董宝娣, 刘孟雨, 乔匀周, 张明明, 赵欢, 杨红, 郑鑫. 不同畦长灌溉对冬小麦产量及水分利用特性的影响[J]. 中国生态农业学报(中英文), 2016, 24(8): 1080-1087.
引用本文: 董宝娣, 刘孟雨, 乔匀周, 张明明, 赵欢, 杨红, 郑鑫. 不同畦长灌溉对冬小麦产量及水分利用特性的影响[J]. 中国生态农业学报(中英文), 2016, 24(8): 1080-1087.
DONG Baodi, LIU Mengyu, QIAO Yunzhou, ZHANG Mingming, ZHAO Huan, YANG Hong, ZHENG Xin. Effects of irrigated field border length on grain yield and water use characteristics of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1080-1087.
Citation: DONG Baodi, LIU Mengyu, QIAO Yunzhou, ZHANG Mingming, ZHAO Huan, YANG Hong, ZHENG Xin. Effects of irrigated field border length on grain yield and water use characteristics of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1080-1087.

不同畦长灌溉对冬小麦产量及水分利用特性的影响

Effects of irrigated field border length on grain yield and water use characteristics of winter wheat

  • 摘要: 为探讨畦长对冬小麦耗水及产量和水分利用特性的影响, 本试验以冬小麦品种‘科农2011’为试验材料, 在2014—2015年中国科学院栾城农业生态系统试验站小麦生长季, 畦宽为5 m条件下, 设置4 m、5 m、10 m(农民习惯畦长)、50 m、100 m共5个畦田长度, 各处理均在拔节期和灌浆期用塑料软管从机井口引水到畦首灌水, 塑料软管出水口安装水表计量灌水量, 用秒表计量灌溉用时, 研究不同畦长处理对冬小麦耗水特性、灌溉定额及灌溉用时、畦田内不同部位土壤含水量差异、籽粒产量以及产量和灌溉水利用效率的影响。结果表明: 随着畦长增加, 灌水量和总耗水量逐渐增加, 灌水量占总耗水量的比例逐渐增加; 籽粒产量虽逐渐增加, 但未达到显著水平。土壤储水消耗量、产量水分利用效率和灌溉水利用效率随着畦长增加逐渐降低。与农民习惯的畦长10 m相比, 4 m畦长处理的灌水量减少34.50%, 多消耗深层土壤贮水58.92 mm, 总耗水量降低1.61%, 产量水分利用效率提高1.15%, 灌溉水利用效率提高51.96%, 次灌溉用时减少42.75%。100 m 畦长处理在产量没有显著提高的基础上, 总耗水量增加9.58%, 灌溉水增加38.08%, 产量水分利用效率降低9.88%, 灌溉水利用效率降低26.20%, 次灌溉用时增加65.61%。综合考虑籽粒产量、灌水量和水分利用效率, 4 m畦长是本试验条件下兼顾高产与节水的最优畦长处理。

     

    Abstract: Winter wheat is a high water consumption crop. As the main production area of winter wheat, Hebei Province also is one of the most serious water scarcity provinces in China. With further restriction of groundwater exploitation, it becomes more important to explore efficient water use technologies in the agricultural production. Surface irrigation is an old method which is being widely adopted in China. In Hebei Plain, most of the fields were irrigated using the ground furrow method. Border length in the furrow irrigation was about 10 m while border width was 5–6 m and there was water furrow about 5–6 m width. Under this irrigation system, the total area of water channel was 5%–10% of field area. By surface irrigation, there has been a significant difference in soil water content in different sections of a border. At the headwater of the border, there were water and fertilizer leakages, while at the border trail, the water and fertilizer were deficiency. It was important to study proper border length under restricted groundwater exploitation and water-saving agriculture. However, the effect of irrigated field border length on grain yield and water use characteristics of winter wheat was less reported up to now. In this study, winter wheat cultivar ‘Kenong2011’ was used in five border lengths 4 m, 5 m, 10 m (conventional length), 50 m and 100 m to determine the effect of border length on water use characteristics in 20142015 growing season in Luancheng Agro-Ecosystem Experimental Station of Chinese Academy of Sciences. All the treatments had the same border width of 5 m and were irrigated at jointing and grain-filling stages. Water was supplied by a jet pump, directed to headwater of the border through plastic pipes. A water meter was used to measure the amount of water applied and a stopwatch used to measure required irrigation time. Water consumption potential, required irrigation time, irrigation requirement, soil water contents in different border sections, yield and water use efficiency of winter wheat were analyzed under different border lengths conditions. The results showed that the irrigation amount, water consumption, proportion of irrigation amount to total water consumption and grain yield all increased with increasing border length from 4 m to 100 m. The differences in grain yield among different treatments were not significant. With increasing border length, soil water consumption, water use efficiency at grain yield level and irrigation water use efficiency decreased significantly. Compared with farm border length of 10 m, irrigation amount and total water consumption in border length of 4 m reduced by 34.50% and 1.61%, respectively. Soil water consumption of border length of 4 m increased 58.92 mm. Water use efficiency at grain yield level and irrigation water use efficiency at border length of 4 m increased by 1.15% and 51.96%, respectively. Required irrigation time at border length of 4 m decreased by 42.75%. On the other hand, between border lengths of 10 m and 100 m there was no significant difference in grain yield. Irrigation amount and total water consumption in border length of 100 m increased by 38.08% and 9.58%, respectively, over those of border length of 10 m. Water use efficiency at grain yield level and irrigation water use efficiency in border length of 100 m decreased by 9.88% and 26.20%, respectively, while the required irrigation time increased by 65.61%. Based on grain yield, irrigation amount, water use efficiency at yield level and irrigation water use efficiency, border length of 4 m was recommended as the best field border length for water-saving and high-yield agriculture in the study.

     

/

返回文章
返回