crippa et al.[9] (including the indirect packaging emission)
    / Crippa等[9]
    Refer to Crippa et al.[9]
    运输和仓储
    Food transport and storage
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food consumption, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    批发和零售
    Food wholesale and retail
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food wholesale and retail, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    食物消费
    Food consumption
    活动数据不确定。将不同文献的该环节排放量按Crippa等[9]的排放增长比例推算至2015年, 再求取平均排放量和标准差
    No specific activity data. Synthesize all literatures reported values for food transport and storage, then extrapolate the values to the base year (2015) according to the rate of emission change provided by Crippa et al.[9], and finally calculate the average emission and standard deviation
    / 表5
    See the table 5
    森林
    Forest
    森林面积
    Forest area
    Mhm2 国家统计局[33]
    National Bureau of Statistics of China[33]
    耕地
    Cropland
    耕地面积
    Cropland area
    Mhm2 中国统计年鉴[34]
    China Statistic Yearbook[34]
    草地
    Grassland
    草地面积
    Grassland area
    Mhm2 国家统计局[33]
    National Bureau of Statistics of China[33]
    下载: 导出CSV

    表  2   农业活动温室气体核算方法及其参数变异范围

    Table  2   Accounting methods for agricultural activities greenhouse gas emission and their re-calculated emission factors

    代码
    Code
    1水稻种植
    Rice cultivation
    2化肥施用
    2 Synthetic fertilizer application
    3有机肥施用
    3 Organic fertilizer application
    4秸秆还田
    4 Crop residue application
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(N)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(N)​​​​​​​]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(N)​​​​​​​]
    a FAO-IPCC TIER1[22] 4.8~6.4 FAO-IPCC TIER1[22] 4.3~5.5 FAO-IPCC TIER1[22] 5.9 FAO-IPCC TIER1[22] 8.0~15.6
    b UNFCCC-省级温室气体清单[30]
    UNFCCC- Guide for Provincial GHG Inventory (GPGI)[30]
    5.3~8.2 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    5.5 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    11.7 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    3.2~6.2
    c EDGAR-GAINS[24] 13.1 区分作物品种和背景/施氮排放[35]
    Based on the parameters by crops and by background emissions[35]
    4.6~4.8 PKU-N2O高分辨率排放清单[20]
    PKU-N2O high resolution inventory[20]
    3.1~4.3 PKU-N2O高分辨率排放清单[20]
    PKU-N2O high resolution inventory[20]
    1.8~4.7
    d 王明星等[37],
    分区排放参数
    Regional emission parameters from Wang et al.[37]
    8.0~11.9 PKU-N2O高分辨率排放清单[20]
    PKU-N2O high resolution inventory[20]
    4.5~4.6
    e 王效科等[38], DNDC模型模拟
    Wang et al.[38], based on DNDC model
    9.5~9.6
    f 其他方法
    Others
    5.5
    代码
    Code
    5秸秆燃烧
    5 Burning crop residue
    6粪尿管理
    6 Manure management
    7肠胃排放
    7 Enteric fermentation
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(DM)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙LU−1)
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙LU−1)
    a FAO-IPCC TIER1[22] 0.11 FAO-IPCC TIER1[22] 0.2~0.3 FAO-IPCC TIER1[22] 0.6~0.9
    b UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    0.05~0.09 EDGAR-CAPRI[24] 0.2 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    1.0~1.2
    c EDGAR[24] 0.06~0.09 UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    0.5~0.7 胡向东等 [39], 简化的FAO-IPCC TIER1方法
    Hu et al.[39], simplified method based on FAO-IPCC TIER1
    0.9~1.1
    d 其他方法
    Others
    0.11~0.15 胡向东等[39], 简化的FAO-IPCC TIER1方法
    Hu et al.[39], simplified method based on FAO-IPCC TIER1
    0.6~0.7
      表2的编号与图3相对应, 以便进一步比较同一环节下不同核算方法的排放参数差异。The codes in the table 2 are consistent with those in the figure 3, which enable us to compare the differences of emission parameters in different methods.
    下载: 导出CSV

