

不同再生稻栽培模式氮足迹及经济效益评估

李延实,李成芳

Assessment of nitrogen footprint and economic profit under different ratooning rice cultivation modes in central China

LI Yanshi and LI Chengfang

在线阅读 View online: https://doi.org/10.12357/cjea.20240005

您可能感兴趣的其他文章

Articles you may be interested in

华北平原春绿豆-夏玉米种植模式经济效益和碳足迹评价

Economic benefits and carbon footprint of a spring mung bean-summer maize cropping system in the North China Plain 中国生态农业学报(中英文). 2020, 28(6): 910-919

不同杂交中稻品种在川南再生稻区的两季产量及头季稻米品质差异

Differences in the two-crop yields and main-crop rice qualities among different hybrid mid-season rice varieties in the rationing rice region of southern Sichuan, China

中国生态农业学报(中英文). 2020, 28(7): 990-998

南方九省再生稻安全生长期及高温热害时空变化

Spatiotemporal changes in the characteristics of the safe growth period and high temperature damage of ration rice in nine southern provinces of South China

中国生态农业学报(中英文). 2021, 29(12): 2061-2073

花生与玉米和芝麻间作的产量及经济效益分析

Yield and economic benefits of peanut intercropping with maize and sesame 中国生态农业学报(中英文). 2021, 29(8): 1285–1295

基于DNDC模型评估湖北省不同稻作系统不同管理措施温室气体排放的周年变化

Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) model

中国生态农业学报(中英文). 2021, 29(9): 1480-1492

华北典型农田和畜禽场环境大气中活性氮化学组成和浓度变化特征

Atmospheric reactive nitrogen in typical croplands and intensive pig and poultry farms in the North China Plain 中国生态农业学报(中英文). 2020, 28(7): 1043–1050

关注微信公众号,获得更多资讯信息

DOI: 10.12357/cjea.20240005

李延实, 李成芳. 不同再生稻栽培模式氮足迹及经济效益评估[J]. 中国生态农业学报 (中英文), 2024, 32(4): 582-591 LI Y S, LI C F. Assessment of nitrogen footprint and economic profit under different rationing rice cultivation modes in central China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 582-591

不同再生稻栽培模式氮足迹及经济效益评估*

李延实,李成芳**

(华中农业大学植物科学技术学院/农业农村部长江中游作物生理生态与耕作重点实验室 武汉 430070)

摘 要:有关不同栽培措施下再生稻稻田温室气体排放、碳足迹与产量变化研究已取得较大进展,然而不同再生稻 栽培模式氮足迹尚不明确。因此,本研究通过大田试验,采用生命周期法,研究了不同再生稻栽培模式 [常规栽培模 式 (CM)和两个优化栽培模式 (OM1和OM2)]对水稻产量、氮足迹与经济效益的影响。其中,CM模式采用人工插 秧、常规施肥、浅水淹灌、留茬高度 20 cm 与秸秆不还田等传统再生稻栽培技术,OM1模式采用机插秧、一次性 缓释肥施用、干湿交替、头季留茬高度 20 cm 与秸秆还田,OM2模式采用机插秧、氮肥深施、干湿交替、头季留 茬高度 40 cm 与秸秆还田配施腐熟剂。结果表明,OM2再生季产量和稻季总产量最高,较 CM和OM1分别提高再 生季产量 37.1% (P<0.05)和28.1% (P<0.05)、总产量 21.7%和12.5% (P<0.05)。对于再生稻氮足迹构成,OM2具有 最高间接活性氮排放。对于直接活性氮排放,3个模式 N₂O排放无显著差异;但对于头季稻 NH,挥发,OM2 比 CM 显著降低 14.4% (P<0.05)。因此,OM2 具有最低周年活性氮排放,分别比 CM和 OM1 显著降低 10.9% (P<0.05)和 2.2% (P<0.05)。对于再生稻氮足迹,OM2 比 CM和 OM1 分别显著降低 26.9% (P<0.05)和13.1% (P<0.05)。此外, OM2 经济效益最高,分别较 OM1和 CM 提高 20.9%和29.2%。本研究表明,OM2 模式是一项降低氮足迹和提高经济效益的可持续再生稻栽培模式,值得在我国南方再生稻区推广。 关键词:再生稻;活性氮排放;氮足迹;经济效益

中图分类号: S314

Assessment of nitrogen footprint and economic profit under different ratooning rice cultivation modes in central China^{*}

LI Yanshi, LI Chengfang**

(College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Physiology, Ecology and Farming in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China)

Abstract: Significant progress has been made in studying greenhouse gas emissions, carbon footprints, and yield changes in ratooned rice fields across diverse cultivation practices. However, the nitrogen footprints of different ratooning rice cultivation methods remain unclear. Therefore, this field experiment used the life cycle assessment to study the effects of different ratooning rice cultivation modes [conventional cultivation mode (CM) and two optimized cultivation modes (OM1 and OM2)] on rice yield, nitrogen footprint, and economic outcomes. Among the three modes, the CM mode adopted traditional ratooning rice cultivation techniques, such as artificial transplanting, conventional fertilization, shallow flooding irrigation, stubble height of 20 cm, and excluding straw returning practices. The OM1 mode adopted mechanical transplanting, one-time application of slow-release fertilizer, dry-wet irrigation altenation, stubble height of 20 cm, and straw returning. The OM2 mode adopted mechanical transplanting, deep application of nitrogen fertilizer, dry-wet irrigation alternation, stubble height of 40 cm, and straw returning along with a decomposing agent. The results

^{*} 国家重点研发计划项目 (2023YFD2301300) 资助

^{**} 通信作者: 李成芳, 主要从事农业生态与耕作制度研究。E-mail: lichengfang@126.com 李延实, 主要从事稻田生态研究。E-mail: 2158085497@qq.com 收稿日期: 2024-01-03 接受日期: 2024-02-05

The study was supported by the National Key Research and Development Program of China (2023YFD2301300).
 ** Corresponding author, E-mail: lichengfang@126.com

