DOI: 10.13930/j.cnki.cjea.180187

奉小明,王凯,郑循华,罗献宝,王睿,王东.亚热带地区蔬菜地甲烷净交换通量研究[J]. 中国生态农业学报, 2018, 26(8): 1091–1099 FENG X M, WANG K, ZHENG X H, LUO X B, WANG R, WANG D. Net methane flux exchange in subtropical vegetable fields[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1091–1099

亚热带地区蔬菜地甲烷净交换通量研究*

奉小明^{1,2}, 王 凯^{2**}, 郑循华^{2,3}, 罗献宝¹, 王 睿², 王 东^{2,3} (1. 广西大学农学院 南宁 530004; 2. 中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室 北京 100029; 3. 中国科学院大学 北京 100049)

摘 要:农田土壤是大气甲烷(CH₄)的重要源和汇,以往关于农田 CH₄净交换通量的研究多关注水稻、小麦、 玉米等作物,而蔬菜地的观测研究不足。本研究采用静态暗箱-气相色谱法对亚热带地区一块种植包菜的典型 露天蔬菜地开展将近1年的田间原位 CH₄ 通量观测,以揭示蔬菜地 CH₄净交换通量的周年变化特征及其影响 因素,估算 CH₄年累积净交换通量,并定量评估 CH₄净交换通量的误差。本试验在包菜地的垄上和垄间同时 布设观测点进行 CH₄通量观测,并对环境因子进行同步测量,观测期为 2016年1月1日至12月8日。结果表 明,所研究的蔬菜地为大气 CH₄的微弱汇,年平均通量为(-9.9±7.0) µg(C)·m⁻²·h⁻¹,全年累积通量为-0.84 kg(C)·hm⁻²,较高的土壤水分条件和高施氮量可能是导致本研究蔬菜地 CH₄吸收较弱的主要原因。全年 CH₄ 累积通量的总体误差为-48%~-16%,其中,由于通量计算方法引起的系统误差会使估算的通量偏低 32%,年 尺度上的随机误差大小为16%,主要来自CH₄通量的空间差异,因此可适当增加空间重复,以减小空间随机误 差。研究还发现垄上的 CH₄吸收通量显著高于垄间(P<0.01),因此在开展农田温室气体通量观测时应兼顾垄上 和垄间、种植行和行间等农田管理措施存在显著差异的区域,均布设观测点,避免对通量观测结果造成系统性 偏差。

关键词:亚热带蔬菜地;甲烷;净交换通量;静态箱法;年累积通量;通量误差 中图分类号:S181 文献标识码:A 文章编号:1671-3990(2018)08-1091-09

Net methane flux exchange in subtropical vegetable fields^{*}

FENG Xiaoming^{1,2}, WANG Kai^{2**}, ZHENG Xunhua^{2,3}, LUO Xianbao¹, WANG Rui², WANG Dong^{2,3}
 (1. College of Agriculture, Guangxi University, Nanning 530004, China; 2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Agricultural soil forms an important source-sink of atmospheric methane (CH_4). Studies on net CH_4 flux exchange in agricultural soil have mainly been related to rice, wheat, maize and other crops. However, field studies on vegetable fields have been seldom reported. This study was a year-round situ measurement of CH_4 flux in a typical subtropical vegetable field cultivated with cabbages using the static chamber/gas chromatography technique. The aims were to determine the characteristics of annual net exchange flux of CH_4 and the influencing factors, to estimate annual cumulative CH_4 flux, and to quantify errors in measured CH_4

** 通信作者:王凯,主要研究方向为地气碳氮循环。E-mail: kai.wang@mail.iap.ac.cn 奉小明,主要研究方向为农业环境与生态安全。E-mail: 504246629@qq.com 收稿日期: 2018-02-26 接受日期: 2018-03-27

** Corresponding author, E-mail: kai.wang@mail.iap.ac.cn Received Feb. 26, 2018; accepted Mar. 27, 2018

^{*} 国家重点研发计划(2016YFA0602302)和国家自然科学基金青年科学基金项目(41405137)资助

^{*} This study was supported by the National Key Research and Development Project (2016YFA0602302) and the National Natural Science Foundation of China (41405137).

flux. The CH₄ flux measurements were conducted on ridges and on inter-ridges in vegetable fields for period from January 1st to December 8th 2016. Environmental conditions were simultaneously observed during the measurement period. The results showed that vegetable fields constituted a weak sink of atmospheric CH₄, with annual mean flux of $(-9.9\pm7.0) \mu g(C) \cdot m^{-2} \cdot h^{-1}$ and annual cumulative flux of $-0.84 \text{ kg}(C) \cdot hm^{-2}$. High soil water content and nitrogen fertilizer application rate were probably the main reasons for the weak uptake of CH₄. The overall error in the annual cumulative CH₄ flux was -48% - -16%. The main source of systematic error was in the flux calculation method used, which underestimated the flux by 32% on average. Random error was mainly produced by spatial variations of CH₄ flux, which was estimated at 16% at annual time scale. As a result, it was recommended that high numbers of spatial replications were used in conducting greenhouse gas flux measurements in agricultural soil in order to reduce random error. Another finding of the study was that CH₄ uptake measured on the ridge was significantly (*P* < 0.01) larger than that measured on the inter-ridge. This implied that it was better to simultaneously place chambers on areas with different field management practices; e.g. ridge and inter-ridge, row and inter-row, which efficiently avoided systematic error in measured flux.