    表  3   农业生产中能源消耗的温室气体核算方法及其参数范围

    Table  3   Accounting methods for agricultural energy use greehouse gas (GHG) emission and their re-calculated emission factors

    代码
    Code
    8农林牧渔业化石燃烧
    8 Fossil fuel combustion in FFAF
    9农林牧渔业电力消耗
    9 Electricity consumption in FFAF
    10农用机械柴油燃烧
    10 Agricultural machinery diesel oil combustion
    11灌溉电力消耗
    11 Irrigation electricity consumption
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1(ce)]
    aFAO-IPCC TIER1[22]1.8~3.3FAO-IPCC TIER1[22]6.2~6.7IPCC TIER1[40]2.1~2.8Dubey等[43]提供参数
    Parameters provided by Dubey et al.[43]
    0.07~0.08
    bUNFCCC-省级温室气体清单[30]
    UNFCCC- Guide for Provincial GHG Inventory (GPGI)[30]
    2.2~3.1UNFCCC-省级温室气体清单[30]
    UNFCCC- GPGI[30]
    7.8West et al.[42]提供参数
    Parameters provided by West et al.[42]
    0.5West et al.[42]提供参数
    Parameters provided by West et al.[42]
    1.0
    c环境投入-产出模型-生命周期法 Environment input-output model-life cycle approch (EIO-LCA)[41]4.5BP China提供参数[51]
    Parameters provided by BP China[51]
    2.4BP China提供参数[51]
    Parameters provided by BP China[51]
    1.7
    代码
    Code
    12化肥生产
    12 Synthetic fertilizer production
    13农药生产
    13 Pesticide production
    14农膜生产
    14 Film production
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙t−1]
    aWest et al.[42]提供参数
    Parameters provided by West et al.[42]
    3.2~3.3 West et al.[42]提供参数
    Parameters provided by West et al.[42]
    13.8~18.3南京农业大学提供参数
    Parameters provided by Nanjing Agricultural University
    18.5~24.0
    bEIO-LCA[46]2.2EIO-LCA[46]24.7EIO-LCA[46]4.3
    cZhang等[52]和IFA提供参数[53]
    Parameters provided by Zhang et al.[52] and IFA[53]
    3.0国家发展和改革委员会提供参数[54]
    Parameters provided by the National Development and Reform Commission of China[54]
    22.8
    d齐晔[44]提供参数
    Parameters provided
    by Qi[44]
    5.2
    e逯非等[45]和Dubey et al.[43]提供参数
    Parameters provided by Lu et al.[45] and Dubey et al.[43]
    4.9
      表3的编号与图4相对应, 以便进一步比较同一环节下不同核算方法的排放参数差异。FFAF: farming, forestry, animal husbandy and fishery. The codes in the table 3 are consistent with those in the figure 4, which enables us to compare the differences of emission parameters in different methods.
    下载: 导出CSV

    表  4   不同土地利用类型碳汇核算方法及其参数范围

    Table  4   Accounting methods greenhouse gas (GHG) removal of land use, land use change and forests (LULUCF) and their re-calculated removal factors

    代码 Code15森林
    15 Forest
    16耕地
    16 Cropland
    17草地
    17 Grassland
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    方法
    Method
    参数范围
    Range of the parameter
    [t(CO2eq)∙hm−2]
    aFAO-IPCC TIER3[22]−3.4 过程模型
    Process based model
    −0.5~−0.7UNFCCC-IPCC TIER2[40]−0.2
    bUNFCCC-IPCC TIER2[40]−2.1实测数据推算
    Estimation based on measured data
    −0.2~−0.3空间明晰的估算方法[55]
    Spatially explicit accounting method[55]
    −0.2
    c空间明晰的估算方法[55]
    Spatially explicit accounting method[55]
    −1.6文献数据推算
    Estimation based on literature data
    −0.5~−0.6过程模型估算
    Process based model
    −0.2~−0.3
    d实测数据推算
    Estimation based on measured data
    −1.7~−4.7空间明晰的估算方法[55]
    Spatially explicit accounting method[55]
    −0.3实测数据与遥感反演结合
    Measure-satellite combined method
    0.04~−0.14
    e实测数据与遥感反演结合
    Measure-satellite combined method
    −1.0
      表4的编号与图5相对应, 以便进一步比较同一环节下不同核算方法的排放参数差异。The codes in the table 4 are consistent with thoes in the figure 5, which enables us to compare the differences of emission parameters in different methods.
    下载: 导出CSV