Received Jan. 3, 2024; accepted Feb. 5, 2024

showed that OM2 had the highest yield in the ratooning season and the total yield in the rice season, which increased the yield in the ratooning season by 37.1% (P<0.05) and 28.1% (P<0.05) and the total yield by 21.7% and 12.5% (P<0.05), respectively, in comparison to CM and OM1. OM2 had the highest indirect active nitrogen emissions. In the context of direct active nitrogen emissions, there were no significant differences in the N₂O emissions among the three modes. However, OM2 significantly reduced NH₃ volatilization by 14.4% (P<0.05) in comparison to CM for main crop. Therefore, OM2 had the lowest annual active nitrogen emissions, which were significantly lower than CM and OM1 by 10.9% (P<0.05) and 2.2% (P<0.05), respectively. The nitrogen footprint of OM2 was significantly lower than that of CM and OM1 by 26.9% (P<0.05) and 13.1% (P<0.05), respectively. OM2 had the highest economic benefit, which was 20.9% and 29.2% higher than OM1 and CM, respectively. This study showed that the OM2 is a sustainable ratooning rice cultivation mode that effectively reduces nitrogen footprint while enhancing economic benefits. The potential for promoting this mode is substantial in the ratooning rice area of southern China.

Keywords: Ratooning rice; Reactive nitrogen emissions; Nitrogen footprint; Economic benefits

再生稻是头季稻收获后,其稻桩上休眠芽在适 宜条件下再长一茬的水稻 (Orvza sativa)^[1]。我国适 宜再生稻种植的面积为 1328 万 hm², 其中有 564 万 hm²适合种植再生稻而不适合种植双季稻,因此 我国再生稻发展潜力大[1-2]。目前,我国水稻种植模 式处于转型时期,面临劳动力短缺、生产成本增长 快、环境污染以及经济效益低等问题^[3]。转型时期 种植再生稻具三方面的意义。首先,再生稻种植可 降低劳动成本,缓解农忙以及减轻劳动强度^[4]。其次, 发展再生稻有利于增加产量,促进农民增收,是精准 扶贫的有效方法^[5]。最后,再生季的稻米品质更优, 更满足市场需求,符合供给侧结构性改革的要求,能 有力推动水稻绿色生产发展16。因此,发展再生稻可 使得总产不降低或增加基础上,降低劳动投入和生 产成本,保障水稻生产经济效益。总之,发展再生稻 对于促进水稻可持续生产和保障国家粮食安全具有 重要意义。

目前,关于施肥、水分管理、头季留茬高度、 头季收获期等栽培措施对再生稻生理性状及产量影 响的研究已取得较大进展^[7-10]。此外,对再生稻的温 室气体排放和碳足迹评估也有相关报道^[11-12]。但是, 这些研究仅分析了再生稻与传统单、双季稻的差异, 对不同再生稻模式氮足迹的比较尚不明确。当前水 稻生产平均氮肥利用率不到 35%,其中活性氮排放 是造成水稻氮肥利用率低的重要原因^[13]。氮足迹是 人类活动或农产品生产周期过程中排放的直接和间 接活性氮的总量^[14],氮足迹的评估能为量化土壤氮循 环中活性氮排放对农业生态系统影响提供一种新的 思路和方法。目前,对氮足迹的研究主要集中在粮 食消费方面,这使得政策制定者可以从粮食供需和 区域角度制定减氮政策^[14-15],但有关再生稻氮足迹的 评估较缺乏。

氮足迹的评价方法包括自上而下的投入产出法 和自下而上的生命周期法^[16]。相比投入产出法,生命 周期法多适用于微观尺度^{116]}。采用生命周期法对作 物进行氮足迹评估已取得一定进展。季国军等[17]评 价不同稻田轮作模式下单位面积和产量氮足迹,并 指出不同轮作模式的氮足迹存在区域差异。另外, 在长江流域,基于农户调查的双季稻和水稻-小麦 (Trticum aestivum)轮作氮足迹评价也有报道^[16,18]。但 是,基于生命周期评价的再生稻模式氮足迹的研究 较少,尤其是不同再生稻模式间的比较。华中地区 作为再生稻适宜推广的地区和优势产区^[3],由于"机 收再生稻丰产高效技术"的大力推广,从2010年开 始,湖北省再生稻种植面积从 0.7 万 hm² 增到 22.0 万 hm^{2[19]}, 周年产量达到 13 t·hm⁻² 左右^[20], 与双季稻 持平。因此,为了进一步提高再生稻在该地区的发 展,弥补再生稻氮足迹研究的不足,本研究对华中地 区不同再生稻模式氮足迹和经济效益进行了评价, 以期为合理的再生稻栽培提供理论指导。

1 材料与方法

1.1 试验地点

试验始于 2019 年 10 月,本文选取 2020 年 10 月 至 2021 年 10 月进行研究。试验点位于湖北省武穴 市花桥镇郑公塔 (115°28′E, 29°48′N)。试验点海拔 20.1 m,属亚热带季风湿润气候,年平均气温 18.6 ℃, 年平均降水量 1140.8 mm。试验地区是湖北省主要 的双季稻栽培区。试验点土壤类型 (沙壤土)为潜育 土 (联合国粮食及农业组织分类)。试验前土壤有机 碳含量为 18.15 g·kg⁻¹,全氮含量为 1.33 g·kg⁻¹,全磷 含量为 1.33 g·kg⁻¹,全钾含量为 3.23 g·kg⁻¹,续态氮含 量为 7.98 mg·kg⁻¹, 硝态氮含量为 4.37 mg·kg⁻¹,速 效磷含量为 9.85 mg·kg⁻¹,速效钾含量为 85.35 mg·kg⁻¹。

1.2 试验设计

试验采用完全随机区组设计,设3个再生稻模式,即3个处理,每个模式3次重复。模式包括1个常规再生稻栽培模式(CM)和2个再生稻优化栽培模式(OM1和OM2)。3种模式的农艺管理措施详

见表 1。小区面积为 40 m² (5 m×8 m)。各模式头季 肥料用量均为 180 kg(N)·hm⁻²、150 kg(K₂O)·hm⁻² 和 90 kg(P₂O₅)·hm⁻²,再生季均为 90 kg(N)·hm⁻²、45 kg(P₂O₅)·hm⁻²和90 kg(K₂O)·hm⁻²。各模式水稻秧苗 (25 d 秧龄) 均于4月下旬移栽,栽插密度为13.3 cm× 30.0 cm,每穴3 株。