Keywords: Subtropical vegetable field; Methane; Net flux exchange; Static chamber technique; Annual cumulative flux; Flux error

甲烷(CH₄)是大气中含量仅次于二氧化碳(CO₂)的 温室气体、其浓度从工业革命前的约715 $nmol \cdot mol^{-1}$ 增 至2005年的1774 $nmol \cdot mol^{-1}$ 、它具有很强的红外线 吸收能力、对全球温室效应的贡献约为18%^[1]。大气 CH₄的源主要来自生物过程和人为活动,包括反刍 动物的瘤胃、天然湿地、稻田、垃圾和废弃物堆放 处理场等、大气CH₄的汇主要包括通气良好或干燥 土壤的吸收和大气中CH₄的氧化^[2]。因此、土壤是大 气CH₄的重要源和汇,是全球CH₄收支的重要构成。 目前,关于土壤与大气间CH4交换的观测研究主要 集中于湿地、草原、农田、森林等生态系统^[3-5],其 中关于农田的研究又多以种植水稻(Oryza sativa L.)、 小麦(Triticum aestivum L.)、玉米(Zea mays L.)等作物 为主^[6-9]。蔬菜在我国种植范围广泛、全国种植面积 由2006年的16.6 Mhm²发展到2015年的22.0 Mhm², 对应的占耕地面积比重由10.9%增长到13.2%^[10]。目 前关于蔬菜地CH₄交换通量的研究内容主要涉及土 地利用方式转换对CH₄交换通量的影响、不同农田 管理措施对CH₄排放/吸收的影响、设施蔬菜地CH₄ 交换通量等[11-15]、鲜有涉及亚热带地区多年种植露 天蔬菜地^[16]。该地区是我国蔬菜种植的重要地区, 研究其CH₄交换通量特征和年累积通量,可为我国 农田温室气体排放清单的编制提供基础数据支持。 此外、要认识观测通量的不确定性、必须定量评估 通量的误差、然而目前关于静态箱法测量蔬菜地 CH₄通量并开展误差定量分析和讨论的研究还很少。 基于上述背景、本研究选取亚热带地区多年典型种 植管理方式下的蔬菜地作为研究对象、采用静态暗 箱-气相色谱法,开展将近1周年的田间原位CH₄通 量观测,旨在揭示亚热带地区蔬菜地CH4净交换通 量的周年变化特征及其影响因素,估算CH₄年累积 净交换通量,并对其随机误差和系统误差进行定量 评估。

1 研究区域概况与研究方法

1.1 试验点概况

试验点位于湖南省岳阳市君山区的一个蔬菜种植 基地(29°30′21′′N, 112°53′43′′E),该基地为湖南省重要 的蔬菜产地,已连续种植蔬菜20多年。区域内的农田 被划分成许多面积不等的小地块,分别由不同的农户 种植管理^[17],是我国亚热带地区典型的以家庭为单位 经营的露天蔬菜农田。种植的主要蔬菜种类有包菜 (*Brassica oleracea* var. *capitata*)、辣椒(*Capsicum annum*)、南瓜(*Cucurbita moschata*)等,通常一年内有 两个种植季,本研究开展观测试验的样地即为其中一 个地块。当地气候为亚热带季风气候,多年 (2006—2015年)平均气温为18.0 ℃,年平均降水量为1 288 mm^[18],降雨多集中在春夏两季。试验样地表层 (0~20 cm)土壤质地为沙壤土,土壤总氮和有机碳含量 分别为0.85 g·kg⁻¹和5.46 g·kg⁻¹,土壤PH为7.3。

试验区域内各地块常规种植管理模式如下:两个 种植季分别始于 2—3 月和 8 月, 每季开始时人工撒施 肥料作为底肥、随即机械旋耕表层 30 cm 土壤、松土 的同时将肥料混入土壤、随后整地起垄、待土壤水分 条件适合时在垄上栽种(移栽)蔬菜幼苗, 整个生长季 内不再施肥;每季蔬菜收获后,机械旋耕表层土壤, 同时将地上植物残茬粉碎入土, 随后休闲至下一季开 始。第2季的施肥方式与第1季相同、每年第2季始、 正值盛夏, 蒸发量大, 当土壤水分不足时, 尤其是移 栽幼苗期,通常会采用漫灌方式补充土壤水分,保证 幼苗成活率。本研究样地东西长 100 m, 南北长 10 m。 观测期为 2016 年 1 月 1 日至 2016 年 12 月 8 日, 期间 种植的两季蔬菜都是包菜、主要田间管理如下: 两季施 肥日期分别为 2016 年 1 月 27 日和 8 月 9 日, 第 1 季施 75 kg碳酸氢铵和 75 kg 复合肥(N:P:K=15:15:15), 第 2 季施 100 kg 碳酸氢铵和 75 kg 复合肥(N:P: K=16:16:16), 两季施氮量分别为 236 kg(N)·hm⁻²和 285 kg(N)·hm⁻², 施肥旋耕后起垄, 垄顶部和底部的宽 度分别约55 cm和70 cm, 垄高约18 cm, 垄间(沟)宽度 约 30 cm(图 1), 即垄和垄间的面积比重为7:3; 两季 幼苗栽种日期分别为2016年2月4日和8月20日; 两 季包菜收获日期分别为2016年5月24日和11月7日; 两个生长季末旋耕灭茬日期分别为2016年6月15日 和 12 月 9 日, 旋耕后地面平整, 进入休闲期; 第 2 季 包菜栽种后, 分别于 2016 年 8 月 20 日、8 月 29 日、9 月 9 日和 9 月 20 日, 从样地东侧的沟渠引水漫灌, 漫 灌过程持续约 3 h, 由于受观测条件限制, 无法准确定 量灌溉量, 每次灌溉后第 2 d 的土壤湿度增加至 40.4%~100% WFPS(土壤充水孔隙度)。