    表  5   食物供应部门的年均温室气体排放

    Table  5   Annual greenhouse gas (GHG) emission induced by postharvest food supply activities

    文献来源
    Referred literature
    排放环节
    Emission segment
    数值
    Value
    [Mt(CO2eq)∙a−1]
    说明
    Remark
    Crippa, et al[9]
    (2015)*
    加工
    Processing
    153EDGAR各部门排放×食物供应链各环节相关比例, 其中包装环节还包括包装物质生产排放
    EDGAR reported emission by sectors×the proportion of food related emission in each reported sectors. The packaging emission in this study includes the embodied emission of packaging material production.
    包装
    Packaging
    440
    运输和仓储
    Transport and storage
    78
    批发和零售
    Wholesale and retail
    49
    消费
    Consumption
    119
    CEADs database[25]
    (2016—2018)*
    加工
    Processing
    57仅包含食物加工的终端能源消费
    Only including the emission from energy consumption in food processing sector
    Li , et al[17]
    (2010)*
    加工
    Processing
    121加工按终端能源消费计算; 运输仓储按环境投入-产出模型-生命周期法(EIO-LCA)方法计算; 食物消费按建筑面积×单位建筑耗能计算
    The emission of food processing only included its energy consumption induced emission. The emission of food transport and storage was calculated by EIO-LCA method. And the emission of food consumption was calculated as the floor area × energy consumption per unit area.
    运输和仓储
    Transport and storage
    36
    消费
    Consumption
    78
    Vermeulen, et al[57]
    (2007)*
    加工
    Processing
    48加工、批发和零售环节按终端能源消费计算, 包装、运输和仓储、消费等按EIO-LCA方法计算(投入产出表包含26个部门)
    The emission of food processing, wholesale and retail were calculated based on their terminal energy consumption. The emission of food packaging, transport and storage and consumption were calculated by environment input-output model-life cycle approch (EIO-LCA) method (input-output table included 26 sectors).
    包装
    Packaging
    53
    运输和仓储
    Transport and storage
    46
    批发和零售
    Wholesale and retail
    18
    消费
    Consumption
    81
    Song, et al[58]**
    (2012)*
    加工
    Processing
    187投入-产出(IO)-生命周期(IO-LCA)方法, 包括各环节直接和间接能源利用(投入产出表含12个部门)
    Calculation was based on input-output model-life cycle approch (IO-LCA) method which included both direct and indirect energy consumption (input-output table included 12 sectors).
    包装
    Packaging
    39
    运输和仓储
    Transport and storage
    33
    批发和零售
    Wholesale and retail
    17
     消费
    Consumption
    39
      *括号中年份为各文献中温室气体排放的年份; **温室气体排放按能源用量×油品排放因子计算。* Values in brackets are the reported year of the emissions. ** The GHG emission in this literature was further estimated as energy consumption × emission factors (based on the average emission factor of oil products).
    下载: 导出CSV

    表  6   中国食物系统各环节排放(或吸收)参数及其变异系数

    Table  6   Emission (or sequestration) factors and their coefficients of variations of the Chinese food system