表 1	不同再生稻模式下农艺管理措施	
	· · · · · · ·	

Table 1 Agronomical management practices under various rationing rice modes							
模式	移栽方式	肥料管理	水管理	留茬高度	秸秆管理		
Mode	Transplantation method	Fertilizer management	Water management	stubble height (cm)	Straw management		
<u></u>	人工插秧	常规施肥	持续淹水	20	不还田		
СМ	Artificial transplanting	Conventional fertilization	Continuous flooding	20	No straw return		
OMI	机插秧	一次性缓释肥料	干湿交替	20	还田		
OMT	Machine transplanting	One-time slow release fertilization	Alternate wetting and drying	20	Straw return		
01/2	机插秧	氮肥深施	干湿交替	40	还田+腐熟剂		
OM2	Machine transplanting	Deep application of nitrogen fertilizer	Alternate wetting and drying	40	Straw return with inoculants		

对于 CM 模式, 全生育期肥料由尿素 (46% N)、 过磷酸钙 (12% P₂O₅) 和氯化钾 (60% K₂O) 提供。头 季氮肥按 5:3:2 的比例在苗期、分蘖期和抽穗期 表施, 所有磷肥和钾肥在苗期一次性施用。再生季 氮肥于头季稻抽穗后 15~20 d 和头季稻收割后 7 d 施 用, 两次氮肥施用比例为 6:4; 磷肥和钾肥在头季稻 收获后 7 d 施用一次。水稻生长期间, 除在头季稻分 蘖盛期、头季稻收割前 10 d 和再生稻收割前 7 d 排 水外, 田面保持 3~5 cm 水层。头季稻收获时, 稻茬高 度保持在 20 cm。

相对于 CM 模式, OM1 模式在肥料类型、水分 管理和头季秸秆处理等方面进行优化。头季以缓释 肥 (15% N、7% P₂O₅和 10% K₂O,贵州天宝丰原生态 农业科技有限公司)结合过磷酸钙、氯化钾作为基 肥;再生季肥料施用与 CM 模式一致。水稻移栽至 返青期间,稻田保持 3~5 cm 浅水层, 之后采用干湿交 替方式灌溉, 即当 15 cm 土层土壤水势达到-15 kPa 时^[21],复水到 3~5 cm。在头季稻收获后, OM1 模式保 持与 CM 模式相同的留茬高度 (20 cm), 且将秸秆粉 碎并覆盖于稻桩行间。

OM2模式相对于CM模式主要在肥料施用方式、 灌溉方式、头季留茬高度、头季秸秆处理与绿肥种植 等方面优化。OM2模式在整个水稻生长季氮、磷、钾 肥的类型、施用量和施用时间均与CM模式相同。头 季90kg(N)·hm⁻²、150kg(K₂O)·hm⁻²和90kg(P₂O₅)·hm⁻² 作为基肥深施于10 cm 土层,肥料深施的具体方法详 见Liu等^[22]。同时,采用与OM1模式相同的干湿交 替灌溉。头季稻收获时,留茬高度为40 cm;将水稻 秸秆粉碎与腐熟剂(由沃宝生物科技有限公司生产, 30 kg·hm⁻²)混合覆盖稻茬之间。在再生稻收获前7d (10月中旬),将油菜(*Brassica napus*)种子按15 kg·hm⁻²直接播种于水稻行间。在次年4月初,油菜 粉碎后翻入土壤。

1.3 N₂O 和 NH₃ 测定

土壤中活性氮主要以 N₂O 及 NH₃ 的形式排放。 因此, 在本研究中测量 N₂O 排放及 NH₃ 挥发。田间 N₂O 通量采用静态密闭箱法测定^[23]。密闭箱直径 50 cm, 高度 50 cm 或 110 cm, 高度取决于水稻生长。 箱由 PVC 材料制成, 用保温材料包裹。在箱顶部 设置采样孔, 连接三通阀进行气体采样。在箱内部 的顶部安装 1 个温度计和 4 个风扇, 分别用于测量箱 内部温度和混合箱内气体。从水稻移栽后至再生稻 收获, 每隔 7 d 采集一次气样。气样采集时间在上午 8:00—11:00, 于 0 min、10 min、20 min、30 min 采 集, 并记录温度。采用注射器采集 25 mL 气体样品, 然后转移到 25 mL 真空玻璃瓶中。采用气相色谱仪 测定 N₂O 浓度。根据 4 个样品线性关系计算 N₂O 排 放通量^[24]。

NH₃挥发采用通气法测定^[25]。采样装置 (直径 11 cm、高 30 cm)由 PVC 管制成,并在测定当天放置 在田间。将 2 块直径 11 cm、厚度 2 cm 的海绵浸泡 在 25 mL 的甘油磷酸溶液中,分别置于装置的上、 下两层。下层海绵放置在距水面 10 cm 处,用于吸收 稻田挥发的 NH₃;上层海绵放置在装置顶部下方 2 cm 处,用于防止大气与装置之间 NH₃交换。于施 氮后第 1 天、3 天、5 天、7 天、14 天测定 NH₃通 量,之后每隔半个月测定一次,采样时间为上午 9:30。 取样后,将海绵放入 500 mL 塑料瓶中,加入 300 mL 1 mol·L⁻¹ KCl 溶液,振荡 1 h。铵态氮的提取采用靛 酚蓝比色法测定^[26]。NH₃ 的挥发通量测量方法参见 Liu 等^[22]。试验期间 N₂O 和 NH₃ 的累积排放量计算 方法参见 Li 等^[23]。

1.4 氮足迹研究边界及估算方法

本研究采用生命周期法评价氮足迹,其研究边 界为再生稻系统从种子播种到收获整个生育期内所 产生的直接和间接活性氮排放总和(图1)。

图 1 再生稻生产系统中氮足迹计算边界

Fig. 1 System boundary of nitrogen footprint in ratooning rice production system

直接活性氮排放包括 N₂O 和 NH₃ 的排放以及 NH₄⁺和 NO₃⁻的淋溶。间接活性氮排放量为整个试验 期间农业投入 (机械柴油、种子、化肥、农膜、农 药等)产生的总活性氮排放量。根据单位产量的总 活性氮排放量计算氮足迹^[27],如下所示:

$$NF = \frac{NE_{\text{total}}}{Y} \tag{1}$$

$$NE_{total} = NE_{indirect} + NE_{direct}$$
(2)

