不同抗旱性小麦品种耗水量及产量形成的差异

Difference in water consumption and yield among different drought-resistant wheat cultivars

  • 摘要: 为明确年际间不同抗旱性旱地小麦品种的产量差异,筛选适于黄土高原东缘种植的旱地小麦品种,于2012—2017年在山西省运城市闻喜县试验基地进行田间试验。选取10个小麦品种,将降水年型与小麦品种抗旱性进行分类(降水年型:欠水年、平水年;小麦品种:强抗旱性、弱抗旱性),比较分、干物质积累量、产量及产量构成要素的差异,分析产量及干物质积累量与耗水量的关系,明确不同品种小麦的节水增产效果。结果表明,强抗旱性品种包括‘晋麦92’‘运旱20410’‘运旱22-33’‘运旱618’‘运旱719’和‘长6697’,弱抗旱性品种包括‘洛旱6号’‘洛旱9号’‘洛旱11号’和‘洛旱13号’。欠水年,强抗旱性品种的平均耗水量高于弱抗旱性品种,当耗水量增加1 mm时,强抗旱性品种产量提高29.6 kg·hm-2,且影响其产量的主要因素是穗数和穗粒数,营养器官干物质积累量提高50.8 kg·hm-2,从而水分利用效率较高,尤其‘晋麦92’和‘运旱20410’。此外,强抗旱性品种较弱抗旱性品种单位粮食生产的节水量提高13.61%,消耗1 mm土壤水分增产量提高15.74%,具有较好的节水增产效果。平水年,6个强抗旱性品种耗水量普遍较高,其中‘运旱20410’和‘晋麦92’的水分利用效率较高,产量也较高。因此,本研究条件下,欠水年和平水年表现均较好的品种是‘晋麦92’和‘运旱20410’。

     

    Abstract: Drought is the main factor that restricts wheat yield in the arid land of the Loess Plateau. Selecting suitable wheat cultivars is important to improve wheat yield in this area. To identify differences among 10 drought-resistant dryland wheat cultivars for cultivation in the dryland of eastern Loess Plateau based on annual precipitation range, a field experiment was conducted in Wenxi County, Yuncheng City, Shanxi Province from 2012 to 2017. A few studies have been conducted taking into account drought resistance and annual precipitation range into consideration. In this study, the 10 selected wheat cultivars were screened for drought resistance. Then, the study period was classified as dry year and median year, based on the annual precipitation, and wheat varieties were classified as strong and weak drought-resistant cultivars. We compared differences in water use efficiency, dry matter accumulation, yield, and yield components among the cultivars for five consecutive years, and analyzed the relationships between yield, dry matter accumulation and water consumption. Furthermore, the effect of water saving on the yield of wheat cultivars was determined. The results showed that the strong drought-resistant cultivars were JM92, YH20410, YH22-33, YH618, YH719, and C6697; whereas the weak drought-resistant cultivars were LH6, LH9, LH11, and LH13. In the dry year, average water consumption of the strong drought-resistant cultivars was higher than that of the weak drought-resistant cultivars. When water consumption was increased by 1 mm, the yield of wheat increased by 29.6 kg·hm-2, and the main factors affecting the yield of the strong drought-resistant cultivars were spike number and grain number per spike. Moreover, dry matter accumulation in the vegetative organs increased by 50.8 kg·hm-2. Therefore, the water use efficiency of the strong drought-resistant cultivars, especially JM92 and YH20410, was higher than that of the weak drought-resistant cultivars. In addition, water saving per unit grain production of the strong drought-resistant cultivars was 13.61% higher than that of the weak drought-resistant cultivars. The yield increment of 1 mm soil water consumption was increased by 15.74% higher of the strong drought-resistant cultivars compared with that of the weak drought-resistant cultivars. Water consumption of six cultivars with strong drought resistance was generally higher in the median year, and both yield and water use efficiency of JM92 and YH20410 were relatively higher. Therefore, our results indicate that JM92 and YH20410 perform better in both dry year and median year.

     

/

返回文章
返回