    排放或吸收环节
    Emission source or sink
    参数平均值
    Average value of parameter
    参数单位
    Unit of parameter
    参数变异系数
    Coefficient of variable of parameter
    水稻种植
    Rice cultivation
    7.27 t(CO2eq)∙hm−2 0.29
    化肥施用
    Synthetic fertilizer application
    4.79 t(CO2eq)∙t−1(N) 0.09
    粪尿施用
    Manure application
    6.24 t(CO2eq)∙t−1(N) 0.60
    粪尿管理
    Manure management
    0.49 t(CO2eq)∙LU−1 0.35
    动物肠道排放
    Enteric fermentation
    0.96 t(CO2eq)∙LU−1 0.18
    秸秆燃烧
    Burning crop residue
    0.09 t(CO2eq)∙t−1(DM) 0.30
    秸秆还田
    Crop residue application
    5.68 t(CO2eq)∙t−1(N) 0.73
    农业化石能源消耗
    Agricultural fossil fuel consumption
    2.60 t(CO2eq)∙t−1(ce) 0.29
    农业电力消耗
    Agricultural electricity consumption
    6.70 t(CO2eq)∙t−1(ce) 0.11
    化肥生产
    Synthetic fertilizer production
    3.53 t(CO2eq)∙t−1 0.28
    农药生产
    Pesticide production
    22.12 t(CO2eq)∙t−1 0.36
    农膜生产
    Film production
    17.95 t(CO2eq)∙t−1 0.39
    食物加工*
    Food processing
    0.44
    食物包装**
    Food packaging
    运输和仓储*
    Food transport and storage
    0.33
    批发和零售*
    Food wholesale and retail
    0.50
    食物消费*
    Food consumption
    0.36
    森林
    Forest
    −2.86 t(CO2eq)∙hm−2 0.41
    耕地
    Cropland
    −0.49 t(CO2eq)∙hm−2 0.32
    草地
    Grassland
    −0.16 t(CO2eq)∙hm−2 0.70
      *相关环节难以确定活动数据, 因此假设同一环节不同研究中的活动数据一致, 其参数变异系数等同于排放量变异系数; **基于Crippa et al. (2021)单篇文章的数据, 不能计算排放参数及其变异系数。* The activity data is unavailable in these emission segments, hence the coefficients of emission parameters are the same as that of total emission amount, under the assumption that the activity data is the same in different studies for the same emission segment. ** This value is based on a single study by Crippa et al. (2021), so the emission parameter and its coefficient of variable is not available.
    下载: 导出CSV
  • [1]

    PROGRAMME U N E. Emissions Gap Report 2020[M]. Nairobi: United Nations, 2021

    [2]

    United Nations. Paris Agreement[EB/OL]. [2022-01-09]. https://unfccc.int/sites/default/files/chinese_paris_agreement.pdf.

    [3]

    HÖHNE N, GIDDEN M J, DEN ELZEN M, et al. Wave of net zero emission targets opens window to meeting the Paris Agreement[J]. Nature Climate Change, 2021, 11(10): 820−822 doi: 10.1038/s41558-021-01142-2

    [4]

    Net Zero Tracker. Net Zero Tracker Database[EB/OL]. [2021-01-09]. https://zerotracker.net/

    [5] 习近平. 在第七十五届联合国大会一般性辩论上发表的讲话[EB/OL]. [2022-01-09]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm

    XI J P. The speech at the general debate of the 75th Session of the United Nation General Assembly[EB/OL]. [2022-01-09]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.

    [6] 新华社. 中美关于在21世纪20年代强化气候行动的格拉斯哥联合宣言[EB/OL]. [2022-01-09]. http://www.gov.cn/xinwen/2021-11/11/content_5650318.htm

    Xinhua News Agency. China-U. S. Joint Glasgow Declaration on enhancing climate action in the 2020s[EB/OL]. [2022-01-09]. http://www.gov.cn/xinwen/2021-11/11/content_5650318.htm

    [7]

    NGUYEN H. Sustainable food systems: concept and framework[M/OL]. Rome: FAO, 2018. [2022-01-09]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1160811/

    [8]

    Global Carbon Project. Global budgets for carbon dioxide, methane and nitrous oxide[EB/OL]. [2022-01-09]. https://www.globalcarbonproject.org/index.htm

    [9]

    CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198−209 doi: 10.1038/s43016-021-00225-9

    [10]

    CLARK M A, DOMINGO N G G, COLGAN K, et al. Global food system emissions could preclude achieving the 1.5° and 2 ℃ climate change targets[J]. Science, 2020, 370(6517): 705−708 doi: 10.1126/science.aba7357

    [11]

    ROE S, STRECK C, OBERSTEINER M, et al. Contribution of the land sector to a 1.5 ℃ world[J]. Nature Climate Change, 2019, 9(11): 817−828 doi: 10.1038/s41558-019-0591-9

    [12] 农业农村部. 中国农业统计资料2017[M]. 北京: 中国农业出版社, 2018

    Ministry of Agriculture and Rural Affairs of China. China Agriculture Statistical Report[M]. Beijing: China Agriculture Press, 2018

    [13]

    Statista. Supply of daily per capita calories in China, Germany, UK, and the U.S. from 1961 to 2013[EB/OL]. [2022-01-09]. https://www.statista.com/statistics/1094250/daily-per-capita-calories-supply/.