式中:NF为氮足迹 [g(N-eq)·kg⁻¹]; Y为水稻产量 (kg·hm⁻²); NE_{total}为试验期间的总活性氮排放总量 [g(N-eq)·hm⁻²]; NE_{indirect}是由农业投入引起的间接活 性氮排放 [g(N-eq)·hm⁻²]; NE_{direct}是由 NH₃ 挥发、N₂O 排放以及 NH₄⁺和 NO₃⁻淋溶产生的直接活性氮排放, 根据 ISO 14044 的方法计算 NH₄⁺和 NO₃⁻的淋溶量, 并将施氮量转化为富营养化潜势加以估算^[16]。相关 氮足迹计算公式如下所示:

$$NE_{indirect} = \sum_{i=1}^{n} Q_i \times J_i$$
(3)

$$NE_{direct} = NV_{NH_3} + NE_{N_2O} + NL_{NO_3^-} + NL_{NH_4^+}$$
(4)

$$NL_{NO_{3}} = FN \times \sigma \times 62/14 \times 0.238 \times 1000$$
 (5)

$$NL_{NH_{4}^{+}} = FN \times \gamma \times 18/14 \times 0.786 \times 1000$$
 (6)

式中: Q_i 为农资 i 的投入量 (kg·hm⁻²); J_i 为农资 i 的活 性氮排放系数,具体见表 2; NV_{NH3}为整个生产过程中 由 NH₃ 挥发引起的活性氮排放 [g(N-eq)·hm⁻²]; NE_{N2O} 为整个生产过程中由 N₂O 排放引起的活性氮排放 [g(N-eq)·hm⁻²]; NL_{NO₃}和NL_{NH⁺}分别是NO₃⁻和NH₄⁺淋溶造成的活性氮损失 [g(N-eq)·hm⁻²]。FN、 σ 、 γ 、62/14、18/14分别为施氮量、NO₃⁻淋溶系数、NH₄⁺ 淋溶系数、NO₃⁻与NO₃⁻-N的分子质量比、NH₄⁺与NH₄⁺-N的分子质量比, $\sigma \pi \gamma$ 源于《中国肥料淋溶系数手册》(2009年); 0.238和 0.786分别为NO₃⁻和NH₄⁺的富营养化系数。

表 2 农业投入资料的活性氮排放系数 Table 2 Reactive nitrogen emission coefficients of various

materials for agricultural production

	c 1
项目 Item	排放系数 Emission coefficient [g(N-eq)·kg⁻¹]
柴油 Diesel	0.08×10^{-3}
氮肥 N fertilizer	0.89×10^{-3}
磷肥 P fertilizer	0.54×10^{-3}
钾肥 K fertilizer	0.03×10^{-3}
除草剂 Herbicide	4.49×10^{-3}
杀虫剂 Insecticide	3.53×10^{-3}
杀菌剂 Fungicide	7.00×10^{-3}
农膜 Film	12.03×10 ⁻³
种子 Seed	0.76×10^{-3}

1.5 经济效益分析

在水稻成熟时,收割每个小区中央8m²稻谷用 于产量测定。经脱粒、烘干、称重后,按籽粒含水 率13.5% 折算产量。

经济效益按产量收益扣除农业投入成本计算。 产量收益为水稻产量乘以当地粮食价格。生产成本包 括基于农资的成本(农药、化肥、种子等)、人工成 本、机械成本(田间机械、水稻插秧机、收割机等)。

1.6 数据分析

试验数据采用 Excel 2016 进行分析处理。采用 SPSS 18.0 软件对所测指标进行单因素方差分析。采 用最小显著差异法比较处理间平均值差异。

2 结果与分析

2.1 不同再生稻模式下水稻产量

本研究中,不同再生稻模式对头季、再生季和 周年产量具有显著影响(表 3)。头季产量OM1和 OM2比CM显著提高 8.8%~12.6% (P<0.05);再生季 产量OM2显著高于其他模式(P<0.05),比CM、OM1 分别提高 37.1%、28.1%。因此,与OM1和CM相比, OM2提高 12.5%~21.7%的周年产量,其中OM1和 OM2间的周年产量差异显著(P<0.05)。

2.2 不同再生稻模式下 NH₃ 挥发与 N₂O 排放

在所有模式下,每次施氮后即出现 N₂O 排放和 NH₃ 挥发通量峰值(图 2)。稻季 N₂O 通量变化范围 为-1.0~290.1 μg·m⁻²·h⁻¹。CM、OM1 和 OM2 模式 NH₃ 通量范围分别为 0.19~10.65 mg·m⁻²·h⁻¹、0.11~ 9.50 mg·m⁻²·h⁻¹ 和 0.11~5.89 mg·m⁻²·h⁻¹(图 2b)。OM2

表 3 不同再生稻模式的水稻产量

Table 3 Rice yields under different cultivation modes of ratooning rice

模式	产量 Yield (kg·hm ⁻²)						
Mode	头季 Main crop	再生季 Ratooning crop	周年 Total				
СМ	7528±316b	4412±247b	11940±562a				
OM1	8194±280a	4722±148b	12916±295b				
OM2	8480±239a	6047±312a	14527±509a				

同列不同字母表示不同模式间在P<0.05水平差异显著。Different letters in a column mean significant differences among different modes at P<0.05 level.

