黄土旱塬黑垆土长期肥料试验土壤磷素和磷肥效率的演变特征

Change characteristics of soil phosphorus and phosphorus fertilizer efficiency in Black Loessial soil of dryland in the Loess Plateau under long-term fertilization

  • 摘要: 依托甘肃平凉定位试验(1979年-),分析长期不同施肥下土壤磷素和磷肥效率的演变特征,为黄土旱塬雨养农田合理施用磷肥提供参考。试验包括6个处理:不施肥(CK)、单施氮肥(N)、氮磷配合(NP)、秸秆还田加氮和隔年施磷(SNP)、单施农家肥(M)和农家肥加氮磷(MNP),种植制度为4年冬小麦-2年春玉米的一年1熟轮作制。结果表明,试验进行38年后,长期无磷投入(CK、N)处理耕层土壤全磷和Olsen-P含量及磷活化系数比试验开始时下降,而施磷处理(NP、SNP、M和MNP)土壤全磷分别增加22.8%、14.0%、38.6%和56.1%,Olsen-P相应提高99.1%、48.4%、206.4%和375.6%,磷活化系数分别是开始时的1.7倍、1.3倍、2.2倍和3.1倍。随试验年限延长,CK处理耕层土壤全磷基本不变;N和SNP耕层土壤全磷呈下降趋势,每年下降速率为1.9 mg·kg-1和2.6 mg·kg-1;NP、M和MNP处理呈增加趋势,每年增加速率分别为1.2 mg·kg-1、1.9 mg·kg-1和2.8 mg·kg-1。CK和N处理Olsen-P呈下降趋势,年下降速率分别为0.03 mg·kg-1和0.09 mg·kg-1;NP、SNP、M和MNP处理土壤Olsen-P呈增加趋势,年增量分别为0.29 mg·kg-1、0.24 mg·kg-1、0.46 mg·kg-1和0.89 mg·kg-1。作物产量与耕层土壤Olsen-P含量呈极显著正相关(小麦R2=0.116 9,n=132;玉米R2=0.332 4,n=54)。施磷处理(NP、SNP、M和MNP)玉米的磷肥回收率、利用率和农学效率大于小麦,而生理效率小麦大于玉米;各处理磷肥效率4个指标的大小顺序均为SNP > NP > MNP > M,玉米磷肥效率的4个指标都随试验年限延长而提高。M较MNP处理P投入减少了14.2%,小麦、玉米磷素效率降低14.3%~69.5%、0.8%~75.5%。总之,有机无机结合是黄土旱塬区培肥地力、提高作物产量和资源利用效率的施肥措施。

     

    Abstract: Using a long-term fertilization experiment set up in 1978 in Pingliang, Gansu Province, changes in soil phosphorus (P) and P fertilizer efficiency (PFE) were determined and used to guide rational application of P fertilizer in dry farmlands. Six fertilizer treatments-no fertilizer (CK), chemical nitrogen (N), chemical nitrogen and phosphorus (NP), straw plus chemical NP (SNP), farmyard manure (M) and farmyard manure plus chemical NP (MNP)-were used in the cropping system of 4-year continues winter wheat followed by 2-year spring corn. After 38 years, the total soil phosphorus and Olsen-P contents in CK and N treatments decreased, and phosphorus activation coefficient dropped. Total soil phosphorus contents under NP, SNP, M and MNP treatments increased respectively by 22.8%, 14.0%, 38.6% and 56.1%. Then Olsen-P contents increased respectively by 99.1%, 48.4%, 206.4% and 375.6%, while P activation coefficients were 1.7, 1.3, 2.2 and 3.1 times as that in 1978. Total soil P contents in N and SNP treatments were negatively correlated with the number of experimental years with annual decline rates of 1.9 mg·kg-1 and 2.6 mg·kg-1, respectively. Total soil P contents under NP, M and MNP treatments were positively correlated with the number of experimental years, with annual increase rates of 1.2 mg·kg-1, 1.9 mg·kg-1 and 2.8 mg·kg-1, respectively. Total soil P contents under CK remained basically unchanged with the number of experimental years. Soil available P contents under CK and N treatments decreased with increasing number of experimental years, and the annual decline rates were respectively 0.03 mg·kg-1 and 0.09 mg·kg-1. Soil available P contents under NP, SNP, M and MNP treatments were positively correlated with the number of experimental years, with annual increase rates of respectively 0.29 mg·kg-1, 0.24 mg·kg-1, 0.46 mg·kg-1 and 0.89 mg·kg-1. Crop yield was positively correlated with soil available P (wheat R2=0.116 9, n=132; corn R2=0.332 4, n=54). P using rate (PUR), P recovery rate (PRR) and P agronomic efficiency (PAE) of corn were greater than those of wheat for all 4 P treatments (NP, SNP, M and MNP), but P physiological efficiency (PPE) of wheat was greater than that of corn. The ranked order of above four indexes of P fertilizer efficiency (PFE) for different treatments was SNP > NP > MNP > M. The four indexes of PFE of maize were positively correlated with the number of experimental years. Compared with MNP treatment, P input with M decreased 14.2%. Wheat and corn PFE decreased by 14.3%-69.5% and 0.8%-75.5%, respectively. In summary, combined application of organic and inorganic fertilizers was optimal choice for improving soil fertility, increasing crop yield and enhancing resource use efficiency in Heilu soil of the Loess Plateau dryland.

     

/

返回文章
返回