1.2 通量观测与计算

CH4 通量观测方法为静态暗箱采样-气相色谱分 析法。在包菜生长季,由于起垄的田间操作,本研究 采用两种不同规格的采样设备,以更好地覆盖待测 地表(图 1)。 垄上使用的底座和采样箱的尺寸(长× 宽×高)分别为 50 cm×50 cm×20 cm 和 50 cm×50 cm ×50 cm、由不锈钢制成、 垄间使用的底座和采样箱 尺寸都为 31 cm×23 cm×13 cm, 材质为 PVC(图 1)。 底座预先埋设在土内,观测期间位置保持不变,发 生耕地、漫灌等田间操作时、需暂时拔出底座、待田 间操作结束后将底座安回原位置。在考虑采样底座 的布设位置和数量时、尽量使垄上和垄间采样底座 数量的比例与其两者面积的比例(7:3)保持一致, 保证有较好的空间代表性。在包菜生长季、在样地 靠中间的两条垄上随机埋设 4 个不锈钢底座, 在其 邻近的垄间位置随机埋设 2 个 PVC 底座, 各底座相 距 2~12 m 不等。在包菜收获后的休闲期、地面平整、 将底座放回原采样位置。采样区域架以木桥,避免 采样过程中对土壤和植株的人为踩踏和干扰。

采样箱其中一面敞开, 其余 5 个面都包有 2 cm 厚的绝热材料, 表面粘贴高反射率的铝箔, 以减少 太阳辐射对箱体的加热效应。采样时在每个底座上 加盖 1 个采样箱, 两者接缝处粘有橡胶密封条, 形 成封闭空间, 盖箱期间, 用 100 mL 的 PVC 针管依次 从箱内采集 5 个 40 mL 的气体样品, 采样间隔为 5~10 min, 采样同时记录箱内空气温度。采样箱顶端 安装有气压平衡管,当抽取气体样品时打开,以避 免采样过程中箱内外形成的气压差对观测结果的影 响。所有采集的气体样品在采样后 10 h 内完成 CH₄ 浓度分析,所用的仪器为一台配有氢火焰离子检测 器(FID)的安捷伦 7890A 气相色谱仪。通量观测时间 为上午 8:00-11:00,第1季观测频率平均 3~4 d 一次, 第2季平均 2 d 一次。

静态箱法 CH_4 交换通量 $F[mg(C) \cdot m^{-2} \cdot h^{-1}]$ 计算公 式为:

$$F = \frac{dC_{\mathrm{CH}_4}/dt \times \rho_{\mathrm{CH}_4} \times h \times T_0 \times P \times 60 \times 10^{-3}}{T \times P_0} \qquad (1)$$

式中: dC_{CH_4}/dt 为盖箱期间箱内 CH_4 浓度随时间的变 化率(µmol·mol⁻¹·min⁻¹), h 是采样箱的高度(m), ρ_{CH_4} 是标准大气条件下(T_0 =273 K, P_0 =1 013 hPa) CH_4 的密 度(g·m⁻³), T 是箱内的空气温度(K), P 是箱内的大气压 力(hPa)。 dC_{CH_4}/dt 根据盖箱期间采集的 5 个气体样品 中的 CH_4 浓度来计算, 优先采用非线性拟合方法, 其 次是线性拟合方法。在进行线性拟合时, 对于需要删 除两个浓度数据才能达到线性显著的通量值, 只保留 介于仪器正负检测限之间的观测, 否则该次观测值用 正负检测限之间的随机值代替^[19]。计算得到的每个通 量代表观测当天的平均通量, 缺测日期的通量根据邻 近观测值线性插值获得, 以此估算季节和年累积 CH_4 通量。由于第 2 季末提前旋耕整地(2016 年 12 月 9 日), 使观测期不足 1 周年, 为估算年累积通量, 采用邻近 1 个月的平均通量对缺测时段的通量进行插补。 1094

1.3 环境因子观测

在测量 CH4 通量的同时, 对空气温度、降水量、 土壤温度、土壤湿度、地下水位等环境因子进行同 步观测。空气温度和降水量由一套 WS3000 自动气 象站(北京天诺基业科技有限公司,北京)采集,频率 为 0.5 h。土壤温度(深度: 5 cm)由 TidbiT 温度传感 器(Onset Computer Corporation, Bourne, 美国)自动 记录、频率为 0.5 h。土壤湿度(0~6 cm)采用手持式 频域反射(FDR)土壤湿度计(南京市 RDS 科技有限 公司)测定、测量时间为每天 10:00 左右、获取的体 积含水量(VWC)数据根据以下公式换算为土壤充水 孔隙度(WFPS, water-filled pore space): WFPS=VWC/ (1-BD/2.65)×100%, 式中2.65 g·cm⁻³为土壤密度, BD 为土壤容重。土壤容重的测定频率为每月 1 次、当 土壤翻耕时、增加至每月 2~3 次。地下水位的测量 方法为: 在样地内选取两个观测点, 分别垂直钻取 长2m、直径5cm的洞眼,插入与之尺寸匹配的PVC 水管、水管壁间隔10 cm分布有2个小孔、平均每周 2 次用细直杆放入水管内手动测量地下水位、有强 降雨或持续降雨天气、频率增加至每周 3~4 次。