模式平均 N₂O 排放通量较 CM 和 OM1 分别降低 23.5% 和 7.6%, OM2 模式平均 NH₃ 挥发通量较 CM 和 OM1 分别降低 21.3% 和 6.9%。

再生稻栽培模式显著影响头季 NH₃ 挥发, 对再 生季 NH₃ 挥发无显著影响 (表 4)。相比 CM 模式, OM1 和 OM2 模式头季 NH₃ 挥发量显著降低 13.5%、 14.4%。再生稻栽培模式对头季和再生季 N₂O 排放 无显著影响。

2.3 不同再生稻模式下氮足迹及其构成

不同再生稻模式下氮足迹中间接活性氮排放占 2.6%~3.5%,直接活性氮排放占 96.5%~97.4% (表 5)。

图 2 不同再生稻模式下 N₂O 排放通量 (a) 和 NH₃ 挥发通量 (b) 的变化

Fig. 2 Changes in N₂O emission fluxes (a) and NH₃ volatilization fluxes (b) from ratooning rice under different cultivation modes

¥·hm^{−2}

表 4 小 同 冉 生 槄 模 式 ト N ₂ O 和 NH ₃ 的 累 枳 オ	排放量
--	-----

Table 4 Cumulative emissions of N₂O and NH₃ under different cultivation modes of ratooning rice

kg(N-eq)·hm⁻²

	-			-		
模式	头季 M	fain crop	再生季 Ratooning crop			
Mode	N_2O	NH ₃	N ₂ O	NH ₃		
СМ	0.83±0.34a	29.29±2.09a	0.40±0.08a	4.89±0.19a		
OM1	0.71±0.25a	25.33±2.20b	0.31±0.03a	5.64±1.35a		
OM2	0.62±0.08a	25.08±1.43b	0.34±0.10a	4.82±0.96a		

同列不同字母表示不同模式间在P<0.05水平差异显著。Different letters in a column mean significant differences among different modes at P<0.05 level.

在间接活性氮排放中,柴油占比最大,为31.3%~40.8%;其次是氮肥,为28.8%~30.9%;种子占比为17.7%~19.8%;磷肥、钾肥、除草剂、杀虫剂、杀菌剂和农膜占比为12.6%~18.8%。在直接活性氮排放中,NH₃挥发占比最大,为89.1%~90.0%;N₂O排放占比为2.8%~3.2%;NH₄⁺和NO₃⁻淋溶总占比为6.8%~8.1%。

再生稻栽培模式显著影响氮足迹(表 5)。虽然, 与 CM 和 OM1 相比, OM2 模式间接活性氮排放增 加了 19.7% 和 24.5%, 但周年活性氮排放显著降低 10.9% 和 2.2%, 且 OM2 在 3 个模式中再生稻周年产 量最高。因此, OM2 模式氮足迹最低, 与 CM 和 OM1 模式相比, OM2 模式显著降低了 26.9% 和 13.1% 的氮足迹。

2.4 不同再生稻模式的经济效益

再生稻栽培模式显著影响其经济效益(表 6)。 虽然 OM2 具有最高的投入成本,分别比 CM 和 OM1 提高 12.0% 和 3.7%;但是 OM2 具有最高的产 量收益,比 CM 和 OM1 分别显著提高 21.7% 和 12.5% (P<0.05)。因此,OM2 模式具有最高的经济效 益,相比 CM 和 OM1 模式,OM2 模式分别显著提高 29.2% 和 20.9% (P<0.05)。

	表 5 不同再生稻模式下氮足迹变化
Table 5	Changes in nitrogen footprint under different cultivation modes of ratooning rice

	0 0 1		0	
氮足迹及其 Nitrogen footprint and	СМ	OM1	OM2	
间接活性氮排放	柴油 Diesel	315.1	374.2	492.4
Indirect reactive nitrogen emission	氮肥 N fertilizer	311.1	280.4	347.1
$[g(N-eq)\cdot hm^{-2}]$	磷肥 P fertilizer	85.1	85.1	109.4
	钾肥 K fertilizer	8.6	8.6	9.9
	除草剂 Herbicide	10.5	8.4	13.3
	杀虫剂 Insecticide	4.9	4.9	4.9
	农膜 Film	72.2	7.0	7.0
	种子 Seed	191.4	191.4	213.7
	杀菌剂 Fungicide	8.4	8.4	8.4
	合计 Total	1007.3	968.4	1206.1
NH3挥发 NH3 volatilization [g(N-eq)·hm ⁻²]		34 175.7±2270.1a	30 968.0±1316.6ab	29 905.6±1211.8b
N2O排放 N2O emission [g(N-eq)·hm ⁻²]		1233.2±262.7a	1021.8±224.9a	954.2±50.0a
NH₄ ⁺ 淋溶 NH₄ ⁺ leaching [g(N-eq)·hm ⁻²] NO₃ ⁻ 淋溶 NO₃ ⁻ leaching [g(N-eq)·hm ⁻²]		1199.3	1199.3	1199.3
		1397.5	1397.5	1504.8
周年活性氮排放 Annual reactive nit	rogen emission [g(N-eq)·hm ⁻²]	39 013.0±2205.4a	35 555.0±1106.3b	34 770.0±1243.7b
氮足迹 Nitrogen footprin	3.27±0.04a	2.75±0.11b	2.39±0.08c	

同行不同字母表示不同模式间在P<0.05水平差异显著。Different letters in a row mean significant differences among different modes at P<0.05 level.

表 6 不同再生稻模式下的投入成本和经济效益

Table 6 Input costs and economic benefits of different rationing rice modes						
	成本 Cost					
彩	人士	和 起				

模式 Mode ⁻	农业资料		人工 Labor		机械				产量收兴	级汶湖兴		
	Agr 种子 Seed	农药 Pesticide	肥料 Fertilizer	育秧 Seedling culture	施肥 Applying fertilizer	喷药 Spraying	收获 Harvest	耕作 Tillage	e 移栽 Transplant	总计 Total)重收益 Yield income	至可双面 Economic benefit
СМ	2700	1530	2199	2852	500	600	2400	1800	0	14581	29 849±1405c	15468±1405c
OM1	2700	1530	4290	930	300	600	2400	1800	1200	15750	32 289±737b	16 539±737b
OM2	3150	1530	2419	930	500	600	2400	3600	1200	16329	36 318±1274a	19 989±1274a

同列不同字母表示不同模式间在P<0.05水平差异显著。Different letters in a column mean significant differences among different modes at P<0.05. level.