    [14] 中国营养学会. 中国居民膳食指南科学研究报告2021[R/OL]. [2022-01-09]. http://dg.cnsoc.org/upload/affix/20210301174345895.pdf.

    Chinese Nutrition Society. Scientific Research Report on Dietary Guidelines for Chinese Residents 2021[R/OL]. [2022-01-09]. http://dg.cnsoc.org/upload/affix/20210301174345895.pdf.

    [15]

    HU Y C, CUI S H, BAI X M, et al. Transboundary environmental footprints of the urban food supply chain and mitigation strategies[J]. Environmental Science & Technology, 2020, 54(17): 10460−10471

    [16]

    XUE L, LIU X, LU S, et al. China’s food loss and waste embodies increasing environmental impacts[J]. Nature Food, 2021, 2(7): 519−528 doi: 10.1038/s43016-021-00317-6

    [17]

    LI H M, WU T, WANG X, et al. The greenhouse gas footprint of China’s food system: an analysis of recent trends and future scenarios[J]. Journal of Industrial Ecology, 2016, 20(4): 803−817 doi: 10.1111/jiec.12323

    [18] 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37

    JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37

    [19]

    ROSENZWEIG C, MBOW C, BARIONI L G, et al. Climate change responses benefit from a global food system approach[J]. Nature Food, 2020, 1(2): 94−97 doi: 10.1038/s43016-020-0031-z

    [20]

    ZHOU F, SHANG Z Y, CIAIS P, et al. A new high-resolution N2O emission inventory for China in 2008[J]. Environmental Science & Technology, 2014, 48(15): 8538−8547

    [21]

    WANG Z, ZHANG X Y, LIU L, et al. Estimates of methane emissions from Chinese rice fields using the DNDC model[J]. Agricultural and Forest Meteorology, 2021, 303: 108368 doi: 10.1016/j.agrformet.2021.108368

    [22]

    Food and Agriculture Organization of the United Nations. Food and agricultural organization statistical databases[EB/OL]. [2021-01-09]. https://www.fao.org/faostat/en/#data

    [23]

    United Nations Framework Convention on Climate Change. Greenhouse gas inventory data[EB/OL]. [2021-01-09]. https://di.unfccc.int/flex_non_annex1

    [24]

    European Commission. Emissions database for global atmospheric research (EDGAR v6.0)[EB/OL]. [2021-01-09]. https://edgar.jrc.ec.europa.eu/emissions_data_and_maps.

    [25] 科学技术部, 国家自然科学基金, 中国21世纪议程管理中心, 等. 中国碳核算数据库[EB/OL]. [2022-01-09]. https://www. ceads. net. cn/

    Ministry of Sciences and Technology of China, National Natural Sciences Foundation of China, the Administrative Center for China’s Agenda 21, et al. China emission accounts and datasets[EB/OL]. [2022-01-09]. https://www.ceads.net.cn

    [26]

    Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report, Climate Change 2014[R]. Geneva: Intergovernmental Panel on Climate Change, 2014

    [27] 牛新胜, 巨晓棠. 我国有机肥料资源及利用[J]. 植物营养与肥料学报, 2017, 23(6): 1462−1479 doi: 10.11674/zwyf.17430

    NIU X S, JU X T. Organic fertilizer resources and utilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1462−1479 doi: 10.11674/zwyf.17430

    [28]

    MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4): 1279−1289 doi: 10.2134/jeq2009.0403

    [29]

    Eurostat. Statistics explained glossary: livestock unit (LSU) [EB/OL]. [2022-01-09]. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Livestock_unit_(LSU)

    [30] 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行) [EB/OL]. [2022-01-09]. http://cn.edcmee.org.cn/ptfb/zcbz/202106/P020210601177040314696.pdf