1.4 数据统计分析方法

采用SPSS 16.0进行统计分析,使用t检验进行 P<0.05水平的显著性检验,对观测通量和环境因子 进行非线性回归分析,统计显著性水平由F检验给 出。采用Origin 8.0软件完成制图。

2 结果与分析

2.1 环境因子的季节变化

整个观测期内大气和土壤温度有相同的季节变化 趋势,日平均气温变幅为0.6~35.7 ℃,年平均值为 19.4 ℃,日平均土温变幅为2.0~35.2 ℃,年平均值为 18.7 ℃(图2a)。整个观测期累积降水量为1 019.9 mm, 降水分布不均匀,主要集中在春夏季,3月至8月约占 全年累积降水量的72.3%(图2b)。地下水位变化剧烈, 变化范围为-150~0 cm,平均值为-63 cm,主要受降 水和灌溉的影响。翻耕并起垄后,垄上表层土壤容重 约为1.0 g·cm⁻³,随后逐渐增加,到生长季中后期达到 最大值,约为1.4 g·cm⁻³,由于翻耕深度只有20 cm,无 法有效翻耕垄间土壤,其容重常年保持在1.5 g·cm⁻³ 左右,显著高于垄上(*P*<0.01)。土壤湿度(以WFPS表

图 2 观测期间日平均空气温度和土壤温度(a)、日降水量和地下水位(b)及土壤孔隙充水率(WFPS) (c)的季节变化动态 Fig. 2 Seasonal variations of daily mean air temperature and soil temperature (a), precipitation and groundwater table (b), and soil water-filled pore space (WFPS) (c) during the measurement period

图 2b 中的黑三角形和曲线分别代表地下水位的单次观测值和趋势线,向下箭头表示灌溉日期。In Fig. 2b, black triangles and line indicate the measured data and trendline of the groundwater table, respectively, and downward arrows indicate the time of irrigation.

http://www.ecoagri.ac.cn

示)与降水和灌溉具有相同的季节变化趋势, 垄上土 壤湿度的变化范围为7.7%~96.3%(图2c), 垄间土壤 湿度的测定始于第2个包菜生长季, 对比同期观测 数据, 垄上和垄间土壤湿度的平均值分别为39.6% 和73.8%, 垄间显著高于垄上(*P*<0.01)。

2.2 CH₄净交换通量的季节变化

如图3所示,蔬菜地全年CH₄净交换通量在 -40~10 μ g(C)·m⁻²·h⁻¹间波动,总体表现为弱的吸收, 夏季CH₄吸收强度略大于其他季节,但总体无明显 的季节变化趋势。垄上观测的CH₄通量范围为-39.9~ 7.9 μ g(C)·m⁻²·h⁻¹,平均值为(-11.6±9.1) μ g(C)·m⁻²·h⁻¹, 正负通量的比例分别为15%和85%。垄间观测的CH₄ 通量范围为-36.9~9.2 μ g(C)·m⁻²·h⁻¹,平均值为 (-5.0±6.7) μ g(C)·m⁻²·h⁻¹,垄间的正通量比例更多, 为25%,因此垄间的CH₄吸收强度小于垄上。根据垄 上和垄间的面积权重(7:3),得到整块样地CH₄净交 换通量变化范围为-37.0~6.8 μ g(C)·m⁻²·h⁻¹,平均值 为(-9.9±7.0) μ g(C)·m⁻²·h⁻¹(表1)。经数据插补,得到 垄上和垄间 CH_4 年累积通量分别为-1.01 kg(C)·hm⁻² 和-0.45 kg(C)·hm⁻²,均表现为 CH_4 的汇,加权平均 后的年累积通量为-0.84 kg(C)·hm⁻²(图4)。

图 3 观测期间蔬菜地 CH₄ 净交换通量季节变化动态

Fig. 3 Seasonal variation of net exchange fluxes of CH₄ of vegetable field during the measurement period 误差线表示空间重复之间通量的标准误差。The error bars

indicate flux standard errors of spatial replicates.

Table 1 Minimum, maximum, mean and annual cumulative fluxes of CH₄ of vegetable field during the measurement period

	最小 CH4 通量 Minimum CH4 flux [µg(C)·m ⁻² ·h ⁻¹]	最大 CH4 通量 Maximum CH4 flux [µg(C)·m ⁻² ·h ⁻¹]	平均 CH4 通量 Mean CH4 flux [µg(C)·m ⁻² ·h ⁻¹]	年累积 CH4 通量 Annual cumulative CH4 flux [kg(C)·hm ⁻²]
垄上 Ridge	-39.9	7.9	-11.6±9.1	-1.01±0.29
垄间 Inter-ridge	-36.9	9.2	-5.0 ± 6.7	-0.45 ± 0.14
加权平均 Weighted mean	-37.0	6.8	-9.9 ± 7.0	-0.84

正负误差表示 CH4 通量的标准偏差。± denotes standard deviation of the CH4 flux.