http://www.ecoagri.ac.cn

3 讨论

3.1 不同栽培模式对再生稻产量的影响

再生稻优化栽培模式相对于 CM 模式提高了水 稻产量,且 OM2 模式具有最高的再生季产量和周年 总产量。这与不同模式间秧苗移栽方式、肥料运筹、 水分管理和头季留茬高度等不同有关。首先,对于 OM2 模式, 新鲜的油菜植株粉碎还田可以改善土壤 物理结构,提高土壤速效氮、磷、钾含量^[28-29],从而 提高水稻产量。其次,与CM模式的人工移栽相比, 优化模式下机插能够提高水稻植株光温资源利用效 率,降低病虫害发生,从而提高水稻产量^[30]。第三,优 化模式的干湿交替灌溉(即当15~20 cm 土壤水势为 -15 kPa 时稻田复灌)已被证明是减少温室气体排放 同时提高水稻产量的有效途径[31-33]。研究表明,干湿 交替灌溉不影响水稻生理需水,即使在水分胁迫敏 感阶段也是如此^[34]。此外,干湿交替灌水使籽粒灌浆 期淀粉合成能力增强,从而促进籽粒发育^[35]。第四, OM1 模式缓释肥施用可以满足水稻植株在不同时期 的氮素需求。有研究报道,施用缓释肥与干湿交替 灌溉相结合,不仅可以增加水稻产量,而且能够提高 水分利用效率^[36]。OM2模式的氮肥深施可以促进氮 肥与土壤的接触,有利于水稻根系对氮素的吸收,从 而减少 NH, 挥发和氮淋溶损失, 提高氮肥利用率和 水稻产量^[22,37]。第五, OM2 模式下再生季产量高于其 他两种模式,这可能是头季留茬高度不同造成的。 在南方地区,头季留茬高度 40 cm 比留茬高度 20 cm 更能促进腋芽萌发[38]。研究表明,与其他留桩高度相 比, 留茬高度为40 cm 时'丰两优香1号'可获得最高 的再生季产量^[39]。第六, OM2 模式施用微生物腐熟 剂可促进头季水稻秸秆腐解,提高土壤速效养分含 量,从而提高再生季产量。

3.2 不同栽培模式对氮足迹及其构成的影响

相比 OM1 和 CM, OM2 模式具有最高的间接活 性氮排放, 这主要是由于种子和耕作机械等投入的增加 (表 5)。3 种再生稻模式 N₂O 排放无显著差异。稻 田 N₂O 排放主要受农艺措施的影响^[40]。与 CM 相比, OM2 模式油菜秸秆还田增加土壤硝化与反硝化的作 用底物, 进而促进稻田 N₂O 排放^[41]; 与此同时, OM2 模式采用的干湿交替灌溉能改善土壤通气性, 从而 导致更多的 N₂O 排放^[40,42]。然而, OM2 模式下氮肥 深施可促进水稻氮素吸收, 降低硝化与反硝化作用 底物, 降低 N₂O 排放^[37]。因此, OM2 模式下氮肥深施 引起的 N₂O 减排可能抵消了秸秆还田和干湿交替灌 溉引起的 N₂O 排放增加。此外, 与 CM 模式相比, OM1 模式下缓释肥释放的氮素可以满足水稻植株的 需求^[43],进而降低硝化和反硝化反应底物浓度,最终 减少了 N₂O 排放。另外,OM1 模式下干湿交替灌溉 引起的 N₂O 排放增加可能被缓释肥料使用所抵消。 因此,这使得本研究中不同再生稻模式间的 N₂O 排 放无显著差异。

直接活性氮排放中的 NH,挥发不仅占再生稻生 产系统氮足迹的 80% 以上,而且是不同再生稻模式 间氮足迹构成差异最大的部分。3 种再生稻模式中, 优化模式比常规模式 NH,挥发低,其中 OM2 模式 NH,挥发最低 (表 5)。优化栽培模式相对于 CM 模 式头季 NH,挥发量显著降低 13.5%~14.4%,其主要归 因于头季氮肥优化管理。与 CM 模式采用常规施肥 相比,OM2 模式采用氮肥深施。Liu 等^[22] 指出,深施 氮肥使得更多 NH4⁺被土壤固定,进而降低了 NH3挥 发。同时,OM1 模式采用缓释肥料施用技术。先前 研究表明,缓释肥施用后释放的氮素能有效匹配水 稻生长需求,从而降低 NH3挥发^[44]。然而,再生季 CM 和优化栽培模式之间 NH3挥发没有显著差异 (表 5),这一现象可能与再生季氮肥类型与施用量相 同有关。

研究表明,不同种植系统中氮足迹主要来源于 NH₃挥发。如季国军等^[17]发现,在不同稻田轮作系 统中,NH₃挥发占氮足迹的 52.2%~59.0%。同时,一 项基于农户调查的双季稻氮足迹研究指出,NH₃挥 发占氮足迹的 95%^[18]。本研究也表明,NH₃挥发是总 活性氮排放的主要贡献者(表 5),这与上述研究结 论类似。与旱地相比,稻田的淹水环境导致氧化还 原电位较低,且其田面水 NH₄⁺浓度较高,这使 NH₃挥 发成为稻田氮损失的主要途径^[22]。故在保证产量的 条件下,减少华中地区再生稻稻田 NH₃挥发可以有 效降低氮足迹。本研究中,氮足迹的变化范围为 2.39~3.27 g(N-eq)·hm⁻²(表 5),远低于我国南方双季稻 [10.47~10.89 g(N-eq)·hm⁻²]^[45]。这种差异意味着发展 再生稻配合优化栽培措施相对于双季稻种植更有利 于降低中国南方地区的氮足迹。

综上,虽然 OM2 模式具有最高的间接活性氮排放,但是大幅降低了 NH,挥发,进而降低了总活性氮排放;同时,该模式具有最高的再生稻周年产量,因此氮足迹最低。以上结论表明,优化施肥方法(氮肥 深施及缓释肥料)、采用机插秧、秸秆还田及配施腐熟剂和留茬高度 40 cm 等农艺管理措施可以有效地减少 NH,挥发和提高水稻产量(表 3 和表 5),从而降低再生稻氮足迹。但是,在计算活性氮排放时,本研