    Department of Climate Change, National Development and Reform Commission of China. Guideline for provincial greenhouse gas emission inventories (trial) [EB/OL]. [2022-01-09]. http://cn.edcmee.org.cn/ptfb/zcbz/202106/P020210601177040314696.pdf

    [31] 刘晓永. 中国农业生产中的养分平衡与需求研究[D]. 北京: 中国农业科学院, 2018

    LIU X Y. Study on nutrients balance and requirement in agricultural production in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018

    [32] 国家统计局能源统计司. 中国能源统计年鉴 [M]. 北京: 中国统计出版社, 2006—2016

    Department of Energy Statistics, National Bureau of Statistic of China. China Energy Statistical Yearbook[M]. Beijing: China Statistics Press, 2006—2016

    [33] 国家统计局. 国家数据[EB/OL]. [2022-01-09]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    National Bureau of Statistic of China. National data[EB/OL]. [2022-01-09]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    [34] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2006—2016

    National Bureau of Statistic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2006−2016

    [35] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    [36]

    HUANG Y, SASS R L, FISHER F M. A semi-empirical model of methane emission from flooded rice paddy soils[J]. Global Change Biology, 1998, 4(3): 247−268 doi: 10.1046/j.1365-2486.1998.00129.x

    [37] 王明星, 李晶, 郑循华. 稻田甲烷排放及产生、转化、输送机理[J]. 大气科学, 1998, 22(4): 600–612

    WANG M X, LI J, ZHENG X H. Methane emission and mechanisms of methane production, oxidation, transportation in the rice fields[J]. Scientia Atmospherica Sinica, 1998, 22(4): 600–612

    [38] 王效科, 李长生, 欧阳志云. 温室气体排放与中国粮食生产[J]. 生态环境, 2003, 12(4): 379–383

    WANG X K, LI C S, OUYANG Z Y. Greenhouse gases emission and crop production[J]. Ecology and Environmental Sciences, 2003, 12(4): 379–383

    [39] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247–252

    HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 247–252

    [40]

    International Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M/OL]. Hayama: Institute for Global Environmental Strategies, [2022-01-09]. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

    [41]

    WANG X C, KLEMEŠ J J, WANG Y T, et al. Water-Energy-Carbon emissions nexus analysis of China: an environmental input-output model-based approach[J]. Applied Energy, 2020, 261: 114431 doi: 10.1016/j.apenergy.2019.114431

    [42]

    WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217−232

    [43]

    DUBEY A, LAL R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350 doi: 10.1080/15427520902969906

    [44] 齐晔. 2010中国低碳发展报告[M]. 北京: 科学出版社, 2011

    QI Y. Annual Review of Low-Carbon Development in China 2010[M]. Beijing: Science Press, 2011

    [45] 逯非, 王效科, 韩冰, 等. 中国农田施用化学氮肥的固碳潜力及其有效性评价[J]. 应用生态学报, 2008, 19(10): 2239−2250 doi: 10.13287/j.1001-9332.2008.0381

    LU F, WANG X K, HAN B, et al. Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China’s cropland soil[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2239−2250 doi: 10.13287/j.1001-9332.2008.0381

    [46]

    LIN J Y, HU Y C, CUI S H, et al. Carbon footprints of food production in China (1979−2009)[J]. Journal of Clean Production, 2014, 90: 97−103

    [47] 生态环境部. 中华人民共和国气候变化第三次国家信息通报[R]. 北京: 生态环境部, (2018-12). https://unfccc.int/sites/default/files/resource/China_NC3_Chinese_0.pdf

    Ministry of Ecology and Environment of China. The People’s Republic of China Third National Communication on Climate Change[R]. Beijing: Ministry of Ecology and Environment of China. (2018-12). https://unfccc.int/sites/default/files/resource/China_NC3_Chinese_0.pdf

    [48]

    FANG J Y, WANG Z M. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass[J]. Ecological Research, 2001, 16(3): 587−592 doi: 10.1046/j.1440-1703.2001.00419.x

    [49] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 37(6): 804−812

    FANG J Y, GUO Z D, PIAO S L, et al. Terrestrial vegetation carbon sinks in China, 1981−2000[J]. Science in China (Series D: Earth Sciences), 2007, 37(6): 804−812