日期 (年-月-日) Date (year-month-day)

整个观测期共进行126次通量观测,根据色谱 FID检测器的检测精度,得到仪器通量检测限的平均值为 \pm 5.2 μ g(C)·m⁻²·h⁻¹,由于本研究中蔬菜地CH₄ 实际通量时常低于此检测限,无法检测到统计显著 的通量,根据1.2节中的方法,取正负检测限内的随 机值作为通量,获取的通量中有很大一部分属于这 种情况,其比例为33%(垄上)和40%(垄间)。此外,根 据非线性方法拟合得到的通量比例为7%(垄上)和 6%(垄间),根据线性方法计算得到的通量比例为 60%(垄上)和54%(垄间)。

2.3 CH₄净交换通量与环境因子的关系

采用线性或非线性回归分析主要环境因子(土 壤温度、土壤湿度和地下水位)对 CH₄ 净交换通量的 影响(表 2),结果表明垄上的 CH₄ 通量只与土壤温度 呈指数正相关关系(*P*<0.05), 垄间通量与土壤湿度 和地下水位均呈现负相关(*P*<0.05);当同时考虑土 壤温度、湿度和地下水位 3 个环境因子时,表现为 与土壤温度指数正相关,与土壤湿度和地下水位线 性负相关,该 3 个环境因子可共同解释土壤 CH₄ 交 换通量变化的 40%(*P*<0.01)。 表 2 观测期间蔬菜地 CH₄ 净交换通量与环境因子的回归分析

Table 2 Linear and nonlinear regression analysis of environmental factors and CH4 fluxes of vegetable field during the measurement period

	环境因子 Factor	回归方程 Regression equation	相关系数(R ²) Correlation coefficient	样本量(n) Sample size	相关概率(P) Possibility
垄上 Ridge	Т	$F=7.99e^{0.018T}$	0.036	126	< 0.05
	W	F = -0.076W + 14.89	0.025	126	NS
垄间 Inter-ridge	Н	F=-0.047H+6.91	0.078	41	NS
	T, W, H	$F = -14.13e^{-0.19T} + 0.18W - 0.050H + 6.56$	0.091	46	NS
	Т	$F=2.78e^{0.026T}$	0.021	126	NS
	W	F=-0.3W+27.36	0.250	59	< 0.01
	Н	F=-0.051H+0.35	0.106	41	< 0.05
	T, W, H	$F = -17.93 e^{-0.03T} - 0.35W - 0.016H + 42.03$	0.400	20	< 0.01

F 表示 CH₄ 净交换通量[µg(C)·m⁻²·h⁻¹], T 表示土壤温度(°C), W 表示土壤充水孔隙度(%), H 表示地下水位(cm), NS 表示相关不显著。F indicates net exchange flux of CH₄ [µg(C)·m⁻²·h⁻¹], T indicates soil temperature (°C), W indicates water-filled pore space (%), H denotes groundwater table (cm) and NS denotes no significant correlation.

3 讨论

3.1 露天蔬菜地 CH₄ 净交换通量及其影响因素

本研究周年观测结果表明蔬菜地为大气CH₄的 弱吸收汇,全年CH₄吸收量为0.84 kg(C)·hm⁻²,这与 已有的关于旱地土壤是大气CH₄吸收汇的研究报道 一致^[20-21]。长江下游地区多年有机蔬菜地CH₄年吸 收量为1.05 kg(C)·hm^{-2[13]},南方稻田转菜地后第1年的 CH₄吸收量为0.44 kg(C)·hm^{-2[15]},而在长江三峡库区坡 耕地蔬菜地观测到CH₄年排放量为0.06 kg(C)·hm^{-2[11]}。 上述研究结果显示蔬菜地与大气间CH₄净交换通量 较弱,与本研究结果一致。同时,本研究蔬菜地CH₄年 吸收量均低于其他类型生态系统CH₄年吸收量,如我 国亚热带茶园[1.00~1.20 kg(C)·hm⁻²]^[22]、华北玉麦轮作 农田[1.38~2.50 kg(C)·hm⁻²]^[23]、草地[3.92 kg(C)·hm⁻², 465个草地观测平均值]、森林[3.25 kg(C)·hm⁻², 174个 森林观测平均值]^[4]。