究并未考虑由地表径流所引起的氮损失以及由能量 消耗所产生的活性氮排放,未来研究可补充该数据, 为再生稻氮足迹研究提供更有力的理论支撑。

3.3 不同栽培模式对再生稻经济效益的影响

经济效益是评价农业措施经济合理性的重要指标^[46]。虽然本研究中 OM2 模式投入成本最高,但是 OM2 产量收益最高,导致其具有最高的经济效益。 这表明通过优化肥料运筹、水分管理、秸秆处理等 农艺措施,例如采用氮肥深施、干湿交替、秸秆还 田配施腐熟剂,可提高再生稻经济效益。前人研究 表明,与秸秆还田和持续淹水相比,采用干湿交替以 及秸秆还田配施腐熟剂可降低投入成本和产量收益, 提高经济效益^[33];氮肥深施较之氮肥表施可降低活 性氮排放,提高水稻氮素利用率和提高水稻产量收 益,进而提高稻田经济效益^[37]。同时,与人工插秧相 比,机插秧可降低人工劳动成本,提高水稻产量,实 现节本增效,最终增加稻田经济效益^[47]。综上所述, OM2 模式经济效益最高,但大田试验易受气候影响, 该模式的增产增收作用还需要进一步的验证。

4 结论

与 CM 模式相比, 优化栽培模式可以提高水稻产 量, 减少 NH, 挥发, 降低氮足迹。其中, OM2 模式 (插秧+氮肥深施+干湿交替+留茬高度 40 cm+秸秆还 田配施腐熟剂)水稻产量最高, 氮足迹最低, 经济效 益最高, 这表明 OM2 模式可作为降低氮足迹与提高 水稻产量的可持续再生稻栽培模式在南方再生稻区 推广。

参考文献 References

- XU F X, ZHANG L, ZHOU X B, et al. The ratoon rice system with high yield and high efficiency in China: progress, trend of theory and technology[J]. Field Crops Research, 2021, 272: 108282
- [2] YUAN S, YANG C, YU X, et al. On-farm comparison in grain quality between main and ratoon crops of ratoon rice in Hubei Province, Central China[J]. Journal of the Science of Food and Agriculture, 2022, 102(15): 7259–7267
- [3] 彭少兵. 对转型时期水稻生产的战略思考[J]. 中国科学: 生命科学, 2014, 44(8): 845-850
 PENG S B. Reflection on China's rice production strategies during the transition period[J]. Scientia Sinica (Vitae), 2014, 44(8): 845-850
- [4] 张建福,肖晏嘉,谢鸿光,等.影响水稻再生力 QTLs 位点与再 生稻筛选体系研究进展[J]. 华南农业大学学报, 2023, 44(6): 837-842
 ZHANG J F, XIAO Y J, XIE H G, et al. Research progress on

QTLs loci affecting rice retooning ability and screening system for ratoon rice[J]. Journal of South China Agricultural University, 2023, 44(6): 837–842

- [5] 江激宇,张可,王丽,等. 再生稻经营规模对其生产效率的影响分析——基于安徽省再生稻种植户微观调研数据[J]. 云南农业大学学报(社会科学), 2021, 15(6): 107-112 JIANG J Y, ZHANG K, WANG L, et al. The influence of ratooning rice operation scale on its production efficiency: based on the micro-survey data of ratooning rice growers in Anhui[J]. Journal of Yunnan Agricultural University (Social Science), 2021, 15(6): 107-112
- [6] 习敏, 涂德宝, 周永进, 等. 早熟籼稻低留桩机收再生丰产优质增效栽培技术[J]. 中国稻米, 2023, 29(5): 93-95
 XI M, TU D B, ZHOU Y J, et al. Cultivation technology of early Indica rice mechanized harvest with low stubble height for high yield, high quality and high efficiency in ratoon rice[J]. China Rice, 2023, 29(5): 93-95
- [7] HARRELL D L, BOND J A, BLANCHE S. Evaluation of maincrop stubble height on ratoon rice growth and development[J].
 Field Crops Research, 2009, 114(3): 396–403
- [8] SHAHRI M M, YAZDPOUR H, SOLEYMANI A, et al. Yield and yield components of ratoon crop of rice as influenced by harvesting at different plant height and time[J]. Research on Crops, 2012, 13(2): 408–411
- [9] ZHANG J W, LI W W, ZHOU Y, et al. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice-wheat system[J]. The Crop Journal, 2021, 9(5): 1191–1197
- [10] ZHENG C, WANG Y C, YUAN S, et al. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system[J]. The Crop Journal, 2022, 10(1): 280–285
- [11] SONG K F, ZHANG G B, MA J, et al. Greenhouse gas emissions from ratoon rice fields among different varieties[J]. Field Crops Research, 2022, 277: 108423
- [12] XU Y, LIANG L Q, WANG B R, et al. Conversion from doubleseason rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit[J]. Science of the Total Environment, 2022, 813: 152550
- [13] 肖小平,李超,唐海明,等. 秸秆还田下減氮增密对双季稻田 土壤氮素库容及氮素利用率的影响[J]. 中国生态农业学报 (中英文), 2019, 27(3): 422-430
 XIAO X P, LI C, TANG H M, et al. Soil nitrogen storage and recovery efficiency in double paddy fields under reduced nitrogen dose and increased crop density[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 422-430
- [14] PIERER M, WINIWARTER W, LEACH A M, et al. The nitrogen footprint of food products and general consumption patterns in Austria[J]. Food Policy, 2014, 49: 128–136
- [15] XUE X B, LANDIS A E. Eutrophication potential of food consumption patterns[J]. Environmental Science & Technology, 2010, 44(16): 6450–6456
- [16] 陈中督,徐春春,纪龙,等.长江中游地区稻麦生产系统碳足

迹及氮足迹综合评价[J]. 植物营养与肥料学报, 2019, 25(7): 1125-1133

CHEN Z D, XU C C, JI L, et al. Comprehensive evaluation for carbon and nitrogen footprints of rice-wheat rotation system in middle Yangtze River Basin[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1125–1133