    [50] 郭兆迪, 胡会峰, 李品, 等. 1977—2008年中国森林生物量碳汇的时空变化[J]. 中国科学: 生命科学, 2013, 43(5): 421−431 doi: 10.1360/zc2013-43-5-421

    GUO Z D, HU H F, LI P, et al. Spatio-temporal changes in biomass carbon sinks in China’s forests during 1977−2008[J]. Scientia Sinica (Vitae), 2013, 43(5): 421−431 doi: 10.1360/zc2013-43-5-421

    [51]

    BP China. HSE charting tool — greenhouse gas emissions data[EB/OL]. [2022-01-09]. https://www.bp.com/en/global/corporate/sustainability/getting-to-net-zero/ghg-emissions.html.html#greenhouse-gas-emissions-data

    [52]

    ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceeding of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375−8380 doi: 10.1073/pnas.1210447110

    [53]

    International Fertilizer Industry Association. Fertilizers, Climate Change and Enhancing Agricultural Productivity[M]. Paris: International Fertilizer Industry Association, 2009

    [54] 国家发展和改革委员会. 解振华副主任就节能减排和应对气候变化问题答记者问[EB/OL]. (2010-03-11)[2022-01-09]. https://www.ndrc.gov.cn/xxgk/jd/jd/201003/t20100311_1183092.html?code=&state=123

    National Development and Reform Commission of China. Deputy director Xie Zhenhua answered reporters’ questions on energy conservation and emission reduction[EB/OL]. (2010-03-11)[2022-01-09]. https://www.ndrc.gov.cn/xxgk/jd/jd/201003/t20100311_1183092.html?code=&state=123

    [55]

    LAI L, HUANG X J, YANG H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances, 2016, 2(11): e1601063 doi: 10.1126/sciadv.1601063

    [56]

    ZHAO Y C, WANG M Y, HU S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045−4050 doi: 10.1073/pnas.1700292114

    [57]

    VERMEULEN S J, CAMPBELL B M, INGRAM J S I. Climate change and food systems[J]. Annual Review of Environment and Resources, 2012, 37: 195−222 doi: 10.1146/annurev-environ-020411-130608

    [58]

    SONG F, REARDON T, TIAN X, et al. The energy implication of China’s food system transformation[J]. Applied Energy, 2019, 240: 617−629 doi: 10.1016/j.apenergy.2019.02.069

  • 期刊类型引用(6)

    1. 和君强,熊孜,邓林,廖奇林,刘代欢,戴青云. 基于生命周期评价的杨梅鲜果碳足迹研究. 中国生态农业学报(中英文). 2025(03): 413-423 . 本站查看
    2. 薛佳敏,徐明岗,张建杰. 食物系统碳足迹研究进展. 中国生态农业学报(中英文). 2024(02): 196-205 . 本站查看
    3. 赵晓日,樊相文,刘玲,马林,柏兆海. 长江经济带淡水养殖单位面积产量、碳排放规律及空间差异. 农业资源与环境学报. 2024(02): 410-419 . 百度学术
    4. 马于清,曹丁戈,罗文海,李国学,张卫峰,李扬阳. 基于生命周期的我国畜禽养殖业碳排放核算. 中国环境科学. 2024(05): 2799-2810 . 百度学术
    5. 牛坤玉,葛若昊,陈美安,金书秦,刘静. 双碳目标下中国农食系统温室气体排放结构、发展趋势及国际比较. 中国农业科学. 2024(21): 4290-4307 . 百度学术
    6. Xinpeng JIN,Xiangwen FAN,Yuanchao HU,Zhaohai BAI,Lin MA. STRATEGIES FOR A LOW-CARBON FOOD SYSTEM IN CHINA. Frontiers of Agricultural Science and Engineering. 2023(02): 167-182 . 必应学术

    其他类型引用(4)

图(5)  /  表(6)
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  431
  • PDF下载量:  181
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-06-12
  • 录用日期:  2022-06-12
  • 网络出版日期:  2022-11-06
  • 刊出日期:  2023-02-09

目录

/

返回文章
返回