土壤对CH₄是排放还是吸收主要取决于土壤中产 甲烷菌和甲烷氧化菌的活性^[24],它们分别决定CH₄在 土壤中的产生速率与氧化速率,影响这两个过程的因 子主要包括土壤温度、土壤水分、施肥及耕作制度等。 一般认为温度是影响旱地土壤CH₄吸收的主导因素, 当温度适宜(20~30 °C)时,甲烷氧化菌得到了稳定的 活动环境,其氧化能力加剧,促进CH₄吸收^[25]; 15%~22%的土壤体积含水量是促进CH₄吸收的最适水 分条件^[26],含水量过高的土壤氧气供应受到限制,大 大影响了嗜氧性甲烷氧化菌的代谢活动,导致CH₄吸 收降低^[27];氮肥的施用会抑制甲烷氧化菌的活性,从 而降低土壤对CH₄的吸收能力^[28]。由此可见,本研究地 处亚热带地区,较高的土壤水分条件和高施氮量[521 kg(N)·hm⁻²·a⁻¹]可能是导致蔬菜地CH₄吸收较弱的主要 原因。本研究蔬菜地全年CH₄通量无显著季节变化,表 现为弱的吸收汇,且通量与环境因子的相关性不高, 尤其是垄上,导致此现象可能有3个原因:首先,环境 因子之间具有复杂的交互作用,当1个或多个其他环 境因子受到限制时,温度就不再是引起CH4吸收变化 的首要因素,试验站所处的亚热带地区降雨频繁,地 下水位较浅,过多的土壤水分会降低土壤通气性,造 成厌氧环境,影响CH4氧化菌活动,从而抑制CH4的吸 收,相反,局部厌氧环境恰恰为产甲烷菌提供了适宜 的生长环境,促进CH4排放,本研究中垄间通量显著 低于垄上,正是缘于此原因;其次,蔬菜地的高施氮 量会抑制土壤CH4的吸收;再者,由于实际CH4通量较 小,时常接近仪器的检测限,通量伴有较大的随机误 差,大大干扰了其与环境因子之间的相关性分析。

3.2 CH₄净交换通量的误差评估

3.2.1 随机误差

每个观测点获取的单个 CH₄(小时)通量的随机误 差主要来自色谱的检测噪音、可根据色谱的检测精 度进行估算,在量值上等于箱法测定 CH4 通量的检测 限,本研究中其平均值为 $\pm 5.2 \mu g(C) \cdot m^{-2} \cdot h^{-1}$,根据观 测期间的通量平均值,得到 CH₄ 小时通量的相对随 机误差平均值为 53%, 如此大的随机误差主要是因 为实际通量经常在仪器检测限附近、噪音很容易掩 盖通量的真实信号。每个观测点的小时通量乘以 24 得到日累积通量,随机误差随样本量增加以 \sqrt{n} 的 速率减小(n 为样本量),因此,每个观测点上 CH4 日累 积通量的随机误差平均值为11%。本研究基于6个观 测点的年累积通量、根据垄和垄间面积权重估算蔬 菜地整体平均通量、因此年累积通量的随机误差来 源为单个观测点在年尺度上的随机误差和 6 个观测 点的空间变异,根据误差传递计算^[29],并假设缺测日 期的插补通量与观测通量的随机误差相同、估算得

到全年蔬菜地 CH₄ 净交换通量的随机误差约为 16%, 主要由 CH₄ 通量的空间变异造成, 仪器噪音对年累 积通量随机误差的贡献小于 1%, 增加采样点的空间 重复数量, 可有效减小此项误差。

3.2.2 系统误差

CH₄ 通量计算过程中,由于无法检测到显著的 非线性浓度变化,可引起 CH₄ 通量的系统性低估。 本研究优先采用非线性的通量计算方法,但由于每 次罩箱期间 CH₄ 浓度数据有限(5个),其拟合常常无 法满足非线性显著的条件,这时只能用线性的方法 代替,即删去其中 1 个或 2 个数据点以达到线性拟 合显著,本研究以这种方法获得的垄上和垄间的通 量分别为 60%和 54%,这会造成这部分通量的系统 低估^[29-30]。本研究选取那些非线性显著的浓度数据, 同时使用线性和非线性的方法计算通量,得到其差 异为 56%和 52%,从而对垄上和垄间获得的线性通 量的低估进行评价,结果分别为 34%和 28%,经加 权平均,整块蔬菜地的 CH₄吸收通量被低估约 32%。

CH₄ 等温室气体的净交换通量通常有日变化趋势,这主要由温度的日变化所驱动。因此,以手动静态箱法获取的单次通量代表该天的平均通量,估算到的年累积通量会有一定系统误差。根据前人观测研究显示,当地时间上午 8:00—11:00 或下午 17:00—19:00两个时段测量的小时通量最能代表逐时通量的日平均值^[19]。本研究将采样时间选定在 8:00—11:00,避免由于间歇性采样局限而带来的显著系统误差,认为观测结果可代表当天的平均通量。

此外、气体采样位置选择不恰当、也可能导致 显著的通量系统误差。农田生态系统由于管理措施 复杂等因素、静态箱法观测有时会遇到一定困难、 为了简化采样过程,往往只在便于布置采样设备的 位置进行观测。比如、对于种植高大作物的农田、只 选择种植行之间的平坦位置观测、对于有垄和沟的 农田(如本研究)、只选择较宽阔的垄上位置观测。由 于农田不同位置土壤环境因子(如土壤湿度、容重、 碳氮含量等)存在差异,这种方法获取的通量显然无 法代表地块平均水平,将导致系统性偏差^[31-32]。本 研究中、蔬菜地在生长季始翻耕施肥后起垄、垄与 **垄之间的沟起到排水作用**,同时也方便行走进行田 间管理。但垄间位置空间狭小、与种植垄存在落差、 常规采样操作很不方便。本研究采用不同材质和尺 寸的采样箱和底座、同时对垄上和垄间土壤进行通 量观测,结果显示垄上和垄间 CH4 通量存在显著差 异(P<0.01),估算得到的年累积通量分别为-1.01 kg(C)·hm⁻² 和-0.45 kg(C)·hm⁻²。若只在垄上位置进 行观测,并以其结果代表蔬菜地的净交换通量,将 导致 CH₄ 全年吸收通量被高估 20%。国内关于蔬菜 地 CH₄ 通量的观测研究^[11-16],均未在垄间位置布设 观测点,或未明确指出采样底座的具体位置,故观 测结果可能存在系统误差。要使获得的通量更具代 表性,应兼顾不同地表状况的观测,并适当增加采 样空间重复,或者增大采样底座和采样箱的尺寸, 使其覆盖区域能代表地块尺度的平均水平。