- [17] 季国军, 纪洪亭, 程琨, 等. 江苏稻田轮作模式碳、氮足迹分析[J]. 南京农业大学学报, 2023, 46(3): 510-521
 JI G J, JI H T, CHENG K, et al. Analysis on carbon footprint and nitrogen footprint of paddy field rotation patterns in Jiangsu Province[J]. Journal of Nanjing Agricultural University, 2023, 46(3): 510-521
- [18] 陈中督,徐春春,纪龙,等. 基于农户调查的长江流域双季稻 生产碳、氮足迹分析——以江西和湖南为例[J]. 作物杂志, 2023(2): 229-237
 CHEN Z D, XU C C, JI L, et al. Carbon and nitrogen footprints of double rice production in Yangtze River based on farm survey data — A case study of Jiangxi and Hunan[J]. Crops,
- 2023(2): 229–237
 [19] YANG D S, PENG S B, QI M H, et al. Comparison of grain cadmium and arsenic concentration between main and ratoon crop in rice ratooning system[J]. Food Chemistry, 2023, 399: 134017
- [20] 王飞,黄见良,彭少兵. 机收再生稻丰产优质高效栽培技术研究进展[J]. 中国稻米, 2021, 27(1): 1-6
 WANG F, HUANG J L, PENG S B. Research and development of mechanized rice ratooning technology in China[J]. China Rice, 2021, 27(1): 1-6
- [21] DU X Z, HAO M, GUO L J, et al. Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China[J]. Agricultural Water Management, 2022, 262: 107403
- [22] LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80–90
- [23] LI C F, ZHANG Z S, GUO L J, et al. Emissions of CH₄ and CO₂ from double rice cropping systems under varying tillage and seeding methods[J]. Atmospheric Environment, 2013, 80: 438–444
- [24] ZHENG X H, WANG M X, WANG Y S, et al. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields[J]. Advances in Atmospheric Sciences, 1998, 15(4): 569–579
- [25] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定——通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205-209
 WANG Z H, LIU X J, JU X T, et al. Field *in situ* determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209
- [26] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

LU R K. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agriculture Scientech Press, 2000 [27] XU Q, HU K L, YAO Z S, et al. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems[J]. Ecological Indicators, 2020, 117: 106634

第32卷

- [28] SHEN J L, TANG H, LIU J Y, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems[J]. Agriculture, Ecosystems & Environment, 2014, 188: 264–274
- [29] ASGHAR W, KATAOKA R. Different green manures (Vicia villosa and Brassica juncea) construct different fungal structures, including plant-growth-promoting effects, after incorporation into the soil[J]. Agronomy, 2022, 12(2): 323
- [30] CHEN J N, ZHANG R C, CAO F B, et al. Critical yield factors for achieving high grain yield in early-season rice grown under mechanical transplanting conditions[J]. Phyton, 2020, 89(4): 1043–1057
- [31] WANG Z Q, GU D J, BEEBOUT S S, et al. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation[J]. The Crop Journal, 2018, 6(5): 495–508
- [32] MANEEPITAK S, ULLAH H, DATTA A, et al. Effects of water and rice straw management practices on water savings and greenhouse gas emissions from a double-rice paddy field in the Central Plain of Thailand[J]. European Journal of Agronomy, 2019, 107: 18–29
- [33] HAO M, GUO L J, DU X Z, et al. Integrated effects of microbial decomposing inoculant on greenhouse gas emissions, grain yield and economic profit from paddy fields under different water regimes[J]. Science of the Total Environment, 2022, 805: 150295
- [34] ZHANG W Y, YU J X, XU Y J, et al. Alternate wetting and drying irrigation combined with the proportion of polymercoated urea and conventional urea rates increases grain yield, water and nitrogen use efficiencies in rice[J]. Field Crops Research, 2021, 268: 108165
- [35] DJAMAN K, MEL V, DIOP L, et al. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel[J]. Water, 2018, 10(6): 711
- [36] CAO X C, YUAN L, LIU X X, et al. Benefits of controlledrelease/stable fertilizers plus biochar for rice grain yield and nitrogen utilization under alternating wet and dry irrigation[J]. European Journal of Agronomy, 2021, 129: 126338
- [37] LIU T Q, LI S H, GUO L G, et al. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields[J]. Journal of Cleaner Production, 2020, 263: 121322
- [38] 林文雄,陈鸿飞,张志兴,等.再生稻产量形成的生理生态特性与关键栽培技术的研究与展望[J].中国生态农业学报, 2015,23(4):392-401

LIN W X, CHEN H F, ZHANG Z X, et al. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 392-401

- [39] 高长清, 王记安, 刘长兵, 等. 留桩高度对丰两优香 1 号再生 稻生长及产量的影响[J]. 现代农业科技, 2015(9): 9, 11
 GAO C Q, WANG J A, LIU C B, et al. Effect of stubble height on growth and yield of Fengliangyouxiang No.1 ratooning rice[J]. Modern Agricultural Science and Technology, 2015(9): 9, 11
- [40] FENG Z Y, QIN T, DU X Z, et al. Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China[J]. Agricultural Water Management, 2021, 250: 106830
- [41] 邓桥江,曹凑贵,李成芳.不同再生稻栽培模式对稻田温室气体排放和产量的影响[J].农业环境科学学报,2019,38(6): 1373-1380
 DENG Q J, CAO C G, LI C F. Effects of different ratooning cultivation modes on greenhouse gas emissions and grain yields in paddy fields[J]. Journal of Agro-Environment Science, 2019, 38(6): 1373-1380
- [42] FANGUEIRO D, BECERRA D, ALBARRÁN Á, et al. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems[J]. Atmospheric Environment, 2017, 150: 303–312

- [43] ZHANG Z S, CHEN J, LIU T Q, et al. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China[J]. Atmospheric Environment, 2016, 144: 274–281
- [44] LIU T Q, HUANG J F, CHAI K B, et al. Effects of N fertilizer sources and tillage practices on NH₃ volatilization, grain yield, and N use efficiency of rice fields in central China[J]. Frontiers in Plant Science, 2018, 9: 385
- [45] XUE J F, PU C, LIU S L, et al. Carbon and nitrogen footprint of double rice production in Southern China[J]. Ecological Indicators, 2016, 64: 249–257
- [46] SHENG F, CAO C G, LI C F. Integrated rice-duck farming decreases global warming potential and increases net ecosystem economic budget in central China[J]. Environmental Science and Pollution Research, 2018, 25(23): 22744–22753
- [47] 叶鑫, 宫亮, 金丹丹, 等. 机插秧同步测深施肥对水稻产量形成和经济效益的影响[J]. 土壤通报, 2022, 53(2): 429-437 YE X, GONG L, JIN D D. Effects of simultaneous lateral deep fertilization with mechanical transplanting on yield and economic benefit of rice in northern China[J]. Chinese Journal of Soil science, 2022, 53(2): 429-437