4 结论

基于周年的田间原位通量观测,揭示了亚热带 地区典型露天蔬菜地为大气 CH₄ 的微弱汇,年平均 通量为(-9.9±7.0) μg(C)·m⁻²·h⁻¹,全年累积净交换通 量为-0.84 kg(C)·hm⁻²,与先前报道的几个露天蔬菜 地 CH₄ 通量处于同一量级。全年 CH₄ 累积通量的总 体误差为-48%~-16%,其中随机误差约为 16%,主 要来自不同观测点之间的通量差异,系统误差约为 -32%,主要来自通量计算方法的不确定性。CH₄ 净 交换通量是土壤温度、土壤湿度、地下水位等多个 环境因子共同作用的结果,它们之间的相关性分析 受到随机误差的干扰。研究还发现垄上和垄间 CH₄ 通量存在显著差异,在开展农田温室气体通量观测 时,应尽量顾及垄上和垄间、种植行和行间等农田 管理措施存在显著差异的不同区域,同时布设观测 点,避免对通量观测结果造成系统性偏差。

致谢 中国科学院大气物理研究所潘占磊、李思琪、 刘燕和王琳等对本研究提供技术支持和帮助, 谨致 谢忱。

参考文献 References

- IPCC. Climate Change 2007: The Physical Science Basis[M].
 Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
 Cambridge, UK: Cambridge University Press, 2007
- [2] 黄耀. 地气系统碳氮交换——从实验到模型[M]. 北京: 气象出版社, 2003: 5-13
 HUANG Y. Carbon and Nitrogen Exchange Between Terrestrial-Atmosphere System: From Experiment to Model[M]. Beijing: China Meteorological Press, 2003: 5-13
- [3] BRIDGHAM S D, CADILLO-QUIROZ H, KELLER J K, et al. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013, 19(5): 1325–1346
- [4] WANG Y F, CHEN H, ZHU Q A, et al. Soil methane uptake by grasslands and forests in China[J]. Soil Biology and Biochemistry, 2014, 74: 70–81
- [5] 王明星. 中国稻田甲烷排放[M]. 北京: 科学出版社, 2001WANG M X. Methane Emission from Paddy Fields in

China[M]. Beijing: Science Press, 2001

- [6] CAI Z C, XING G X, YAN X Y, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management[J]. Plant and Soil, 1997, 196(1): 7–14
- [7] 张中杰,朱波,江长胜,等.川中丘陵区旱地小麦生态系统
 CO₂、N₂O 和 CH₄ 排放特征[J]. 生态学杂志, 2005, 24(2):
 131-135

ZHANG Z J, ZHU B, JIANG C S, et al. CO_2 , N_2O and CH_4 emission from dry-land wheat ecosystem in hilly area of central Sichuan Basin[J]. Chinese Journal of Ecology, 2005, 24(2): 131–135

- [8] 周再兴,郑循华,王明星,等. 华东稻麦轮作农田 CH₄、N₂O 和 NO 排放特征[J]. 气候与环境研究, 2007, 12(6): 751-760 ZHOU Z X, ZHENG X H, WANG M X, et al. CH₄, N₂O and NO emissions from a rice-wheat rotation cropping field in East China[J]. Climatic and Environmental Research, 2007, 12(6): 751-760
- [9] 胡小康,黄彬香,苏芳,等. 氮肥管理对夏玉米土壤 CH4和 N₂O 排放的影响[J]. 中国科学:化学,2011,41(1):117-128 HU X K, HUANG B X, SU F, et al. Effects of nitrogen management on methane and nitrous oxide emissions from summer maize soil in North China Plain[J]. Science China: Chemistry, 2011, 41(1): 117-128
- [10] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2006—2015
 National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2006–2015
- [11] 卢兰. 三峡库区几种土地利用方式土壤 CH4 通量及其影响 因素研究[D]. 武汉: 华中农业大学, 2009
 LU L. Methane fluxes and their controlling factors from several land use types soils in the Three Gorges Area, China[D]. Wuhan: Huazhong Agricultural University, 2009
- [12] 陈海燕. 京郊典型设施蔬菜地温室气体排放规律及影响因素[D]. 北京: 中国农业科学院, 2012
 CHEN H Y. Greenhouse gases emissions and influencing factors from typical greenhouse vegetable fields in Beijing suburbs[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012
- [13] 秦艳梅. 常规与有机生产方式下稻田和菜地温室气体(CH4和 N₂O)排放研究[D]. 南京: 南京农业大学, 2012
 QIN Y M. Greenhouse gases (CH4 and N2O) emission from rice and vegetable fields under conventional and organic cropping regimes in Southeast China[D]. Nanjing: Nanjing Agricultural University, 2012
- [14] 万合锋,赵晨阳,钟佳,等.施用畜禽粪便堆肥品的蔬菜地 CH₄、N₂O和NH₃排放特征[J].环境科学,2014,35(3):892-900 WANHF, ZHAOCY, ZHONG J, et al. Emission of CH₄, N₂O and NH₃ from vegetable field applied with animal manure composts[J]. Environmental Science, 2014, 35(3): 892-900
- [15] 袁野, 刘长红, 戴晓琴, 等. 中国南方双季稻田转菜地对 CO₂
 和 CH₄通量的影响[J]. 应用生态学报, 2015, 26(1): 147-154
 YUAN Y, LIU C H, DAI X Q, et al. Effects of land-use conversion from double rice cropping to vegetables on CO₂ and

CH₄ fluxes in southern China[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 147–154

[16] 贾俊香,熊正琴.秸秆生物炭对菜地 N₂O、CO₂与 CH₄排放 及土壤化学性质的影响[J].生态与农村环境学报,2016, 32(2):283-288

JIA J X, XIONG Z Q. Impact of application of maize stalk-derived biochar on soil properties of and N_2O , CO_2 and CH_4 emissions from vegetable fields[J]. Journal of Ecology and Rural Environment, 2016, 32(2): 283–288

- [17] WANG D, WANG K, DÍAZ-PINÉS E, et al. Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields[J]. Atmospheric and Oceanic Science Letters, 2016, 9(5): 381–387
- [18] 中国气象局气象数据中心. 中国地面气象站逐小时观测资料[EB/OL]. [2006-2015]. http://data.cma.cn Meteorological Data Center of China Meteorological Administration. Hourly observation datasets of ground weather stations of China[EB/OL]. [2006-2015]. http://data.cma.cn
- [19] 郑循华,王睿. 陆地生态系统-大气:碳氮气体交换通量的 地面观测方法——静态箱-气相色谱法观测 CH₄和 N₂O 通 量的方法与数据质量控制规范[M]. 北京:气象出版社, 2017:58-65

ZHENG X H, WANG R. Terrestrial Ecosystems-Atmosphere: Measurement Methods for Exchange Flux of Carbon and Nitrogen Gases — Protocols for Flux Measurement and Data Processing of CH₄ and N₂O Based on Static Chamber-Gas Chromatography Technique[M]. Beijing: China Meteorological Press, 2017: 58–65

- [20] FLESSA H, DÖRSCH P, BEESE F. Seasonal variation of N₂O and CH₄ fluxes in differently managed arable soils in southern Germany[J]. Journal of Geophysical Research: Atmosphere, 1995, 100(D11): 23115–23124
- [21] SNYDER C S, BRUULSEMA T W, JENSEN T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture, Ecosystems & Environment, 2009, 133(3/4): 247–266
- [22] YAO Z S, ZHENG X H, LIU C Y, et al. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 248: 386–396
- [23] 闫翠萍,张玉铭,胡春胜,等.不同耕作措施下小麦-玉米 轮作农田温室气体交换及其综合增温潜势[J].中国生态农 业学报,2016,24(6):704-715
 YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704-715
- [24] SERRANO-SILVA N, SARRIA-GUZMÁN Y, DENDOOVEN L, et al. Methanogenesis and methanotrophy in soil: A review[J]. Pedosphere, 2014, 24(3): 291–307
- [25] 王旭燕,张仁陟,蔡立群,等.不同施氮处理下旱作农田土 壤 CH₄、N₂O 气体排放特征研究[J].环境科学学报,2015, 35(11): 3655-3661
 WANG X Y, ZHANG R Z, CAI L Q, et al. Emission

characteristics of CH₄ and N₂O fluxes from dryland field under different nitrogen treatments[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3655–3661

- [26] 徐星凯,周礼恺. 土壤源 CH4 氧化的主要影响因子与减排 措施[J]. 生态农业研究, 1999, 7(2): 18-22
 XU X K, ZHOU L K. Main factors affecting soil-borne methane oxidation and measurements for reducing CH₄ flux[J]. Eco-Agriculture Research, 1999, 7(2): 18-22
- [27] SCHWENKE G D, HERRIDGE D F, SCHEER C, et al. Greenhouse gas (N₂O and CH₄) fluxes under nitrogen-fertilised dryland wheat and barley on subtropical Vertosols: Risk, rainfall and alternatives[J]. Soil Research, 2016, 54(5): 634–650
- [28] DONG H B, YAO Z S, ZHENG X H, et al. Effect of ammonium-based, non-sulfate fertilizers on CH₄ emissions from a paddy field with a typical Chinese water management regime[J]. Atmospheric Environment, 2011, 45(5): 1095–1101
- [29] WANG K, ZHENG X H, PIHLATIE M, et al. Comparison

between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field[J]. Agricultural and Forest Meteorology, 2013, 171/172: 9–19

- [30] LIVINGSTON G P, HUTCHINSON G L. Enclosure-based measurement of trace gas exchange: Applications and sources of error[M]//MATSON P A, HARRISS R C. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Oxford: Blackwell Science, 1995: 14–51
- [31] CAI Y J, DING W X, LUO J F. Spatial variation of nitrous oxide emission between interrow soil and interrow plus row soil in a long-term maize cultivated sandy loam soil[J]. Geoderma, 2012, 181/182: 2–10
- [32] RUSER R, SCHILLING R, STEINDL H, et al. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields[J]. Soil Science Society of America Journal, 1998, 62(6): 1587–1595